Knowledge (XXG)

Nodal precession

Source 📝

128:. Because of the bulge of the central body, the gravitational force on a satellite is not directed toward the center of the central body, but is offset toward its equator. Whichever hemisphere of the central body the satellite lies over, it is preferentially pulled slightly toward the equator of the central body. This creates a torque on the satellite. This torque does not reduce the inclination; rather, it causes a torque-induced gyroscopic 775: 536: 117: 770:{\displaystyle {\begin{aligned}\omega _{\mathrm {p} }&=-{\frac {3}{2}}\cdot {\frac {6\,378\,137^{2}}{\left(7\,178\,137\left(1-0^{2}\right)\right)^{2}}}\cdot \left(1.082\,626\,68\times 10^{-3}\right)\cdot 0.001\,038\cdot \cos 56^{\circ }\\&=-7.44\times 10^{-7}{\text{ rad/s}}\end{aligned}}} 294: 509: 783:
The apparent motion of the sun is approximately +1° per day (360° per year / 365.2422 days per tropical year ≈ 0.9856473° per day), so apparent motion of the sun relative to the orbit plane is about 2.8° per day, resulting in a complete cycle in about 127 days. For retrograde orbits
792:
can be thought of as positive but the inclination is greater than 90°, so the cosine of the inclination is negative.) In this case it is possible to make the precession approximately match the apparent motion of the sun, resulting in a
161: 397: 911: 124:
A non-rotating body of planetary scale or larger would be pulled by gravity into a spherical shape. Virtually all bodies rotate, however. The centrifugal force deforms the body so that it has an
541: 402: 84:
The direction of precession is opposite the direction of revolution. For a typical prograde orbit around Earth (that is, in the direction of primary body's rotation), the
155:
around Earth, the precession is westward (nodal regression), that is, the node and satellite move in opposite directions. A good approximation of the precession rate is
825: 1014: 289:{\displaystyle \omega _{\mathrm {p} }=-{\frac {3}{2}}{\frac {{R_{\mathrm {E} }}^{2}}{\left(a\left(1-e^{2}\right)\right)^{2}}}J_{2}\omega \cos i} 504:{\displaystyle {\begin{aligned}R_{\mathrm {E} }&=6.378\,137\times 10^{6}{\text{ m}}\\J_{2}&=1.082\,626\,68\times 10^{-3}\end{aligned}}} 830: 990: 387:
The nodal progression of low Earth orbits is typically a few degrees per day to the west (negative). For a satellite in a circular (
980: 85: 89: 81:. This bulge creates a gravitational effect that causes orbits to precess around the rotational axis of the primary body. 926: 62:
of artificial satellites, which have no measurable effect on the motion of Earth. The nodal precession of more massive,
780:
This is equivalent to −3.683° per day, so the orbit plane will make one complete turn (in inertial space) in 98 days.
381: 93: 35: 1029: 936: 794: 101: 54:. This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform 1034: 74: 55: 47: 932: 914: 73:
Around a spherical body, an orbital plane would remain fixed in space around the gravitational
986: 63: 950: 942: 125: 78: 803: 344: 59: 1009: 152: 1023: 133: 148:
of the orbital plane to the equatorial plane, as well as the orbital eccentricity.
97: 946: 145: 116: 17: 959: 954: 129: 105: 31: 39: 43: 120:
Equatorial bulge torques a satellite orbit, leading to nodal precession
312: 100:, that is the node precesses eastward. This nodal precession enables 906:{\displaystyle {\tilde {J_{2}}}=-{\frac {J_{2}}{GM_{E}R_{E}^{2}}}} 115: 51: 788:
is negative, so the precession becomes positive. (Alternatively,
391:= 0) 800 km altitude orbit at 56° inclination about Earth: 88:
decreases, that is the node precesses westward. If the orbit is
