Knowledge

Node of Ranvier

Source 📝

487:. The high density of ankyrin at the nodes may be functionally significant because several of the proteins that are populated at the nodes share the ability to bind to ankyrin with extremely high affinity. All of these proteins, including ankyrin, are enriched in the initial segment of axons which suggests a functional relationship. Now the relationship of these molecular components to the clustering of sodium channels at the nodes is still not known. Although some cell-adhesion molecules have been reported to be present at the nodes inconsistently; however, a variety of other molecules are known to be highly populated at the glial membranes of the paranodal regions where they contribute to its organization and structural integrity. 542:
around the axon, giving rise to the paranodal regions. This movement along the axon contributes significantly to the overall formation of the nodes of Ranvier by permitting heminodes formed at the edges of neighboring glial cells to fuse into complete nodes. Septate-like junctions form at the paranodes with the enrichment of NF155 in glial paranodal loops. Immediately following the early differentiation of the nodal and paranodal regions, potassium channels, Caspr2 and TAG1 accumulate in the juxta-paranodal regions. This accumulation coincides directly with the formation of compact myelin. In mature nodal regions, interactions with the intracellular proteins appear vital for the stability of all nodal regions. In the CNS,
273: 427:
outer collar of Schwann cells and come very close to nodal axolemma of large fibers. The projections of the Schwann cells are perpendicular to the node and are radiating from the central axons. However, in the CNS, one or more of the astrocytic processes come in close vicinity of the nodes. Researchers declare that these processes stem from multi-functional astrocytes, as opposed to from a population of astrocytes dedicated to contacting the node. On the other hand, in the PNS, the basal lamina that surrounds the Schwann cells is continuous across the node.
622:, and sites of action potential initiation and regeneration, such as the nodes of Ranvier. In the synaptic terminals, mitochondria produce the ATP needed to mobilize vesicles for neurotransmission. In the nodes of Ranvier, mitochondria serve as an important role in impulse conduction by producing the ATP that is essential to maintain the activity of energy-demanding ion pumps. Supporting this fact, about five times more mitochondria are present in the PNP axoplasm of large peripheral axons than in the corresponding internodal regions of these fibers. 762: 476:
whereas they are highly concentrated in the paranodal axolemma and Schwann cell membranes at the node. The exact function of potassium channels have not quite been revealed, but it is known that they may contribute to the rapid repolarization of the action potentials or play a vital role in buffering the potassium ions at the nodes. This highly asymmetric distribution of voltage-gated sodium and potassium channels is in striking contrast to their diffuse distribution in unmyelinated fibers.
59: 366:, whereas the cytoplasm-filled paranodal loops of myelinating cells are spirally wrapped around the axon at both sides of the nodes. This organization demands a tight developmental control and the formation of a variety of specialized zones of contact between different areas of the myelinating cell membrane. Each node of Ranvier is flanked by paranodal regions where helicoidally wrapped glial loops are attached to the axonal membrane by a septate-like junction. 418:, the paranodal region, and the node itself. In the internodal region, the Schwann cell has an outer collar of cytoplasm, a compact myelin sheath, and inner collar of cytoplasm, and the axolemma. At the paranodal regions, the paranodal cytoplasm loops contact thickenings of the axolemma to form septate –like junctions. In the node alone, the axolemma is contacted by several Schwann microvilli and contains a dense cytoskeletal undercoating. 665: 774: 506:
be accounted solely by the increase in length of axon covered by each successive turn of the spiral, as previously explained. At the junction of two Schwann cells along an axon, the directions of the lamellar overhang of the myelin endings are of opposite sense. This junction, adjacent of the Schwann cells, constitutes the region designated as the node of Ranvier.
501:
in-folding of the Schwann cell surface so that a double membrane of the opposing faces of the in-folded Schwann cell surface is formed. This membrane stretches and spirally wraps itself over and over as the in-folding of the Schwann cell surface continues. As a result, the increase in the thickness of the extension of the
47: 647:
It has been shown previously that OMgp (oligodendrocyte myelin glycoprotein) clusters at nodes of Ranvier and may regulate paranodal architecture, node length and axonal sprouting at nodes. However, a follow-up study showed that the antibody used previously to identify OMgp at nodes crossreacts with
523:
is also reported to be one of the first proteins to accumulate at newly forming nodes of Ranvier. They are also found to provide the nucleation site for attachment of ankyrin G, Nav channels, and other proteins. The recent identification of the Schwann cell microvilli protein gliomedin as the likely
446:
has been found to be bounded to βIV spectrin, a spectrin isoform enriched at nodes of Ranvier and axon initial segments. The PNS nodes are surrounded by Schwann cell microvilli, which contain ERMs and EBP50 that may provide a connection to actin microfilaments. Several extracellular matrix proteins
435:
The nodes of Ranvier Na+/Ca2+ exchangers and high density of voltage-gated Na+ channels that generate action potentials. A sodium channel consists of a pore-forming α subunit and two accessory β subunits, which anchor the channel to extra-cellular and intra-cellular components. The nodes of Ranvier
426:
Although freeze fracture studies have revealed that the nodal axolemma in both the CNS and PNS is enriched in intra-membranous particles (IMPs) compared to the internode, there are some structural differences reflecting their cellular constituents. In the PNS, specialized microvilli project from the
617:
and other membranous organelles are normally enriched in the PNP region of peripheral myelinated axons, especially those large caliber axons. The actual physiological role of this accumulation and factors that regulate it are not understood; however, it is known that mitochondria are usually present
401:
The structure of the node and the flanking paranodal regions are distinct from the internodes under the compact myelin sheath, but are very similar in CNS and PNS. The axon is exposed to the extra-cellular environment at the node and is constricted in its diameter. The decreased axon size reflects
