Knowledge

Nilpotent group

Source 📝

1670: 52: 1259: 1408: 1025: 2255: 2010: 2067: 1105: 3452:
Dixon, M. R.; Kirichenko, V. V.; Kurdachenko, L. A.; Otal, J.; Semko, N. N.; Shemetkov, L. A.; Subbotin, I. Ya. (2012). "S. N. Chernikov and the development of infinite group theory".
1563: 2325: 3563: 3529: 2134: 497: 472: 435: 1452: 1163: 1319: 1485: 1629: 799: 2365: 2345: 2295: 2275: 2198: 2178: 2158: 1971: 1951: 1931: 1187: 1336: 953: 1653:
It follows immediately from any of the above forms of the definition of nilpotency, that the trivial group is the unique group of nilpotency class 
1898: 3492: 3546: 357: 3509: 3691: 307: 3475: 792: 302: 3794: 3768: 3749: 3714: 3665: 3643: 2203: 718: 3818: 3741: 3683: 1976: 785: 900: 402: 216: 2386:
An abelian group is precisely one for which the adjoint action is not just nilpotent but trivial (a 1-Engel group).
3706: 2015: 1032: 3813: 1793: 2532: 2380: 1638:
equals the length of the lower central series or upper central series. If a group has nilpotency class at most
600: 334: 211: 99: 3420:
is normal, and the direct product of these Sylow subgroups is the subgroup of all elements of finite order in
1490: 2303: 2886: 2458:
The following statements are equivalent for finite groups, revealing some useful properties of nilpotency:
750: 540: 1811:, an example of a non-abelian infinite nilpotent group. It has nilpotency class 2 with central series 1, 1704: 905: 624: 3361:
is a direct product of its Sylow subgroups, and normality is preserved upon direct product of groups,
3653: 2372: 2072: 1328: 1172: 870: 866: 844: 832: 564: 552: 170: 104: 888:, as well as in the classification of groups. They also appear prominently in the classification of 874: 828: 139: 34: 480: 455: 418: 3786: 3432: 2440: 1764: 1331:
terminating in the whole group after finitely many steps. That is, a series of normal subgroups
124: 96: 3579: 1415: 1110: 3790: 3764: 3745: 3710: 3687: 3661: 3639: 3635: 1778: 1266: 695: 529: 372: 266: 1457: 3425: 2543: 2371:, and need not be nilpotent in general. They are proven to be nilpotent if they have finite 1805: 1756: 1708: 1690: 1678: 878: 863: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 134: 3778: 2555: 2482: 1254:{\displaystyle G=G_{0}\triangleright G_{1}\triangleright \dots \triangleright G_{n}=\{1\}} 946: 764: 757: 743: 700: 588: 511: 341: 255: 75: 1608: 1631:
different subgroups in the series, including the trivial subgroup and the whole group.)
3622: 2518: 2421: 2417: 2350: 2330: 2280: 2260: 2183: 2163: 2143: 1956: 1936: 1916: 1881: 1842: 1827: 1760: 1722: 1403:{\displaystyle \{1\}=Z_{0}\triangleleft Z_{1}\triangleleft \dots \triangleleft Z_{n}=G} 1020:{\displaystyle \{1\}=G_{0}\triangleleft G_{1}\triangleleft \dots \triangleleft G_{n}=G} 942: 926: 855: 840: 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 1669: 3807: 3675: 1176: 885: 851: 690: 612: 446: 319: 185: 2747:) is a proper subgroup of it. Therefore, pullback this subgroup to the subgroup in 2395: 1674: 859: 817: 545: 244: 233: 180: 155: 150: 109: 80: 43: 17: 3730: 3392: 2368: 896: 813: 2499: 2376: 2137: 1909:
Nilpotent groups are called so because the "adjoint action" of any element is
712: 440: 2300:
This is not a defining characteristic of nilpotent groups: groups for which
1910: 929:
for a group. The following are equivalent definitions for a nilpotent group
889: 533: 51: 1179: 70: 877:. The concept is credited to work in the 1930s by Russian mathematician 3338: 1736: 1729: 412: 326: 3254:
are relatively prime. Lagrange's Theorem implies the intersection of
3399:
is normal. Thus we can apply (c) (since we already proved (c)→(e)).