67: 935:, another kind of orbital precession (the change in the 1015:
Discussion of nodal regression from Analytical Graphics
827:
used in this equation is the dimensionless coefficient
833: 806: 539: 400: 164: 359:
is the angular velocity of the satellite's motion (2
905: 819: 769: 503: 288: 77:. However, most bodies rotate, which causes an 353:is the eccentricity of the satellite's orbit, 8: 929:, or "precession of the equinoxes" for Earth 363:radians divided by its period in seconds), 894: 889: 879: 865: 859: 841: 835: 834: 832: 811: 805: 758: 749: 720: 703: 683: 672: 668: 649: 633: 614: 610: 594: 589: 585: 579: 566: 549: 548: 540: 538: 488: 477: 473: 457: 444: 438: 427: 410: 409: 401: 399: 268: 256: 240: 210: 202: 201: 196: 193: 183: 170: 169: 163: 1010:Nodal regression description from USENET 971: 144:The rate of precession depends on the 58:. The following discussion relates to 917:or gravity field model for the body. 7: 550: 411: 203: 171: 25: 326:is the body's equatorial radius ( 86:longitude of the ascending node 847: 530:. The precession is therefore 104:to maintain a nearly constant 1: 982:Elements of spacecraft design 949:on the lunistices depends on 522:, so the angular velocity is 311:is the precession rate (in 1051: 382:second dynamic form factor 347:of the satellite's orbit, 106:angle relative to the Sun 979:Brown, Charles (2002). 102:heliosynchronous orbits 945:, in which the Moon's 907: 821: 795:heliosynchronous orbit 771: 514:The orbital period is 505: 290: 121: 937:argument of periapsis 908: 822: 820:{\displaystyle J_{2}} 772: 506: 291: 151:For a satellite in a 119: 92:, this increases the 831: 804: 537: 398: 162: 136:to drift with time. 899: 369:is its inclination, 132:, which causes the 56:gravitational field 933:Apsidal precession 915:geopotential model 903: 885: 817: 767: 765: 501: 499: 286: 122: 64:natural satellites 955:its orbital nodes 901: 850: 761: 655: 574: 447: 262: 191: 70:is more complex. 48:astronomical body 16:(Redirected from 1042: 997: 996: 976: 943:Lunar standstill 927:Axial precession 912: 910: 909: 904: 902: 900: 898: 893: 884: 883: 870: 869: 860: 852: 851: 846: 845: 836: 826: 824: 823: 818: 816: 815: 791: 787: 776: 774: 773: 768: 766: 762: 759: 757: 756: 729: 725: 724: 696: 692: 691: 690: 656: 654: 653: 648: 644: 643: 639: 638: 637: 600: 599: 598: 580: 575: 567: 555: 554: 553: 529: 527: 521: 519: 510: 508: 507: 502: 500: 496: 495: 462: 461: 448: 445: 443: 442: 416: 415: 414: 390: 379: 368: 362: 358: 352: 342: 336: 334: 331: 325: 310: 295: 293: 292: 287: 273: 272: 263: 261: 260: 255: 251: 250: 246: 245: 244: 215: 214: 209: 208: 207: 206: 194: 192: 184: 176: 175: 174: 126:equatorial bulge 79:equatorial bulge 28:Nodal precession 21: 18:Nodal regression 1050: 1049: 1045: 1044: 1043: 1041: 1040: 1039: 1020: 1019: 1006: 1001: 1000: 993: 985:. p. 106. 978: 977: 973: 968: 923: 875: 871: 861: 837: 829: 828: 807: 802: 801: 789: 785: 764: 763: 745: 727: 726: 716: 679: 664: 660: 629: 622: 618: 606: 602: 601: 590: 581: 556: 544: 535: 534: 525: 523: 517: 515: 498: 497: 484: 463: 453: 450: 449: 434: 417: 405: 396: 395: 388: 378: 372: 366: 360: 356: 350: 345:semi-major axis 340: 332: 329: 327: 324: 318: 309: 303: 264: 236: 229: 225: 221: 217: 216: 197: 195: 165: 160: 159: 142: 114: 60:low Earth orbit 23: 22: 15: 12: 11: 5: 1048: 1046: 1038: 1037: 1032: 1022: 1021: 1018: 1017: 1012: 1005: 1004:External links 1002: 999: 998: 991: 970: 969: 967: 964: 963: 962: 957: 951:the precession 940: 930: 922: 919: 897: 892: 888: 882: 878: 874: 868: 864: 858: 855: 849: 844: 840: 814: 810: 778: 777: 755: 752: 748: 744: 741: 738: 735: 732: 730: 728: 723: 719: 715: 712: 709: 706: 702: 699: 