505:
sheath in its cross-sectional diameter is easily ascertained. It is also evident that each of the consecutive turns of the spiral increases in size along the length of the axon as the number of turns increase. However, it is not clear whether or not the increase in length of the myelin sheath can
573:
across the membrane occurs only at the nodes of Ranvier. As a result, the action potential signal jumps along the axon, from node to node, rather than propagating smoothly, as they do in axons that lack a myelin sheath. The clustering of voltage-gated sodium and potassium ion channels at the nodes
546:
do not possess microvilli, but appear capable to initiate the clustering of some axonal proteins through secreted factors. The combined effects of such factors with the subsequent movements generated by the wrapping of oligodendrocyte periaxonal extension could account for the organization of CNS
541:
The first event appears to be the accumulation of cell adhesion molecules such as NF186 or NrCAM. The intra-cellular regions of these cell-adhesion molecules interact with ankyrin G, which serves as an anchor for sodium channels. At the same time, the periaxonal extension of the glial cell wraps
518:
is initially expressed at all forming nodes of Ranvier. Upon maturation, nodal Nav1.2 is down-regulated and replaced by Nav1.6. Nav1.2 is also expressed during PNS node formation, which suggests that the switching of Nav-channel subtypes is a general phenomenon in the CNS and PNS. In this same
500:
The complex changes that the Schwann cell undergoes during the process of myelination of peripheral nerve fibers have been observed and studied by many. The initial envelopment of the axon occurs without interruption along the entire extent of the Schwann cell. This process is sequenced by the
475:
The molecular organization of the nodes corresponds to their specialized function in impulse propagation. The level of sodium channels in the node versus the internode suggests that the number IMPs corresponds to sodium channels. Potassium channels are essentially absent in the nodal axolemma,
397:
segments and the gaps between are referred to as nodes. The size and the spacing of the internodes vary with the fiber diameter in a curvilinear relationship that is optimized for maximal conduction velocity. The size of the nodes span from 1–2 μm whereas the internodes can be up to (and
638:
in myelinated axons requires organization of the nodes of Ranvier, whereas voltage-gated sodium channels are highly populated. Studies show that αII-Spectrin, a component of the cytoskeleton is enriched at the nodes and paranodes at early stages and as the nodes mature, the expression of this
564:
is a spike of both positive and negative ionic discharge that travels along the membrane of a cell. The creation and conduction of action potentials represents a fundamental means of communication in the nervous system. Action potentials represent rapid reversals in voltage across the plasma
596:
Saltatory conduction provides one advantage over conduction that occurs along an axon without myelin sheaths. This is that the increased speed afforded by this mode of conduction assures faster interaction between neurons. On the other hand, depending on the average firing rate of the neuron,
532:
also indicates that neurofascin accumulates before Nav channels and is likely to have crucial roles in the earliest events associated with node of Ranvier formation. Thus, multiple mechanisms may exist and work synergistically to facilitate clustering of Nav channels at nodes of Ranvier.
406:
in this region, which are less heavily phosphorylated and are transported more slowly. Vesicles and other organelles are also increased at the nodes, which suggest that there is a bottleneck of axonal transport in both directions as well as local axonal-glial signaling.
519:
investigation, it was shown that Nav1.6 and Nav1.2 colocalize at many nodes of Ranvier during early myelination. This also led to the suggestion that early clusters of Nav1.2 and Nav1.6 channels are destined to later become nodes of Ranvier.
436:
in the central and peripheral nervous systems mostly consist of αNaV1.6 and β1 subunits. The extra-cellular region of β subunits can associate with itself and other proteins, such as tenascin R and the cell-adhesion molecules
750:. Soon afterwards, he discovered gaps in sheaths of nerve fibers, which were later called the Nodes of Ranvier. This discovery later led Ranvier to careful histological examination of myelin sheaths and Schwann cells. 582:
Since an axon can be unmyelinated or myelinated, the action potential has two methods to travel down the axon. These methods are referred to as continuous conduction for unmyelinated axons, and
639:
molecule disappears. It is also proven that αII-Spectrin in the axonal cytoskeleton is absolutely vital for stabilizing sodium channel clusters and organizing the mature node of Ranvier.
260: 'leap, jump') due to the manner in which the action potential seems to "jump" from one node to the next along the axon. This results in faster conduction of the action potential. 593:
to the next node of Ranvier to depolarize it to threshold which will then trigger an action potential in this region which will then passively spread to the next node and so on.
524:
binding partner of axonal neurofascin brings forward substantial evidence for the importance of this protein in recruiting Nav channels to the nodes of Ranvier. Furthermore,
652:
V2 and that OMgp is not required for the integrity of nodes and paranodes, arguing against the previously reported localization and proposed functions of OMgp at nodes.
746:
fibers became world-renowned. His observations on fiber nodes and the degeneration and regeneration of cut fibers had a great influence on Parisian neurology at the
1593: 2452: 1621: 440:
and contactin. Contactin is also present at nodes in the CNS and interaction with this molecule enhances the surface expression of Na+ channels.
1588: 704: 1398:
Huang, JK; Phillips, GR; Roth, AD; Pedraza, L; Shan, W; Belkaid, W; Mi, S; Fex-Svenningsen, A; Florens, L; Yates III, JR; Colman, DR (2005).
1156:"Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates" 761: 747: 373:, and its outermost part that is in contact with paranodes is referred to as the juxtaparanodal region. The nodes are encapsulated by 618:
in areas of the cell that expresses a high energy demand. In these same regions, they are also understood to contain growth cones,
205: 695:
The proteins in these excitable domains of neuron when injured may result in cognitive disorders and various neuropathic ailments.