1770:
Furthermore, every finite nilpotent group is the direct product of
3494:
Topics in Group Theory (Springer Undergraduate Mathematics Series)
1668: 1182:
after finitely many steps. That is, a series of normal subgroups
2420:
is abelian, and the series is finite, every nilpotent group is a
854:". This idea is motivated by the fact that nilpotent groups are 3728:. Lecture Notes in Mathematics. Vol. 359. Springer-Verlag. 3634:. De Gruyter Expositions in Mathematics. Vol. 36. Berlin: 3548:
Automatic Sequences (De Gruyter Expositions in Mathematics, 36)
1755:
is abelian). The 2-groups of maximal class are the generalised
1864:) is abelian has nilpotency class 2, with central series {1}, 2250:{\displaystyle \left(\operatorname {ad} _{g}\right)^{n}(x)=e} 1893: 850:
Intuitively, a nilpotent group is a group that is "almost
2711:) is a nilpotent group. Thus, there exists a subgroup of 1743:> 1, the maximal nilpotency class of a group of order 2759:-groups – the only fact we needed was if 3763:. Springer Undergraduate Mathematics Series. Springer. 3403:
Statement (d) can be extended to infinite groups: if
2353: 2333: 2306: 2283: 2263: 2206: 2186: 2166: 2146: 2075: 2018: 1979: 1959: 1939: 1919: 1611: 1493: 1460: 1418: 1339: 1269: 1190: 1113: 1035: 956: 483: 458: 421: 3703:
Banach Algebras and the General Theory of *-algebras
3565:
Banach algebras and the general theory of *-algebras
2005:{\displaystyle \operatorname {ad} _{g}\colon G\to G} 873:. It is also true that finite nilpotent groups are 3431:Many properties of nilpotent groups are shared by 3006:be the distinct primes dividing its order and let 2804:be the distinct primes dividing its order and let 2359: 2339: 2319: 2289: 2269: 2249: 2192: 2172: 2152: 2128: 2061: 2004: 1965: 1945: 1925: 1623: 1557: 1479: 1446: 1402: 1313: 1253: 1157: 1099: 1019: 491: 466: 429: 1711:2, and its upper central series is {1}, {1, −1}, 1686:As noted above, every abelian group is nilpotent. 3407:is a nilpotent group, then every Sylow subgroup 2514:and can be phrased simply as "normalizers grow". 3469: 3467: 2775:) – so the details are omitted.) 1891:is nilpotent have been characterized (sequence 1689:For a small non-abelian example, consider the 2427:Every subgroup of a nilpotent group of class 793: 8: 3523: 3521: 2062:{\displaystyle \operatorname {ad} _{g}(x):=} 1661:are exactly the non-trivial abelian groups. 1346: 1340: 1248: 1242: 1100:{\displaystyle G_{i+1}/G_{i}\leq Z(G/G_{i})} 963: 957: 3590: 3588: 2755:. (This proof is the same argument as for 800: 786: 238: 64: 29: 3759:Tabachnikova, Olga; Smith, Geoff (2000). 3323:. This completes the induction. Now take 2352: 2332: 2311: 2305: 2282: 2262: 2226: 2216: 2205: 2200:th iteration of the function is trivial: 2185: 2165: 2145: 2111: 2098: 2074: 2023: 2017: 1984: 1978: 1958: 1938: 1918: 1610: 1546: 1537: 1519: 1510: 1498: 1492: 1465: 1459: 1423: 1417: 1388: 1369: 1356: 1338: 1296: 1274: 1268: 1233: 1214: 1201: 1189: 1149: 1127: 1112: 1088: 1079: 1061: 1052: 1040: 1034: 1005: 986: 973: 955: 485: 484: 482: 460: 459: 457: 423: 422: 420: 1558:{\displaystyle Z_{i+1}/Z_{i}=Z(G/Z_{i})} 3444: 2320:{\displaystyle \operatorname {ad} _{g}} 945:of finite length. That is, a series of 356: 122: 32: 1657:, and groups of nilpotency class  1634:Equivalently, the nilpotency class of 862:nilpotent groups, two elements having 358:Classification of finite simple groups 27:Concept in group theory of mathematics 3594:Bechtell (1971), p. 51, Theorem 5.1.3 2180:) is nilpotent in the sense that the 1913:, meaning that for a nilpotent group 1725:of two nilpotent groups is nilpotent. 7: 2424:with a relatively simple structure. 