Knowledge (XXG)

Noetherian topological space

Source 📝

882: 790: 1122: 145: 1326: 507: 270: 728: 643: 1229: 455: 1163: 534: 175: 1252: 943: 1018: 998: 686: 663: 362: 342: 322: 298: 215: 195: 81: 1484: 801: 557:
has the intuitive property that any closed proper subset has smaller dimension. Since dimension can only 'jump down' a finite number of times, and
1440: 599:
is a Noetherian topological space. The converse does not hold, since there are non-Noetherian rings with only one prime ideal, so that Spec(
51:
condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that
736: 391:
Every subset of X is compact in a Hausdorff space, hence closed. So X has the discrete topology, and being compact, it must be finite.
47:, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong 1400: 1026: 104: 1432: 561:
are made up of finite unions of irreducible sets, descending chains of Zariski closed sets must eventually be constant.
1479: 1260: 460: 88: 40: 1427: 569: 44: 1494: 220: 1489: 699: 614: 402: 1463: 1176: 408: 666: 565: 546: 1347:"general topology - $ V$ is Noetherian space if only if every open subset of $ V$ is compact" 1436: 596: 381: 301: 36: 1130: 1422: 689: 550: 1450: 512: 153: 1446: 573: 554: 377: 1234: 890: 1003: 948: 671: 648: 588: 347: 327: 307: 283: 200: 180: 66: 1473: 558: 92: 572:. That follows because the rings of algebraic geometry, in the classical sense, are 32: 693: 48: 17: 1459: 877:{\displaystyle I(Y_{1})\subseteq I(Y_{2})\subseteq I(Y_{3})\subseteq \cdots } 1382: 1364: 373:
A finite union of Noetherian subspaces of a topological space is Noetherian.
1346: 96: 1458:
This article incorporates material from Noetherian topological space on
692:
is an example of a Noetherian topological space. By properties of the
603:) consists of exactly one point and therefore is a Noetherian space. 785:{\displaystyle Y_{1}\supseteq Y_{2}\supseteq Y_{3}\supseteq \cdots } 344:
is hereditarily compact), and if and only if every open subset of
1401:"general topology - Question about Noetherian topological spaces" 43:. Equivalently, we could say that the open subsets satisfy the 576:. This class of examples therefore also explains the name. 545:
Many examples of Noetherian topological spaces come from
370:
The continuous image of a Noetherian space is Noetherian.
564:
A more algebraic way to see this is that the associated
1117:{\displaystyle I(Y_{m})=I(Y_{m+1})=I(Y_{m+2})=\cdots .} 595:, is a Noetherian topological space. More generally, a 795:
is a descending chain of Zariski-closed subsets, then
1263: 1237: 1179: 1133: 1029: 1006: 951: 893: 804: 739: 702: 674: 651: 617: 515: 463: 411: 350: 330: 310: 286: 223: 203: 183: 156: 140:{\displaystyle Y_{1}\supseteq Y_{2}\supseteq \cdots } 107: 69: 367:
Every subspace of a Noetherian space is Noetherian.
1320: 1246: 1223: 1157: 1116: 1012: 992: 937: 876: 784: 722: 680: 657: 637: 536:is contained in the union of the other components. 