2245: 2175: 601:
of oligodendrocytes can outweigh the energy savings of action potentials. So, axon myelination does not necessarily save energy.
144: 2240: 2170: 1785: 824: 773: 586:
for myelinated axons. Saltatory conduction is defined as an action potential moving in discrete jumps down a myelinated axon.
1860: 359:(PNS) - are wrapped around the axon, leaving the axolemma relatively uncovered at the regularly spaced nodes of Ranvier. 2631: 2445: 1855: 1843: 1614: 2530: 1895: 1833: 1561: 984:"Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier" 1890: 2621: 2521: 2400: 2250: 2185: 1813: 731:
of the late 19th century. Ranvier abandoned pathological studies in 1867 and became an assistant of physiologist
356: 51:
Drawing of a peripheral nerve axon (labeled "axis cylinder"), showing a node of Ranvier along with other features
2180: 1906: 463:
V2. At CNS nodes, the axonal proteins also include contactin; however, Schwann cell microvilli are replaced by
132: 120: 2626: 2438: 1879: 1607: 1160: 1037: 835: 31: 2534: 2516: 2347: 1874: 1638: 590: 348: 2570: 2525: 2205: 2195: 2130: 720: 137: 2330: 2227: 2157: 1983: 1838: 1411: 1354: 736: 635: 583: 339:
display a very high level of spatial and temporal organization in myelinated fibers. The myelinating
332: 245: 1105:"Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon" 398:
occasionally even greater than)1.5 millimetres long, depending on the axon diameter and fiber type.
2370: 2215: 2210: 1745: 1678: 1523:"Über das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den tierischen Geweben" 1294:"Disrupted Axo-Glial Junctions Result in Accumulation of Abnormal Mitochondria at Nodes of Ranvier" 229: 565:
membrane of axons. These rapid reversals are mediated by voltage-gated ion channels found in the
58: 2405: 2375: 2306: 2275: 2265: 2260: 2255: 2200: 1976: 1886: 1740: 1542: 1437: 1380: 1222: 1136: 1015: 964: 906: 853: 790: 619: 415: 370: 2575: 2390: 2380: 2365: 2270: 2135: 1916: 1868: 1673: 1668: 1486: 1457:"Oligodendrocyte myelin glycoprotein does not influence node of Ranvier structure or assembly" 1429: 1372: 1323: 1271: 1187: 1128: 1085: 1007: 956: 898: 598: 479:
The filamentous network subjacent to the nodal membrane contains cytoskeletal proteins called
2590: 2508: 2357: 2320: 2315: 1663: 1534: 1476: 1468: 1419: 1362: 1313: 1305: 1261: 1253: 1214: 1177: 1169: 1118: 1109: 1075: 1067: 997: 988: 946: 937: 888: 879: 561: 543: 344: 241: 176: 933:"Clustering sodium channels at the node of Ranvier: close encounters of the axon-glia kind" 875:"Clustering sodium channels at the node of Ranvier: close encounters of the axon-glia kind" 2125: 2094: 2089: 1966: 1790: 1056:"Electron microscope studies of the formation of nodes of Ranvier in mouse sciatic nerves" 858: 800: 723:
later discovered the nodes, or gaps, in the myelin sheath that now bear his name. Born in
566: 1103:
Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, et al. (2001).
1509: 1415: 1358: 1343:"alphaII-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons" 2470: 2415: 2385: 2342: 2162: 2120: 2098: 2018: 1901: 1725: 1630: 1596:- Comparative Organology at University of California, Davis – "PNS, nerve (LM, Medium)" 1481: 1456: 1318: 1293: 1266: 1241: 1182: 1173: 1155: 1080: 1055: 732: 716: 403: 249: 79: 1123: 1104: 1002: 983: 951: 932: 893: 874: 703: 664: 331:
Many vertebrate axons are surrounded by a myelin sheath, allowing rapid and efficient
2615: 2595: 2555: 2478: 2462: 2064: 2049: 1730: 1041: 352: 309: 1546: 1441: 1384: 1226: 1019: 2493: 2483: 2310: 2232: 2145: 2026: 1956: 1735: 1658: 1472: 1257: 1140: 968: 910: 839: 795: 614: 411: 378: 314: 297: 292: 162: 74: 2430: 982:
Kaplan M.R.; Cho M.H.; Ullian E.M.; Isom L.L.; Levinson S.R.; Barres B.A. (2001).
272: 125: 2488: 2325: 2140: 2044: 2002: 1934: 1929: 1750: 1688: 1683: 1653: 1455:
Chang, KJ; Susuki, K; Dours-Zimmermann, MT; Zimmermann, DR; Rasband, MN (2010).
1218: 520: 437: 374: 340: 336: 233: 17: 1504: 2565: 2560: 2395: 2084: 1961: 1924: 1367: 1342: 1309: 569:. The action potential travels from one location in the cell to another, but 456: 448: 382: 282: 255: 2410: 1795: 1768: 1424: 1399: 742:
His refined histological techniques and his work on both injured and normal
728: 712: 464: 1527:
Archiv für pathologische Anatomie und Physiologie und für klinische Medicin
1490: 1433: 1376: 1327: 1275: 1132: 1089: 1011: 1191: 960: 902: 2600: 2550: 2074: 2059: 2054: 1778: 1773: 1700: 1695: 1341:
Voas MG, Lyons DA, Naylor SG, Arana N, Rasband MN, Talbot WS (Mar 2007).