2379:to be nilpotent as long as they are 1841:is not in general nilpotent, but is 1570:For a nilpotent group, the smallest 1751:- 1 (for example, a group of order 1777:The multiplicative group of upper 1699:, which is a smallest non-abelian 925:The definition uses the idea of a 25: 3491:Tabachnikova & Smith (2000). 3630:Von Haeseler, Friedrich (2002). 3454:Algebra and Discrete Mathematics 2969:. By (b) we must therefore have 2347:(in the sense above) are called 1718:; so it is nilpotent of class 2. 1642:, then it is sometimes called a 1601:. (By definition, the length is 50: 3365:has a normal subgroup of order 3345:has a normal subgroup of order 2129:{\displaystyle =g^{-1}x^{-1}gx} 1681:, a well-known nilpotent group. 1578:has a central series of length 2877:is a normal Sylow subgroup of 2451:is nilpotent of class at most 2443:of a nilpotent group of class 2431:is nilpotent of class at most 2238: 2232: 2088: 2076: 2056: 2044: 2038: 2032: 1996: 1552: 1531: 1441: 1435: 1308: 1289: 1139: 1114: 1094: 1073: 719:Infinite dimensional Lie group 1: 3742:American Mathematical Society 3684:American Mathematical Society 3262:is equal to 1. By definition, 1887:for which any group of order 895:Analogous terms are used for 3740:. Providence, Rhode Island: 3701:Palmer, Theodore W. (1994). 1826:The multiplicative group of 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 1828:invertible upper triangular 1800:− 1. In particular, taking 217:List of group theory topics 3835: 3736:Suprunenko, D. A. (1976). 3707:Cambridge University Press 1487:is the subgroup such that 1447:{\displaystyle Z_{1}=Z(G)} 1158:{\displaystyle \leq G_{i}} 884:Nilpotent groups arise in 3053:we show inductively that 2582:is abelian, then for any 839:. Equivalently, it has a 3726:Homology in Group Theory 3617:Bechtell, Homer (1971). 3603:Isaacs (2008), Thm. 1.26 2922:is a normal subgroup of 2905:is a normal subgroup of 2763:is nilpotent then so is 2473:is a proper subgroup of 1788:matrices over any field 1314:{\displaystyle G_{i+1}=} 843:of finite length or its 335:Elementary abelian group 212:Glossary of group theory 3724:Stammbach, Urs (1973). 3098:. Note first that each 2535:of its Sylow subgroups. 2510:). This is called the 2327:is nilpotent of degree 1735:are in fact nilpotent ( 1480:{\displaystyle Z_{i+1}} 3761:Topics in Group Theory 3578:For the term, compare 2611:) is not contained in 2394:Since each successive 2361: 2341: 2321: 2291: 2271: 2251: 2194: 2174: 2154: 2130: 2063: 2006: 1967: 1947: 1927: 1837:matrices over a field 1682: 1625: 1559: 1481: 1448: 1404: 1315: 1255: 1159: 1101: 1021: 751:Linear algebraic group 493: 468: 431: 3654:Hungerford, Thomas W. 3582:, also on nilpotency. 2466:is a nilpotent group. 2362: 2342: 2322: 2292: 2272: 2252: 2195: 2175: 2155: 2131: 2064: 2007: 1968: 1948: 1933:of nilpotence degree 1928: 1848:Any nonabelian group 1672: 1626: 1560: 1482: 1449: 1405: 1316: 1256: 1160: 1102: 1022: 847:terminates with {1}. 835:that terminates with 494: 469: 432: 3819:Properties of groups 3783:The Theory of Groups 3619:The Theory of Groups 3531:The theory of groups 2447:, then the image of 2418:upper central series 2351: 2331: 2304: 2281: 2261: 2204: 2184: 2164: 2144: 2073: 2016: 1977: 1957: 1937: 1917: 1796:of nilpotency class 1609: 1491: 1458: 1416: 1337: 1329:upper central series 1267: 1188: 1173:lower central series 1111: 1033: 954: 915:upper central series 911:lower central series 845:lower central series 833:upper central series 481: 456: 419: 3680:Finite Group Theory 3660:. Springer-Verlag. 3632:Automatic Sequences 3528:Zassenhaus (1999). 3508:Hungerford (1974). 3474:Suprunenko (1976). 3433:hypercentral groups 3223:|⋅···⋅| 2948:) is a subgroup of 2723:) which normalizes 2512:normalizer property 1905:Explanation of term 1765:semidihedral groups 1624:{\displaystyle n+1} 1596:nilpotent of class 1175:terminating in the 125:Group homomorphisms 35:Algebraic structure 18:Nilpotent Lie group 3787:Dover Publications 3369:for every divisor 3300:which is equal to 3177:, so by induction 2977:, which gives (c). 