528: 501: 449: 356: 336: 316: 292: 264: 209: 189: 169: 139: 75: 1464:Creative Commons Attribution/Share-Alike License 1000:is a Noetherian ring, there exists an integer 1321:{\displaystyle Y_{m}=Y_{m+1}=Y_{m+2}=\cdots } 583:is a commutative Noetherian ring, then Spec( 502:{\displaystyle X=X_{1}\cup \cdots \cup X_{n}} 8: 1435:, vol. 52, New York: Springer-Verlag, 1300: 1281: 1268: 1262: 1236: 1215: 1196: 1178: 1132: 1090: 1062: 1040: 1028: 1005: 981: 962: 950: 923: 904: 892: 859: 837: 815: 803: 770: 757: 744: 738: 714: 709: 705: 704: 701: 673: 650: 629: 624: 620: 619: 616: 568:defining algebraic sets must satisfy the 520: 514: 493: 474: 462: 441: 416: 410: 349: 329: 309: 285: 241: 228: 222: 202: 182: 161: 155: 125: 112: 106: 68: 1383:"Lemma 5.9.4 (0053)—The Stacks project" 1365:"Lemma 5.9.3 (04Z8)—The Stacks project" 1338: 265:{\displaystyle Y_{m}=Y_{m+1}=\cdots .} 405:. If the irreducible components are 7: 887:is an ascending chain of ideals of 723:{\displaystyle \mathbb {A} _{k}^{n}} 638:{\displaystyle \mathbb {A} _{k}^{n}} 380:Noetherian space is finite with the 39:in which closed subsets satisfy the 300:is Noetherian if and only if every 25: 1224:{\displaystyle V(I(Y_{i}))=Y_{i}} 1485:Properties of topological spaces 450:{\displaystyle X_{1},...,X_{n}} 1462:, which is licensed under the 1205: 1202: 1189: 1183: 1152: 1149: 1143: 1137: 1102: 1083: 1074: 1055: 1046: 1033: 987: 955: 929: 897: 865: 852: 843: 830: 821: 808: 1: 1433:Graduate Texts in Mathematics 509:, and none of the components 29:Noetherian topological space 1511: 1405:Mathematics Stack Exchange 1351:Mathematics Stack Exchange 89:descending chain condition 41:descending chain condition 570:ascending chain condition 45:ascending chain condition 1387:stacks.math.columbia.edu 1369:stacks.math.columbia.edu 1158:{\displaystyle V(I(Y))} 541:From algebraic geometry 401:has a finite number of 397:Every Noetherian space 1322: 1248: 1225: 1159: 1118: 1014: 994: 939: 878: 786: 724: 682: 659: 639: 530: 503: 451: 403:irreducible components 358: 338: 318: 294: 266: 211: 197:, there is an integer 191: 171: 141: 77: 1323: 1249: 1226: 1160: 1119: 1015: 995: 940: 879: 787: 725: 683: 660: 640: 531: 529:{\displaystyle X_{i}} 504: 452: 359: 339: 319: 295: 267: 212: 192: 172: 170:{\displaystyle Y_{i}} 142: 78: 1261: 1235: 1177: 1131: 1027: 1004: 949: 891: 802: 737: 700: 672: 649: 615: 513: 461: 409: 348: 328: 308: 284: 280:A topological space 221: 201: 181: 154: 105: 87:if it satisfies the 67: 63:A topological space 719: 634: 55:subset is compact. 1480:Algebraic geometry 1428:Algebraic Geometry 1318: 1247:{\displaystyle i.} 1244: 1221: 1165:is the closure of 1155: 1114: 1010: 990: 938:{\displaystyle k.} 935: 874: 782: 730:, we know that if 720: 703: 678: 655: 635: 618: 547:algebraic geometry 526: 499: 447: 354: 334: 324:is compact (i.e., 314: 290: 262: 207: 187: 167: 150:of closed subsets 137: 73: 27:In mathematics, a 1442:978-0-387-90244-9 1423:Hartshorne, Robin 1013:{\displaystyle m} 993:{\displaystyle k} 681:{\displaystyle k} 658:{\displaystyle n} 597:Noetherian scheme 382:discrete topology 357:{\displaystyle X} 337:{\displaystyle X} 317:{\displaystyle X} 293:{\displaystyle X} 210:{\displaystyle m} 190:{\displaystyle X} 76:{\displaystyle X} 37:topological space 16:(Redirected from 1502: 1453: 1409: 1408: 1397: 1391: 1390: 1379: 1373: 1372: 1361: 1355: 1354: 1343: 1327: 1325: 1324: 1319: 1311: 1310: 1292: 1291: 1273: 1272: 1253: 1251: 1250: 1245: 1230: 1228: 1227: 1222: 1220: 1219: 1201: 1200: 1164: 1162: 1161: 1156: 1123: 1121: 1120: 1115: 1101: 1100: 1073: 1072: 1045: 1044: 1019: 1017: 1016: 1011: 999: 997: 996: 991: 986: 985: 967: 966: 944: 942: 941: 936: 928: 927: 909: 908: 883: 881: 880: 875: 864: 863: 842: 841: 820: 819: 791: 789: 788: 