649: 570: 480: 460: 414:
at the node, three distinctive segments are represented: the stereotypic
277: 225: 1071: 2337: 2298: 1538: 484: 443: 166: 150: 2580: 2498: 1997: 1952: 1717: 829: 805: 515: 502: 452: 394: 363: 319: 218: 89: 1522: 711:
The myelin sheath of long nerves was discovered and named by German
46: 1400:"Glial membranes at the node of Ranvier prevent neurite outgrowth" 743: 702: 108: 96: 1599: 2190: 2036: 1944: 1760: 724: 287: 221: 92: 2434: 1603: 1032:
Black, J.A., Sontheimer, H., Oh, Y., and Waxman, S.G. (1995).
659: 237: 597:
calculations show that the energetic cost of maintaining the
185: 197: 194: 410:
When a longitudinal section is made through a myelinating
232:. Nodes of Ranvier are uninsulated and highly enriched in 422:
Differences in the central and peripheral nervous systems
362:
The internodal glial membranes are fused to form compact
244:. Nerve conduction in myelinated axons is referred to as 676: 335:
of action potentials. The contacts between neurons and
1562:"Les étranglements annulaires de Louis Ranvier (1871)" 369:
The segment between nodes of Ranvier is termed as the
643:
Possible regulation via the recognition molecule OMgp
381:
membrane in the PNS, or by perinodal extensions from
206: 188: 30:"Nodes of Ranvier" redirects here. For the band, see 191: 182: 2543: 2507: 2469: 2356: 2297: 2290: 2226: 2156: 2113: 2073: 2035: 2017: 2010: 1996: 1943: 1915: 1821: 1812: 1759: 1716: 1709: 1646: 1637: 779:
Medullated nerve fibers stained with silver nitrate
179: 131: 119: 107: 102: 85: 73: 68: 39: 27:
Gaps between myelin sheaths on the axon of a neuron
236:, allowing them to participate in the exchange of 610:Paranode regulation via mitochondria accumulation 735:. He was the chairman of General Anatomy at the 1060:Journal of Biophysical and Biochemical Cytology 514:Researchers prove that in the developing CNS, 2446: 1615: 8: 447:are enriched at nodes of Ranvier, including 1292:Einheber S, Bhat MA, Salzer JL (Aug 2006). 719:in 1854. French pathologist and anatomist 2453: 2439: 2431: 2294: 2014: 2007: 1818: 1713: 1643: 1622: 1608: 1600: 1036:, S. Waxman, J. Kocsis, and P. Stys, eds. 57: 45: 1480: 1423: 1366: 1317: 1265: 1181: 1122: 1079: 1001: 950: 892: 1594:Anatomy photo: nervous/pns/nerve2/nerve5 1589:Cell Centered Database – Node of Ranvier 727:, Ranvier was one of the most prominent 1287: 1285: 1154:Lambert S, Davis JQ, Bennett V (1997). 1054:Uzmman B. G.; Nogueira-Graf G. (1957). 816: 757: 589:This process is outlined as the charge 926: 924: 922: 920: 377:stemming from the outer aspect of the 148: 36: 7: 1242:"The Energetics of CNS White Matter" 1205:Fry, C (2007). "Cell physiology I". 455:, and proteoglycan NG2, as well as 1174:10.1523/JNEUROSCI.17-18-07025.1997 25: 707:Louis Antoine Ranvier (1835–1922) 333:saltatory ("jumping") propagation 772: 760: 663: 648:another node-enriched component 271: 175: 145:Anatomical terms of microanatomy 1786:Oligodendrocyte progenitor cell 1473:10.1523/JNEUROSCI.1698-10.2010 1258:10.1523/JNEUROSCI.3430-11.2012 859:Merriam-Webster.com Dictionary 1: 1124:10.1016/S0896-6273(01)00265-3 1003:10.1016/S0896-6273(01)00266-5 952:10.1016/S0896-6273(00)80323-2 894:10.1016/S0896-6273(00)80323-2 767:Complete neuron cell diagram 402:a higher packing density of 2531:Peripheral membrane protein 1896:Postganglionic nerve fibers 1219:10.1016/j.mpsur.2007.07.007 496:Myelination of nerve fibers 240:required to regenerate the 2648: 2522:Integral membrane proteins 1891:Preganglionic nerve fibers 29: 2401:Olfactory receptor neuron 2065:Neurofibril/neurofilament 1368:10.1016/j.cub.2007.01.071 1310:10.1017/S1740925X06000275 357:peripheral nervous system 143: 56: 44: 1569:Lettre des Neurosciences 873:gxnSalzer J. L. (1997). 2566:Lipid raft/microdomains 1425:10.1126/science.1118313 1246:Journal of Neuroscience 1240:Harris; Atwood (2012). 1161:Journal of Neuroscience 1038:Oxford University Press 836:Oxford University Press 574:permits this behavior. 