2751:and it normalizes 2687:) is contained in 2671:) is contained in 2435:; in addition, if 2381:finitely generated 2357: 2337: 2317: 2287: 2267: 2247: 2190: 2170: 2150: 2126: 2059: 2002: 1963: 1943: 1923: 1683: 1621: 1555: 1477: 1444: 1400: 1311: 1251: 1155: 1107:, or equivalently 1097: 1017: 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 3693:978-0-8218-4344-4 3676:Isaacs, I. Martin 3636:Walter de Gruyter 3545:Haeseler (2002). 3292:is isomorphic to 3246:|, the orders of 3205:. In particular,| 3181:is isomorphic to 3133:is a subgroup of 3075:is isomorphic to 2574:By induction on | 2360:{\displaystyle n} 2340:{\displaystyle n} 2290:{\displaystyle G} 2270:{\displaystyle x} 2193:{\displaystyle n} 2173:{\displaystyle x} 2153:{\displaystyle g} 1966:{\displaystyle g} 1946:{\displaystyle n} 1926:{\displaystyle G} 1757:quaternion groups 1673:A portion of the 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 3826: 3814:Nilpotent groups 3800: 3779:Zassenhaus, Hans 3774: 3755: 3729: 3720: 3697: 3671: 3649: 3626: 3604: 3601: 3595: 3592: 3583: 3576: 3570: 3569: 3559: 3553: 3552: 3542: 3536: 3535: 3525: 3516: 3515: 3505: 3499: 3498: 3488: 3482: 3481: 3471: 3462: 3461: 3449: 3426:torsion subgroup 2366: 2364: 2363: 2358: 2346: 2344: 2343: 2338: 2326: 2324: 2323: 2318: 2316: 2315: 2296: 2294: 2293: 2288: 2276: 2274: 2273: 2268: 2256: 2254: 2253: 2248: 2231: 2230: 2225: 2221: 2220: 2199: 2197: 2196: 2191: 2179: 2177: 2176: 2171: 2159: 2157: 2156: 2151: 2135: 2133: 2132: 2127: 2119: 2118: 2106: 2105: 2068: 2066: 2065: 2060: 2028: 2027: 2011: 2009: 2008: 2003: 1989: 1988: 1972: 1970: 1969: 1964: 1952: 1950: 1949: 1944: 1932: 1930: 1929: 1924: 1896: 1806:Heisenberg group 1691:quaternion group 1679:Heisenberg group 1677:of the discrete 1660: 1656: 1647: 1641: 1637: 1630: 1628: 1627: 1622: 1604: 1599: 1593: 1589: 1584:nilpotency class 1581: 1577: 1573: 1564: 1562: 1561: 1556: 1551: 1550: 1541: 1524: 1523: 1514: 1509: 1508: 1486: 1484: 1483: 1478: 1476: 1475: 1453: 1451: 1450: 1445: 1428: 1427: 1409: 1407: 1406: 1401: 1393: 1392: 1374: 1373: 1361: 1360: 1326: 1320: 1318: 1317: 1312: 1301: 1300: 1285: 1284: 1260: 1258: 1257: 1252: 1238: 1237: 1219: 1218: 1206: 1205: 1170: 1164: 1162: 1161: 1156: 1154: 1153: 1138: 1137: 1106: 1104: 1103: 1098: 1093: 1092: 1083: 1066: 1065: 1056: 1051: 1050: 1026: 1024: 1023: 1018: 1010: 1009: 991: 990: 978: 977: 947:normal subgroups 940: 932: 879:Sergei Chernikov 864:relatively prime 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 65: 54: 41: 30: 21: 3834: 3833: 3829: 3828: 3827: 3825: 3824: 3823: 3804: 3803: 3797: 3777: 3771: 3758: 3752: 3735: 3723: 3717: 3700: 3694: 3674: 3668: 3652: 3646: 3629: 3616: 3613: 3608: 3607: 3602: 3598: 3593: 3586: 3580:Engel's theorem 3577: 3573: 3568:. p. 1283. 3562:Palmer (2001). 3561: 3560: 3556: 3544: 3543: 3539: 3527: 3526: 3519: 3507: 3506: 3502: 3490: 3489: 3485: 3473: 3472: 3465: 3451: 3450: 3446: 3441: 3415: 3322: 3313: 3306: 3283: 3274: 3268: 3245: 3232: 3222: 3215: 3204: 3194: 3187: 3176: 3163: 3153: 3147: 3141:be the product 3132: 3123: 3117: 3106: 3097: 3088: 3081: 3074: 3065: 3059: 3028: 3027: 3014: 3005: 2996: 2989: 2960: 2943: 2930: 2918:), we get that 2913: 2868: 2851: 2826: 2825: 2812: 2803: 2794: 2787: 2631: 2623: 2594: 2565: 2556:normal subgroup 2493: 2483:normal subgroup 2415: 2406: 2392: 2349: 2348: 2329: 2328: 2307: 2302: 2301: 2279: 2278: 2259: 2258: 2212: 2208: 2207: 2202: 2201: 2182: 2181: 2162: 2161: 2142: 2141: 2107: 2094: 2071: 2070: 2019: 2014: 2013: 1980: 1975: 1974: 1973:, the function 1955: 1954: 1953:and an element 1935: 1934: 1915: 1914: 1907: 