695: 689: 686: 682: 678: 675: 671: 667: 663: 659: 652: 647: 642: 636: 632: 628: 625: 621: 617: 613: 609: 605: 597: 593: 588: 584: 578: 573: 570: 565: 562: 559: 557: 552: 547: 543: 542: 512: 511: 494: 491: 487: 483: 480: 476: 472: 469: 466: 464: 460: 456: 452: 451: 441: 437: 433: 430: 426: 423: 420: 418: 413: 408: 404: 403: 385: 384: 380:is the body's 376: 370: 364: 354: 348: 338: 322: 316: 307: 297: 296: 285: 282: 279: 276: 271: 267: 259: 254: 249: 243: 239: 235: 232: 228: 224: 220: 213: 205: 200: 190: 187: 182: 179: 173: 168: 153:prograde orbit 141: 138: 113: 110: 98:ascending node 24: 14: 13: 10: 9: 6: 4: 3: 2: 1047: 1036: 1033: 1031: 1030:Astrodynamics 1028: 1027: 1025: 1016: 1013: 1011: 1008: 1007: 1003: 994: 992:9781600860515 988: 984: 983: 975: 972: 965: 961: 958: 956: 952: 948: 944: 941: 938: 934: 931: 928: 925: 924: 920: 918: 916: 895: 890: 886: 880: 876: 872: 866: 862: 856: 853: 842: 838: 812: 808: 798: 796: 781: 753: 750: 746: 742: 739: 736: 733: 731: 721: 717: 713: 710: 707: 704: 700: 697: 693: 687: 684: 680: 676: 673: 669: 665: 661: 657: 650: 645: 640: 634: 630: 626: 623: 619: 615: 611: 607: 603: 595: 591: 586: 582: 576: 571: 568: 563: 560: 558: 545: 533: 532: 531: 492: 489: 485: 481: 478: 474: 470: 467: 465: 458: 454: 439: 435: 431: 428: 424: 421: 419: 406: 394: 393: 392: 383: 375: 371: 365: 355: 349: 346: 339: 321: 317: 314: 306: 302: 301: 300: 283: 280: 277: 274: 269: 265: 257: 252: 247: 241: 237: 233: 230: 226: 222: 218: 211: 198: 188: 185: 180: 177: 166: 158: 157: 156: 154: 149: 147: 139: 137: 135: 134:orbital nodes 131: 127: 118: 111: 109: 107: 103: 99: 95: 91: 87: 82: 80: 76: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 36:orbital plane 33: 29: 19: 981: 974: 799: 782: 779: 513: 386: 373: 319: 304: 298: 150: 143: 123: 83: 75:primary body 72: 27: 26: 947:declination 760: rad/s 528: rad/s 337:for Earth), 146:inclination 112:Description 46:axis of an 42:around the 1035:Precession 1024:Categories 966:References 960:Lunar node 130:precession 90:retrograde 44:rotational 32:precession 913:from the 857:− 848:~ 751:− 743:× 737:− 722:∘ 714:⁡ 708:⋅ 698:⋅ 685:− 677:× 658:⋅ 627:− 577:⋅ 564:− 546:ω 520:.4 s 490:− 482:× 432:× 281:⁡ 275:ω 234:− 181:− 167:ω 94:longitude 66:like the 40:satellite 921:See also 140:Equation 50:such as 446: m 343:is the 335: m 96:of the 34:of the 30:is the 989:  299:where 701:0.001 666:1.082 524:0.001 471:1.082 425:6.378 52:Earth 38:of a 987:ISBN 800:The 740:7.44 315:/s), 68:Moon 953:of 711:cos 705:038 670:626 616:137 612:178 592:137 587:378 526:038 518:052 475:626 429:137 333:137 330:378 313:rad 278:cos 1026:: 797:. 747:10 718:56 681:10 674:68 486:10 479:68 436:10 108:. 995:. 939:) 896:2 891:E 887:R 881:E 877:M 873:G 867:2 863:J 854:= 843:2 839:J 813:2 809:J 790:ω 786:ω 754:7 734:= 694:) 688:3 662:( 651:2 646:) 641:) 635:2 631:0 624:1 620:( 608:7 604:( 596:2 583:6 572:2 569:3 561:= 551:p 516:6 493:3 468:= 459:2 455:J 440:6 422:= 412:E 407:R 389:e 377:2 374:J 367:i 361:π 357:ω 351:e 341:a 328:6 323:E 320:R 308:p 305:ω 284:i 270:2 266:J 258:2 253:) 248:) 242:2 238:e 231:1 227:( 223:a 219:( 212:2 204:E 199:R 189:2 186:3 178:= 172:p 20:)

Index

Nodal regression
precession
orbital plane
satellite
rotational
astronomical body
Earth
gravitational field
low Earth orbit
natural satellites
Moon
primary body
equatorial bulge
longitude of the ascending node
retrograde
longitude
ascending node
heliosynchronous orbits
angle relative to the Sun

equatorial bulge
precession
orbital nodes
inclination
prograde orbit
rad
semi-major axis
second dynamic form factor
heliosynchronous orbit
geopotential model

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.