393:The internodes are the 32:Nodes of Ranvier (band) 2571:Membrane contact sites 2535:Lipid-anchored protein 2517:Membrane glycoproteins 2348:Neuromuscular junction 2211:III or Aδ or fast pain 708: 471:Molecular organization 467:perinodal extensions. 349:central nervous system 254: 2526:transmembrane protein 1560:Barbara J.G. (2005). 931:Salzer J. L. (1997). 832:UK English Dictionary 721:Louis-Antoine Ranvier 706: 656:Clinical significance 2551:Caveolae/Coated pits 2366:Meissner's corpuscle 2331:Postsynaptic density 2228:Efferent nerve fiber 2216:IV or C or slow pain 2158:Afferent nerve fiber 1984:Satellite glial cell 842:on October 16, 2021. 636:Saltatory conduction 605:Formation regulation 584:saltatory conduction 578:Saltatory conduction 246:saltatory conduction 2632:Signal transduction 2371:Merkel nerve ending 1416:2005Sci...310.1813H 1359:2007CBio...17..562V 1298:Neuron Glia Biology 1072:10.1083/jcb.3.4.589 591:passively spreading 230:extracellular space 2576:Membrane nanotubes 2461:Structures of the 2406:Photoreceptor cell 2376:Pacinian corpuscle 2307:Electrical synapse 2261:Lower motor neuron 2256:Upper motor neuron 1977:Internodal segment 1917:Connective tissues 1887:Autonomic ganglion 1539:10.1007/BF02116709 1521:Virchow R (1854). 862:. Merriam-Webster. 791:Internodal segment 709: 675:. You can help by 620:synaptic terminals 547:nodes of Ranvier. 228:is exposed to the 215:myelin-sheath gaps 138:H2.00.06.2.03015 2609: 2608: 2509:Membrane proteins 2428: 2427: 2424: 2423: 2391:Free nerve ending 2358:Sensory receptors 2286: 2285: 2201:Ib or Golgi or Aα 2109: 2108: 1992: 1991: 1869:Ramus communicans 1808: 1807: 1804: 1803: 1674:Commissural fiber 1669:Association fiber 1664:Projection fibers 1410:(5755): 1813–17. 1168:(18): 7025–7036. 854:"node of Ranvier" 825:"node of Ranvier" 754:Additional images 737:Collège de France 693: 692: 599:resting potential 213:), also known as 159: 158: 154: 16:(Redirected from 2639: 2622:Membrane biology 2591:Nuclear envelope 2586:Nodes of Ranvier 2455: 2448: 2441: 2432: 2321:Synaptic vesicle 2316:Chemical synapse 2295: 2015: 2008: 1819: 1714: 1644: 1624: 1617: 1610: 1601: 1577: 1576: 1566: 1557: 1551: 1550: 1518: 1512: 1501: 1495: 1494: 1484: 1467:(43): 14476–81. 1452: 1446: 1445: 1427: 1395: 1389: 1388: 1370: 1338: 1332: 1331: 1321: 1289: 1280: 1279: 1269: 1237: 1231: 1230: 1207:Surgery (Oxford) 1202: 1196: 1195: 1185: 1151: 1145: 1144: 1126: 1100: 1094: 1093: 1083: 1051: 1045: 1030: 1024: 1023: 1005: 979: 973: 972: 954: 928: 915: 914: 896: 870: 864: 863: 850: 844: 843: 838:. Archived from 821: 776: 764: 688: 685: 667: 660: 631:Via αII-Spectrin 626:Nodal regulation 562:action potential 556:Action potential 544:oligodendrocytes 345:oligodendrocytes 275: 242:action potential 217:, occur along a 209: 204: 203: 200: 199: 196: 193: 190: 187: 184: 181: 171:nodes of Ranvier 151:edit on Wikidata 114:incisura myelini 63:Nodes of Ranvier 61: 49: 37: 21: 18:Nodes of Ranvier 2647: 2646: 2642: 2641: 2640: 2638: 2637: 2636: 2612: 2611: 2610: 2605: 2539: 2503: 2471:Membrane lipids 2465: 2459: 2429: 2420: 2352: 2282: 2231: 2222: 2206:II or Aβ and Aγ 2161: 2152: 2105: 2095:Apical dendrite 2090:Dendritic spine 2069: 2031: 2001: 1988: 1972:Node of Ranvier 1967:Myelin incisure 1939: 1911: 1800: 1791:Oligodendrocyte 1774:Ependymal cells 1755: 1705: 1633: 1628: 1585: 1580: 1564: 1559: 1558: 1554: 1520: 1519: 1515: 1502: 1498: 1454: 1453: 1449: 1397: 1396: 1392: 1347:Current Biology 1340: 1339: 1335: 1291: 1290: 1283: 1239: 1238: 1234: 1213:(10): 425–429. 