1892: 1882:natural numbers 1804:= 3 yields the 1794:nilpotent group 1761:dihedral groups 1717: 1703:-group. It has 1698: 1667: 1658: 1654: 1645: 1639: 1635: 1607: 1606: 1602: 1597: 1591: 1587: 1579: 1575: 1571: 1568: 1542: 1515: 1494: 1489: 1488: 1461: 1456: 1455: 1419: 1414: 1413: 1384: 1365: 1352: 1335: 1334: 1324: 1292: 1270: 1265: 1264: 1229: 1210: 1197: 1186: 1185: 1168: 1145: 1123: 1109: 1108: 1084: 1057: 1036: 1031: 1030: 1001: 982: 969: 952: 951: 938: 930: 923: 822:nilpotent group 816:, specifically 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 479: 478: 454: 453: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 3832: 3830: 3822: 3821: 3816: 3806: 3805: 3802: 3801: 3795: 3775: 3769: 3756: 3750: 3733: 3721: 3715: 3698: 3692: 3672: 3666: 3650: 3644: 3627: 3623:Addison-Wesley 3612: 3609: 3606: 3605: 3596: 3584: 3571: 3554: 3537: 3534:. p. 143. 3517: 3514:. p. 100. 3500: 3497:. p. 169. 3483: 3480:. p. 205. 3463: 3443: 3442: 3440: 3437: 3411: 3401: 3400: 3383:For any prime 3381: 3378: 3335: 3332: 3331:to obtain (d). 3318: 3311: 3304: 3279: 3272: 3266: 3241: 3227: 3220: 3213: 3199: 3192: 3185: 3172: 3158: 3151: 3145: 3128: 3121: 3115: 3102: 3093: 3086: 3079: 3070: 3063: 3057: 3023: 3019: 3010: 3001: 2994: 2987: 2981: 2978: 2956: 2939: 2935:). This means 2926: 2909: 2887:characteristic 2864: 2847: 2821: 2817: 2808: 2799: 2792: 2785: 2779: 2776: 2659:) normalizers 2627: 2619: 2590: 2572: 2564: 2563: 2536: 2533:direct product 2526: 2519:Sylow subgroup 2515: 2489: 2467: 2460: 2422:solvable group 2411: 2401: 2391: 2388: 2356: 2336: 2314: 2310: 2286: 2266: 2246: 2243: 2240: 2237: 2234: 2229: 2224: 2219: 2215: 2211: 2189: 2169: 2149: 2125: 2122: 2117: 2114: 2110: 2104: 2101: 2097: 2093: 2090: 2087: 2084: 2081: 2078: 2058: 2055: 2052: 2049: 2046: 2043: 2040: 2037: 2034: 2031: 2026: 2022: 2001: 1998: 1995: 1992: 1987: 1983: 1962: 1942: 1922: 1906: 1903: 1878: 1877: 1846: 1824: 1775: 1768: 1726: 1723:direct product 1719: 1715: 1696: 1687: 1666: 1663: 1620: 1617: 1614: 1594:is said to be 1582:is called the 1567: 1566: 1554: 1549: 1545: 1540: 1536: 1533: 1530: 1527: 1522: 1518: 1513: 1507: 1504: 1501: 1497: 1474: 1471: 1468: 1464: 1443: 1440: 1437: 1434: 1431: 1426: 1422: 1411: 1410: 1399: 1396: 1391: 1387: 1383: 1380: 1377: 1372: 1368: 1364: 1359: 1355: 1351: 1348: 1345: 1342: 1322: 1310: 1307: 1304: 1299: 1295: 1291: 1288: 1283: 1280: 1277: 1273: 1262: 1261: 1250: 1247: 1244: 1241: 1236: 1232: 1228: 1225: 1222: 1217: 1213: 1209: 1204: 1200: 1196: 1193: 1166: 1152: 1148: 1144: 1141: 1136: 1133: 1130: 1126: 1122: 1119: 1116: 1096: 1091: 1087: 1082: 1078: 1075: 1072: 1069: 1064: 1060: 1055: 1049: 1046: 1043: 1039: 1028: 1027: 1016: 1013: 1008: 1004: 1000: 997: 994: 989: 985: 981: 976: 972: 968: 965: 962: 959: 943:central series 935: 927:central series 922: 919: 841:central series 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3831: 3820: 3817: 3815: 3812: 3811: 3809: 3798: 3796:0-486-40922-8 3792: 3788: 3784: 3780: 3776: 3772: 3770:1-85233-235-2 3766: 3762: 3757: 3753: 3751:0-8218-1341-2 3747: 3743: 3739: 3738:Matrix Groups 3734: 3732: 3727: 3722: 3718: 3716:0-521-36638-0 3712: 3708: 3704: 3699: 3695: 3689: 3685: 3681: 3677: 3673: 3669: 3667:0-387-90518-9 3663: 3659: 3655: 3651: 3647: 3645:3-11-015629-6 3641: 3637: 3633: 3628: 3624: 3620: 3615: 3614: 3610: 3600: 3597: 3591: 3589: 3585: 3581: 3575: 3572: 3567: 3566: 3558: 3555: 3551:. p. 15. 3550: 3549: 3541: 3538: 3533: 3532: 3524: 3522: 3518: 3513: 3512: 3504: 3501: 3496: 3495: 3487: 3484: 3479: 3478: 3477:Matrix Groups 3470: 3468: 3464: 3460:(2): 169–208. 