1204: 1203: 1199: 1153: 1152: 1148: 1102: 1101: 1097: 1053: 1052: 1048: 1031: 1027: 981: 980: 976: 930: 929: 918: 872: 871: 867: 852: 851: 847: 823: 822: 818: 814: 801:Oligodendrocyte 787: 780: 777: 768: 765: 756: 701: 689: 683: 680: 673:needs expansion 658: 645: 633: 628: 612: 607: 580: 567:plasma membrane 558: 553: 539: 537:Nodal formation 512: 498: 493: 473: 433: 424: 391: 329: 328: 327: 326:Node of Ranvier 324: 323: 322: 317: 312: 307: 304: 300: 295: 290: 285: 280: 266: 207: 178: 174: 155: 64: 52: 40:Node of Ranvier 35: 28: 23: 22: 15: 12: 11: 5: 2645: 2643: 2635: 2634: 2629: 2627:Neurohistology 2624: 2614: 2613: 2607: 2606: 2604: 2603: 2598: 2596:Phycobilisomes 2593: 2588: 2583: 2578: 2573: 2568: 2563: 2558: 2556:Cell junctions 2553: 2547: 2545: 2541: 2540: 2538: 2537: 2528: 2519: 2513: 2511: 2505: 2504: 2502: 2501: 2496: 2491: 2486: 2481: 2475: 2473: 2467: 2466: 2460: 2458: 2457: 2450: 2443: 2435: 2426: 2425: 2422: 2421: 2419: 2418: 2416:Taste receptor 2413: 2408: 2403: 2398: 2393: 2388: 2386:Muscle spindle 2383: 2381:Ruffini ending 2378: 2373: 2368: 2362: 2360: 2354: 2353: 2351: 2350: 2345: 2343:Ribbon synapse 2340: 2335: 2334: 2333: 2328: 2323: 2313: 2303: 2301: 2292: 2288: 2287: 2284: 2283: 2281: 2280: 2279: 2278: 2273: 2268: 2258: 2253: 2248: 2243: 2237: 2235: 2224: 2223: 2221: 2220: 2219: 2218: 2213: 2208: 2203: 2198: 2188: 2183: 2178: 2173: 2167: 2165: 2163:Sensory neuron 2154: 2153: 2151: 2150: 2149: 2148: 2138: 2133: 2131:Pseudounipolar 2128: 2123: 2117: 2115: 2111: 2110: 2107: 2106: 2104: 2103: 2102: 2101: 2099:Basal dendrite 2092: 2087: 2079: 2077: 2071: 2070: 2068: 2067: 2062: 2057: 2052: 2050:Axon terminals 2047: 2041: 2039: 2033: 2032: 2030: 2029: 2023: 2021: 2012: 2005: 1994: 1993: 1990: 1989: 1987: 1986: 1981: 1980: 1979: 1974: 1969: 1964: 1949: 1947: 1941: 1940: 1938: 1937: 1932: 1927: 1921: 1919: 1913: 1912: 1910: 1909: 1904: 1902:Nerve fascicle 1899: 1893: 1884: 1883: 1882: 1877: 1865: 1864: 1863: 1858: 1848: 1847: 1846: 1841: 1836: 1825: 1823: 1816: 1810: 1809: 1806: 1805: 1802: 1801: 1799: 1798: 1793: 1788: 1783: 1782: 1781: 1771: 1765: 1763: 1757: 1756: 1754: 1753: 1748: 1743: 1738: 1733: 1728: 1722: 1720: 1711: 1707: 1706: 1704: 1703: 1698: 1693: 1692: 1691: 1686: 1681: 1676: 1671: 1666: 1656: 1650: 1648: 1641: 1635: 1634: 1631:Nervous tissue 1629: 1627: 1626: 1619: 1612: 1604: 1598: 1597: 1591: 1584: 1583:External links 1581: 1579: 1578: 1552: 1533:(4): 562–572. 1513: 1496: 1447: 1390: 1333: 1304:(3): 165–174. 1281: 1252:(1): 356–371. 1232: 1197: 1146: 1095: 1066:(4): 589–597. 1046: 1044:, pp. 116–143. 1025: 996:(1): 105–119. 974: 945:(6): 843–846. 916: 887:(6): 843–846. 865: 845: 815: 813: 810: 809: 808: 803: 798: 793: 786: 783: 782: 781: 778: 771: 769: 766: 759: 755: 752: 733:Claude Bernard 717:Rudolf Virchow 700: 697: 691: 690: 670: 668: 657: 654: 644: 641: 632: 629: 627: 624: 611: 608: 606: 603: 579: 576: 557: 554: 552: 549: 538: 535: 526:Lambert et al. 511: 508: 497: 494: 492: 489: 472: 469: 432: 429: 423: 420: 404:neurofilaments 390: 387: 325: 318: 313: 308: 301: 296: 291: 286: 281: 276: 270: 269: 268: 267: 265: 262: 157: 156: 147: 141: 140: 135: 129: 128: 123: 117: 116: 111: 105: 104: 100: 99: 87: 83: 82: 80:Nervous system 77: 71: 70: 66: 65: 62: 54: 53: 50: 42: 41: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2644: 2633: 2630: 2628: 2625: 2623: 2620: 2619: 2617: 2602: 2599: 2597: 2594: 2592: 2589: 2587: 2584: 2582: 2581:Myelin sheath 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2548: 2546: 2542: 2536: 2532: 2529: 2527: 2523: 2520: 2518: 2515: 2514: 2512: 2510: 2506: 2500: 2497: 2495: 2494:Sphingolipids 2492: 2490: 2487: 2485: 2484:Phospholipids 2482: 2480: 2479:Lipid bilayer 2477: 2476: 2474: 2472: 2468: 2464: 2463:cell membrane 2456: 2451: 2449: 2444: 2442: 2437: 2436: 2433: 2417: 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2363: 2361: 2359: 2355: 2349: 2346: 2344: 2341: 2339: 2336: 2332: 2329: 2327: 2324: 2322: 2319: 2318: 2317: 2314: 2312: 2308: 2305: 2304: 2302: 2300: 2296: 2293: 2289: 2277: 2276:γ motorneuron 2274: 2272: 2271:β motorneuron 2269: 2267: 2266:α motorneuron 2264: 2263: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2238: 2236: 2234: 2229: 2225: 2217: 2214: 2212: 2209: 2207: 2204: 2202: 2199: 2197: 2194: 2193: 2192: 2189: 2187: 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2168: 2166: 2164: 2159: 2155: 2147: 2144: 2143: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2118: 2116: 2112: 2100: 2096: 2093: 2091: 2088: 2086: 2083: 2082: 2081: 2080: 2078: 2076: 2072: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2042: 2040: 2038: 2034: 2028: 2025: 2024: 2022: 2020: 2016: 2013: 2009: 2006: 2004: 1999: 1995: 1985: 1982: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1959: 1958: 1954: 1951: 1950: 1948: 1946: 1942: 1936: 1933: 1931: 1928: 1926: 1923: 1922: 1920: 1918: 1914: 1908: 1905: 1903: 1900: 1897: 1894: 1892: 1888: 1885: 1881: 1878: 1876: 1873: 1872: 1871: 1870: 1866: 1862: 1859: 1857: 1854: 1853: 1852: 1849: 1845: 1842: 1840: 1837: 1835: 1832: 1831: 1830: 1827: 1826: 1824: 1820: 1817: 1815: 1811: 1797: 1794: 1792: 1789: 1787: 1784: 1780: 1777: 1776: 1775: 1772: 1770: 1767: 1766: 1764: 1762: 1758: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1723: 1721: 1719: 1715: 1712: 1708: 1702: 1699: 1697: 1694: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1661: 1660: 1657: 1655: 1652: 1651: 1649: 1645: 1642: 1640: 1636: 1632: 1625: 1620: 1618: 1613: 1611: 1606: 1605: 1602: 1595: 1592: 1590: 1587: 1586: 1582: 1574: 1570: 1563: 1556: 1553: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1517: 1514: 1511: 1510:Who Named It? 1507: 1506: 1500: 1497: 1492: 1488: 1483: 1478: 1474: 1470: 1466: 1462: 1458: 1451: 1448: 1443: 1439: 1435: 1431: 1426: 1421: 1417: 1413: 1409: 1405: 1401: 1394: 1391: 1386: 1382: 1378: 1374: 1369: 1364: 1360: 1356: 1352: 1348: 1344: 1337: 1334: 1329: 1325: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1286: 1282: 1277: 1273: 1268: 1263: 1259: 1255: 1251: 1247: 1243: 1236: 1233: 1228: 1224: 1220: 1216: 1212: 1208: 1201: 1198: 1193: 1189: 1184: 1179: 1175: 1171: 1167: 1163: 1162: 1157: 1150: 1147: 1142: 1138: 1134: 1130: 1125: 1120: 1117:(1): 91–104. 1116: 1112: 1111: 1106: 1099: 1096: 1091: 1087: 1082: 1077: 1073: 1069: 1065: 1061: 1057: 1050: 1047: 1043: 1039: 1035: 1029: 1026: 1021: 1017: 1013: 1009: 1004: 999: 995: 991: 990: 985: 978: 975: 970: 966: 962: 958: 953: 948: 944: 940: 939: 934: 927: 925: 923: 921: 917: 912: 908: 904: 900: 895: 890: 886: 882: 881: 876: 869: 866: 861: 860: 855: 849: 846: 841: 837: 833: 831: 826: 820: 817: 811: 807: 804: 802: 799: 797: 794: 792: 789: 788: 784: 775: 770: 763: 758: 753: 751: 749: 745: 740: 738: 734: 730: 726: 722: 718: 714: 705: 698: 696: 687: 678: 674: 671:This section 669: 666: 662: 661: 655: 653: 651: 642: 640: 637: 630: 625: 623: 621: 616: 609: 604: 602: 600: 594: 592: 587: 585: 577: 575: 572: 568: 563: 555: 550: 548: 545: 536: 534: 531: 527: 522: 517: 509: 507: 504: 495: 490: 488: 486: 482: 477: 470: 468: 466: 462: 458: 454: 450: 445: 441: 439: 430: 428: 421: 419: 417: 413: 408: 405: 399: 396: 388: 386: 384: 380: 376: 372: 367: 365: 360: 358: 354: 353:Schwann cells 350: 346: 342: 338: 334: 321: 320:Myelin sheath 316: 311: 310:Axon terminal 306: 299: 294: 289: 284: 279: 274: 263: 261: 259: 258: 257: 251: 247: 243: 239: 235: 231: 227: 223: 220: 216: 212: 211: 202: 172: 168: 164: 152: 146: 142: 139: 136: 134: 130: 127: 124: 122: 118: 115: 112: 110: 106: 101: 98: 94: 91: 88: 84: 81: 78: 76: 72: 67: 60: 55: 48: 43: 38: 33: 19: 2585: 2489:Lipoproteins 2311:Gap junction 2233:Motor neuron 2027:Axon hillock 2003:nerve fibers 1971: 1957:Schwann cell 1867: 1850: 1828: 1746:Medium spiny 1659:White matter 1647:Tissue Types 1572: 1568: 1555: 1530: 1526: 1516: 1503: 1499: 1464: 1460: 1450: 1407: 1403: 1393: 1353:(6): 562–8. 1350: 1346: 1336: 1301: 1297: 1249: 1245: 1235: 1210: 1206: 1200: 1165: 1159: 1149: 1114: 1108: 1098: 1063: 1059: 1049: 1033: 1028: 993: 987: 977: 942: 936: 884: 878: 868: 857: 848: 840:the original 828: 819: 796:Schwann cell 741: 729:histologists 713:pathological 710: 694: 681: 677:adding to it 672: 646: 634: 615:Mitochondria 613: 595: 588: 581: 559: 540: 530:Eshed et al. 529: 525: 513: 510:Early stages 499: 478: 474: 442: 434: 425: 412:Schwann cell 409: 400: 392: 385:in the CNS. 379:Schwann cell 368: 361: 330: 315:Schwann cell 302: 293:Axon hillock 253: 234:ion channels 214: 170: 163:neuroscience 160: 113: 2326:Active zone 2291:Termination 2141:Interneuron 2045:Telodendron 1953:Myelination 1935:Endoneurium 1930:Perineurium 1751:Interneuron 1741:Von Economo 1689:Decussation 1684:Nerve