3459: 3455: 3448: 3445: 3438: 3436: 3434: 3429: 3427: 3423: 3419: 3414: 3410: 3406: 3398: 3396: 3390: 3386: 3382: 3379: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3348: 3344: 3340: 3336: 3333: 3330: 3326: 3321: 3317: 3310: 3303: 3299: 3295: 3291: 3287: 3282: 3278: 3271: 3265: 3261: 3257: 3253: 3249: 3244: 3240: 3236: 3230: 3226: 3219: 3212: 3208: 3202: 3198: 3191: 3184: 3180: 3175: 3171: 3167: 3161: 3157: 3150: 3144: 3140: 3136: 3131: 3127: 3120: 3114: 3110: 3107:is normal in 3105: 3101: 3096: 3092: 3085: 3078: 3073: 3069: 3062: 3056: 3052: 3048: 3044: 3040: 3036: 3032: 3026: 3022: 3018: 3013: 3009: 3004: 3000: 2993: 2986: 2982: 2979: 2976: 2972: 2968: 2964: 2959: 2955: 2951: 2947: 2942: 2938: 2934: 2929: 2925: 2921: 2917: 2912: 2908: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2867: 2863: 2859: 2855: 2850: 2846: 2842: 2838: 2834: 2830: 2824: 2820: 2816: 2811: 2807: 2802: 2798: 2791: 2784: 2780: 2777: 2774: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2738: 2734: 2730: 2726: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2642: 2640: 2634: 2630: 2626: 2622: 2618: 2614: 2610: 2606: 2603:. If not, if 2602: 2598: 2593: 2589: 2585: 2581: 2577: 2573: 2570: 2569: 2568: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2534: 2530: 2527: 2524: 2520: 2516: 2513: 2509: 2505: 2501: 2497: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2465: 2462: 2461: 2459: 2456: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2425: 2423: 2419: 2414: 2410: 2404: 2400: 2397: 2389: 2387: 2384: 2382: 2378: 2374: 2370: 2354: 2334: 2312: 2308: 2298: 2284: 2264: 2244: 2241: 2235: 2227: 2222: 2217: 2213: 2209: 2187: 2167: 2147: 2139: 2123: 2120: 2115: 2112: 2108: 2102: 2099: 2095: 2091: 2085: 2082: 2079: 2053: 2050: 2047: 2041: 2035: 2029: 2024: 2020: 1999: 1993: 1990: 1985: 1981: 1960: 1940: 1920: 1912: 1904: 1902: 1900: 1895: 1890: 1886: 1883: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1844: 1840: 1836: 1832: 1829: 1825: 1822: 1818: 1814: 1810: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1780: 1779:unitriangular 1776: 1773: 1769: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1732: 1727: 1724: 1720: 1714: 1710: 1706: 1702: 1695: 1692: 1688: 1685: 1684: 1680: 1676: 1671: 1664: 1662: 1651: 1649: 1632: 1618: 1615: 1612: 1605:if there are 1600: 1585: 1547: 1543: 1538: 1534: 1528: 1525: 1520: 1516: 1511: 1505: 1502: 1499: 1495: 1472: 1469: 1466: 1462: 1438: 1432: 1429: 1424: 1420: 1397: 1394: 1389: 1385: 1381: 1378: 1375: 1370: 1366: 1362: 1357: 1353: 1349: 1343: 1333: 1332: 1330: 1323: 1305: 1302: 1297: 1293: 1286: 1281: 1278: 1275: 1271: 1245: 1239: 1234: 1230: 1226: 1223: 1220: 1215: 1211: 1207: 1202: 1198: 1194: 1191: 1184: 1183: 1181: 1178: 1174: 1167: 1150: 1146: 1142: 1134: 1131: 1128: 1124: 1120: 1117: 1089: 1085: 1080: 1076: 1070: 1067: 1062: 1058: 1053: 1047: 1044: 1041: 1037: 1014: 1011: 1006: 1002: 998: 995: 992: 987: 983: 979: 974: 970: 966: 960: 950: 949: 948: 944: 937: 936: 934: 928: 920: 918: 916: 912: 908: 907: 902: 898: 893: 891: 887: 886:Galois theory 882: 880: 876: 875:supersolvable 872: 868: 865: 861: 857: 853: 848: 846: 842: 838: 834: 830: 826: 823: 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 31: 19: 3785:. New York: 3782: 3760: 3737: 3725: 3702: 3679: 3657: 3631: 3618: 3599: 3574: 3564: 3557: 3547: 3540: 3530: 3510: 3503: 3493: 3486: 3476: 3457: 3453: 3447: 3430: 3421: 3417: 3412: 3408: 3404: 3402: 3394: 3388: 3384: 3374: 3370: 3366: 3362: 3358: 3354: 3350: 3346: 3342: 3337:Note that a 3328: 3324: 3319: 3315: 3308: 3301: 3297: 3293: 3289: 3285: 3280: 3276: 3269: 3263: 3259: 3255: 3251: 3247: 3242: 3238: 3234: 3228: 3224: 3217: 3210: 3206: 3200: 3196: 3189: 3182: 3178: 3173: 3169: 3165: 3159: 3155: 3148: 3142: 3138: 3134: 3129: 3125: 3118: 3112: 3108: 3103: 3099: 3094: 3090: 3083: 3076: 3071: 3067: 3060: 3054: 3050: 3046: 3042: 3038: 3034: 3030: 3024: 3020: 3016: 3011: 3007: 3002: 2998: 2991: 2984: 2974: 2970: 2966: 2962: 2957: 