tract 1654:Grey matter 1034:In The Axon 748:Salpêtrière 521:Neurofascin 491:Development 438:neurofascin 431:Composition 351:(CNS), and 341:glial cells 337:glial cells 103:Identifiers 2616:Categories 2561:Glycocalyx 2396:Nociceptor 2136:Multipolar 2085:Nissl body 1962:Neurilemma 1925:Epineurium 1710:Cell Types 1461:J Neurosci 812:References 715:anatomist 684:March 2018 457:phosphacan 449:tenascin-R 383:astrocytes 375:microvilli 248:(from 224:where the 219:myelinated 90:Myelinated 2601:Porosomes 2411:Hair cell 1945:Neuroglia 1907:Funiculus 1796:Microglia 1769:Astrocyte 1726:Pyramidal 1679:Lemniscus 1505:synd/3816 739:in 1875. 465:astrocyte 416:internode 389:Structure 371:internode 2196:Ia or Aα 2126:Unipolar 2075:Dendrite 2060:Axolemma 2055:Axoplasm 1839:Ganglion 1779:Tanycyte 1731:Purkinje 1718:Neuronal 1701:Meninges 1696:Neuropil 1547:20120269 1491:20980605 1442:17410200 1434:16293723 1385:14537696 1377:17331725 1328:17460780 1276:22219296 1227:57536809 1133:11343647 1090:13449102 1042:New York 1020:10252129 1012:11343648 785:See also 650:versican 571:ion flow 551:Function 481:spectrin 461:versican 278:Dendrite 264:Overview 226:axolemma 86:Location 2499:Sterols 2338:Autapse 2299:Synapse 2146:Renshaw 2121:Bipolar 1998:Neurons 1851:Ventral 1822:General 1736:Granule 1482:2976578 1412:Bibcode 1404:Science 1355:Bibcode 1319:1855224 1267:3272449 1192:9278538 1183:6573274 1141:7168889 1081:2224104 969:6743084 961:9208851 911:6743084 903:9208851 699:History 485:ankyrin 444:Ankyrin 355:in the 347:in the 305:Ranvier 303:Node of 298:Nucleus 210:-vee-ay 167:anatomy 126:D011901 69:Details 2191:fibers 1829:Dorsal 1575:: 3–5. 1545:  1489:  1479:  1440:  1432:  1383:  1375:  1326:  1316:  1274:  1264:  1225:  1190:  1180:  1139:  1131:  1110:Neuron 1088:  1078:  1018:  1010:  989:Neuron 967:  959:  938:Neuron 909:  901:  880:Neuron 830:Lexico 806:Myelin 516:Nav1.2 503:myelin 453:Bral-1 395:myelin 364:myelin 256:saltus 75:System 2544:Other 2114:Types 2011:Parts 1880:White 1861:Ramus 1844:Ramus 1761:Glial 1565:(PDF) 1543:S2CID 1438:S2CID 1381:S2CID 1223:S2CID 1137:S2CID 1016:S2CID 965:S2CID 907:S2CID 744:nerve 252: 250:Latin 149:[ 109:Latin 97:nerve 95:of a 2037:Axon 2019:Soma 1875:Gray 1856:Root 1834:Root 1487:PMID 1430:PMID 1373:PMID 1324:PMID 1272:PMID 1188:PMID 1129:PMID 1086:PMID 1008:PMID 957:PMID 899:PMID 725:Lyon 528:and 483:and 459:and 288:Axon 283:Soma 238:ions 222:axon 208:RAHN 165:and 121:MeSH 93:axon 2251:SVE 2246:GVE 2241:GSE 2186:SVA 2181:SSA 2176:GVA 2171:GSA 1814:PNS 1639:CNS 1535:doi 1508:at 1477:PMC 1469:doi 1420:doi 1408:310 1363:doi 1314:PMC 1306:doi 1262:PMC 1254:doi 1215:doi 1178:PMC 1170:doi 1119:doi 1076:PMC 1068:doi 998:doi 947:doi 889:doi 679:. 560:An 161:In 2618:: 1955:: 1573:28 1571:. 1567:. 1541:. 1529:. 1525:. 1485:. 1475:. 1465:30 1463:. 1459:. 1436:. 1428:. 1418:. 1406:. 1402:. 1379:. 1371:. 1361:. 1351:17 1349:. 1345:. 1322:. 1312:. 1300:. 1296:. 1284:^ 1270:. 1260:. 1250:32 1248:. 1244:. 1221:. 1211:25 1209:. 1186:. 1176:. 1166:17 1164:. 1158:. 1135:. 1127:. 1115:30 1113:. 1107:. 1084:. 1074:. 1062:. 1058:. 1040:, 1014:. 1006:. 994:30 992:. 986:. 963:. 955:. 943:18 941:. 935:. 919:^ 905:. 897:. 885:18 883:. 877:. 856:. 834:. 827:. 451:, 343:- 198:eɪ 186:ɑː 169:, 133:TH 2533:/ 2524:/ 2454:e 2447:t 2440:v 2309:/ 2230:/ 2160:/ 2097:/ 2000:/ 1898:) 1889:( 1623:e 1616:t 1609:v 1549:. 1537:: 1531:6 1493:. 1471:: 1444:. 1422:: 1414:: 1387:. 1365:: 1357:: 1330:. 1308:: 1302:2 1278:. 1256:: 1229:. 1217:: 1194:. 1172:: 1143:. 1121:: 1092:. 1070:: 1064:3 1022:. 1000:: 971:. 949:: 913:. 891:: 686:) 682:( 201:/ 195:i 192:v 189:n 183:r 180:ˈ 177:/ 173:( 153:] 34:. 20:)

Index

Nodes of Ranvier
Nodes of Ranvier (band)


System
Nervous system
Myelinated
axon
nerve
Latin
MeSH
D011901
TH
H2.00.06.2.03015
Anatomical terms of microanatomy
edit on Wikidata
neuroscience
anatomy
/ˈrɑːnvi/
RAHN-vee-ay
myelinated
axon
axolemma
extracellular space
ion channels
ions
action potential
saltatory conduction
Latin
saltus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.