2953: 2949: 2945: 2940: 2936: 2932: 2927: 2923: 2919: 2915: 2910: 2906: 2902: 2898: 2894: 2890: 2882: 2878: 2874: 2870: 2865: 2861: 2857: 2853: 2848: 2844: 2840: 2836: 2832: 2828: 2822: 2818: 2814: 2809: 2805: 2800: 2796: 2789: 2782: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2660: 2656: 2652: 2648: 2644: 2638: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2600: 2596: 2591: 2587: 2583: 2579: 2575: 2566: 2559: 2551: 2547: 2542:divides the 2539: 2528: 2522: 2511: 2507: 2503: 2495: 2490: 2486: 2481:is a proper 2478: 2474: 2470: 2463: 2457: 2452: 2448: 2444: 2441:homomorphism 2436: 2432: 2428: 2426: 2412: 2408: 2402: 2398: 2396:factor group 2393: 2385: 2369:Engel groups 2299: 1908: 1888: 1884: 1879: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1838: 1834: 1830: 1820: 1816: 1812: 1808: 1801: 1797: 1789: 1785: 1781: 1771: 1752: 1748: 1744: 1740: 1730: 1712: 1700: 1693: 1675:Cayley graph 1652: 1643: 1633: 1595: 1583: 1569: 924: 914: 910: 904: 903:) including 897:Lie algebras 894: 883: 849: 836: 831:that has an 824: 821: 818:group theory 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 195: 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 2377:conjectured 2012:defined by 1728:All finite 1707:{1, −1} of 901:Lie bracket 899:(using the 814:mathematics 530:Topological 369:alternating 3808:Categories 3611:References 3387:dividing | 3349:for all 1≤ 3233:|. Since | 3041:. For any 2952:and hence 2525:is normal. 2500:normalizer 2390:Properties 2375:, and are 2138:commutator 1852:such that 1763:, and the 1574:such that 921:Definition 890:Lie groups 858:, and for 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 3397:-subgroup 3341:of order 3216:|⋅| 2873:). Since 2852:for some 2699:). Note, 2558:of order 2113:− 2100:− 2030:⁡ 1997:→ 1991:: 1911:nilpotent 1382:◃ 1379:⋯ 1376:◃ 1363:◃ 1227:▹ 1224:⋯ 1221:▹ 1208:▹ 1143:≤ 1068:≤ 999:◃ 996:⋯ 993:◃ 980:◃ 906:nilpotent 701:Conformal 589:Euclidean 196:nilpotent 3781:(1999). 3678:(2008). 3656:(1974). 3357:. Since 3288:, hence 3164:and let 2893:. Since 2856:and let 2257:for all 1843:solvable 1774:-groups. 1665:Examples 1180:subgroup 856:solvable 696:Poincaré 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 3658:Algebra 3511:Algebra 3391:|, the 3380:(e)→(a) 3339:p-group 3334:(d)→(e) 3033:), 1 ≤ 2980:(c)→(d) 2831:), 1 ≤ 2778:(b)→(c) 2735:) and 2675:, then 2615:, then 2571:(a)→(b) 2567:Proof: 2550:, then 2531:is the 2498:) (the 2477:, then 2416:in the 2136:is the 2069:(where 1897:in the 1894:A056867 1739:). For 1733:-groups 1327:has an 1177:trivial 871:commute 852:abelian 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 3793:  3767:  3748:  3731:review 3713:  3690:  3664:  3642:  3393:Sylow 3137:. Let 3045:, 1 ≤ 2839:. Let 2578:|. If 2554:has a 2517:Every 1759:, the 1705:center 1590:; and 1412:where 1263:where 1171:has a 1029:where 941:has a 913:, and 867:orders 860:finite 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 3439:Notes 3424:(see 3314:×···× 3237:| = | 3209:| = | 3195:×···× 3089:×···× 2997:,..., 2897:char 2795:,..., 2663:. If 2647:, so 2544:order 2439:is a 2373:order 1792:is a 1737:proof 1709:order 1648:group 869:must 829:group 827:is a 730:Sp(∞) 727:SU(∞) 140:image 3791:ISBN 3765:ISBN 3746:ISBN 3711:ISBN 3688:ISBN 3662:ISBN 3640:ISBN 3373:of | 3258:and 3250:and 2983:Let 2965:) = 2901:and 2781:Let 2599:) = 2160:and 1899:OEIS 1880:The 1721:The 1644:nil- 1454:and 820:, a 724:O(∞) 713:Loop 532:and 3428:). 3416:of 3275:··· 3154:··· 3124:··· 3111:so 3066:··· 3017:Syl 3015:in 2889:in 2885:is 2815:Syl 2813:in 2546:of 2538:If 2521:of 2506:in 2502:of 2485:of 2469:If 2277:in 2140:of 1901:). 1872:), 1819:), 1747:is 1586:of 812:In 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 3810:: 3789:. 3744:. 3709:. 3705:. 3686:. 3682:. 3638:. 3621:. 3587:^ 3520:^ 3466:^ 3458:13 3456:. 3435:. 3377:|. 3327:= 3290:HK 3286:HK 3284:= 3231:−1 3203:−1 3168:= 3162:−1 3049:≤ 3037:≤ 2973:= 2881:, 2860:= 2843:= 2835:≤ 2643:= 2639:H' 2637:h' 2635:= 2586:, 2455:. 2405:+1 2383:. 2309:ad 2297:. 2214:ad 2042::= 2021:ad 1982:ad 1833:× 1784:× 1650:. 917:. 909:, 892:. 881:. 615:U( 591:E( 579:O( 37:→ 3799:. 3773:. 3754:. 3719:. 3696:. 3670:. 3648:. 3625:. 3422:G 3418:G 3413:p 3409:G 3405:G 3395:p 3389:G 3385:p 3375:G 3371:d 3367:d 3363:G 3359:G 3355:k 3353:≤ 3351:m 3347:p 3343:p 3329:s 3325:t 3320:t 3316:P 3312:2 3309:P 3307:× 3305:1 3302:P 3298:K 3296:× 3294:H 3281:t 3277:P 3273:2 3270:P 3267:1 3264:P 3260:K 3256:H 3252:K 3248:H 3243:t 3239:P 3235:K 3229:t 3225:P 3221:2 3218:P 3214:1 3211:P 3207:H 3201:t 3197:P 3193:2 3190:P 3188:× 3186:1 3183:P 3179:H 3174:t 3170:P 3166:K 3160:t 3156:P 3152:2 3149:P 3146:1 3143:P 3139:H 3135:G 3130:t 3126:P 3122:2 3119:P 3116:1 3113:P 3109:G 3104:i 3100:P 3095:t 3091:P 3087:2 3084:P 3082:× 3080:1 3077:P 3072:t 3068:P 3064:2 3061:P 3058:1 3055:P 3051:s 3047:t 3043:t 3039:s 3035:i 3031:G 3029:( 3025:i 3021:p 3012:i 3008:P 3003:s 2999:p 2995:2 2992:p 2990:, 2988:1 2985:p 2975:G 2971:N 2967:N 2963:N 2961:( 2958:G 2954:N 2950:N 2946:N 2944:( 2941:G 2937:N 2933:N 2931:( 2928:G 2924:N 2920:P 2916:N 2914:( 2911:G 2907:N 2903:N 2899:N 2895:P 2891:N 2883:P 2879:N 2875:P 2871:P 2869:( 2866:G 2862:N 2858:N 2854:i 2849:i 2845:P 2841:P 2837:s 2833:i 2829:G 2827:( 2823:i 2819:p 2810:i 2806:P 2801:s 2797:p 2793:2 2790:p 2788:, 2786:1 2783:p 2773:G 2771:( 2769:Z 2767:/ 2765:G 2761:G 2757:p 2753:H 2749:G 2745:G 2743:( 2741:Z 2739:/ 2737:H 2733:G 2731:( 2729:Z 2727:/ 2725:H 2721:G 2719:( 2717:Z 2715:/ 2713:G 2709:G 2707:( 2705:Z 2703:/ 2701:G 2697:G 2695:( 2693:Z 2691:/ 2689:G 2685:G 2683:( 2681:Z 2679:/ 2677:H 2673:H 2669:G 2667:( 2665:Z 2661:H 2657:G 2655:( 2653:Z 2651:· 2649:H 2645:H 2641:h 2633:h 2629:Z 2625:H 2621:Z 2617:h 2613:H 2609:G 2607:( 2605:Z 2601:G 2597:H 2595:( 2592:G 2588:N 2584:H 2580:G 2576:G 2562:. 2560:d 2552:G 2548:G 2540:d 2529:G 2523:G 2508:G 2504:H 2496:H 2494:( 2491:G 2487:N 2479:H 2475:G 2471:H 2464:G 2453:n 2449:f 2445:n 2437:f 2433:n 2429:n 2413:i 2409:Z 2407:/ 2403:i 2399:Z 2367:- 2355:n 2335:n 2313:g 2285:G 2265:x 2245:e 2242:= 2239:) 2236:x 2233:( 2228:n 2223:) 2218:g 2210:( 2188:n 2168:x 2148:g 2124:x 2121:g 2116:1 2109:x 2103:1 2096:g 2092:= 2089:] 2086:x 2083:, 2080:g 2077:[ 2057:] 2054:x 2051:, 2048:g 2045:[ 2039:) 2036:x 2033:( 2025:g 2000:G 1994:G 1986:g 1961:g 1941:n 1921:G 1889:k 1885:k 1876:. 1874:G 1870:G 1868:( 1866:Z 1862:G 1860:( 1858:Z 1856:/ 1854:G 1850:G 1845:. 1839:F 1835:n 1831:n 1823:. 1821:H 1817:H 1815:( 1813:Z 1809:H 1802:n 1798:n 1790:F 1786:n 1782:n 1772:p 1767:. 1753:p 1749:n 1745:p 1741:n 1731:p 1716:8 1713:Q 1701:p 1697:8 1694:Q 1659:1 1655:0 1646:n 1640:n 1636:G 1619:1 1616:+ 1613:n 1603:n 1598:n 1592:G 1588:G 1580:n 1576:G 1572:n 1565:. 1553:) 1548:i 1544:Z 1539:/ 1535:G 1532:( 1529:Z 1526:= 1521:i 1517:Z 1512:/ 1506:1 1503:+ 1500:i 1496:Z 1473:1 1470:+ 1467:i 1463:Z 1442:) 1439:G 1436:( 1433:Z 1430:= 1425:1 1421:Z 1398:G 1395:= 1390:n 1386:Z 1371:1 1367:Z 1358:0 1354:Z 1350:= 1347:} 1344:1 1341:{ 1325:G 1321:. 1309:] 1306:G 1303:, 1298:i 1294:G 1290:[ 1287:= 1282:1 1279:+ 1276:i 1272:G 1249:} 1246:1 1243:{ 1240:= 1235:n 1231:G 1216:1 1212:G 1203:0 1199:G 1195:= 1192:G 1169:G 1165:. 1151:i 1147:G 1140:] 1135:1 1132:+ 1129:i 1125:G 1121:, 1118:G 1115:[ 1095:) 1090:i 1086:G 1081:/ 1077:G 1074:( 1071:Z 1063:i 1059:G 1054:/ 1048:1 1045:+ 1042:i 1038:G 1015:G 1012:= 1007:n 1003:G 988:1 984:G 975:0 971:G 967:= 964:} 961:1 958:{ 939:G 933:: 931:G 837:G 825:G 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Nilpotent Lie group
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.