783: 775: 774: 762: 761: 749: 748: 729: 727: 726: 721: 718: 713: 708: 696:of a subset of 690:Zariski topology 687: 685: 684: 679: 664: 662: 661: 656: 644: 642: 641: 636: 633: 628: 623: 574:Noetherian rings 551:Zariski topology 549:, where for the 535: 533: 532: 527: 525: 524: 508: 506: 505: 500: 498: 497: 479: 478: 456: 454: 453: 448: 446: 445: 421: 420: 363: 361: 360: 355: 343: 341: 340: 335: 323: 321: 320: 315: 299: 297: 296: 291: 271: 269: 268: 263: 252: 251: 233: 232: 216: 214: 213: 208: 196: 194: 193: 188: 176: 174: 173: 168: 166: 165: 146: 144: 143: 138: 130: 129: 117: 116: 82: 80: 79: 74: 21: 18:Noetherian space 1510: 1509: 1505: 1504: 1503: 1501: 1500: 1499: 1495:Wellfoundedness 1470: 1469: 1443: 1421: 1418: 1413: 1412: 1399: 1398: 1394: 1381: 1380: 1376: 1363: 1362: 1358: 1345: 1344: 1340: 1335: 1296: 1277: 1264: 1259: 1258: 1233: 1232: 1211: 1192: 1175: 1174: 1129: 1128: 1086: 1058: 1036: 1025: 1024: 1002: 1001: 977: 958: 947: 946: 919: 900: 889: 888: 855: 833: 811: 800: 799: 766: 753: 740: 735: 734: 698: 697: 670: 669: 647: 646: 613: 612: 609: 555:irreducible set 543: 516: 511: 510: 489: 470: 459: 458: 437: 412: 407: 406: 346: 345: 326: 325: 306: 305: 282: 281: 277: 237: 224: 219: 218: 199: 198: 179: 178: 157: 152: 151: 121: 108: 103: 102: 65: 64: 61: 23: 22: 15: 12: 11: 5: 1508: 1506: 1498: 1497: 1492: 1487: 1482: 1472: 1471: 1455: 1454: 1441: 1417: 1414: 1411: 1410: 1392: 1374: 1356: 1337: 1336: 1334: 1331: 1330: 1329: 1317: 1314: 1309: 1306: 1303: 1299: 1295: 1290: 1287: 1284: 1280: 1276: 1271: 1267: 1243: 1240: 1218: 1214: 1210: 1207: 1204: 1199: 1195: 1191: 1188: 1185: 1182: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1125: 1124: 1113: 1110: 1107: 1104: 1099: 1096: 1093: 1089: 1085: 1082: 1079: 1076: 1071: 1068: 1065: 1061: 1057: 1054: 1051: 1048: 1043: 1039: 1035: 1032: 1009: 989: 984: 980: 976: 973: 970: 965: 961: 957: 954: 934: 931: 926: 922: 918: 915: 912: 907: 903: 899: 896: 885: 884: 873: 870: 867: 862: 858: 854: 851: 848: 845: 840: 836: 832: 829: 826: 823: 818: 814: 810: 807: 793: 792: 781: 778: 773: 769: 765: 760: 756: 752: 747: 743: 717: 712: 707: 677: 665:-space over a 654: 632: 627: 622: 608: 605: 589:prime spectrum 559:algebraic sets 542: 539: 538: 537: 523: 519: 496: 492: 488: 485: 482: 477: 473: 469: 466: 444: 440: 436: 433: 430: 427: 424: 419: 415: 394: 393: 386: 385: 374: 371: 368: 365: 353: 333: 313: 289: 276: 273: 261: 258: 255: 250: 247: 244: 240: 236: 231: 227: 206: 186: 164: 160: 148: 147: 136: 133: 128: 124: 120: 115: 111: 93:closed subsets 72: 60: 57: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1507: 1496: 1493: 1491: 1490:Scheme theory 1488: 1486: 1483: 1481: 1478: 1477: 1475: 1468: 1467: 1465: 1461: 1452: 1448: 1444: 1438: 1434: 1430: 1429: 1424: 1420: 1419: 1415: 1406: 1402: 1396: 1393: 1388: 1384: 1378: 1375: 1370: 1366: 1360: 1357: 1352: 1348: 1342: 1339: 1332: 1315: 1312: 1307: 1304: 1301: 1297: 1293: 1288: 1285: 1282: 1278: 1274: 1269: 1265: 1257: 1256: 1255: 1241: 1238: 1216: 1212: 1208: 1197: 1193: 1186: 1180: 1172: 1168: 1146: 1140: 1134: 1111: 1108: 1105: 1097: 1094: 1091: 1087: 1080: 1077: 1069: 1066: 1063: 1059: 1052: 1049: 1041: 1037: 1030: 1023: 1022: 1021: 1007: 982: 978: 974: 971: 968: 963: 959: 952: 932: 924: 920: 916: 913: 910: 905: 901: 894: 871: 868: 860: 856: 849: 846: 838: 834: 827: 824: 816: 812: 805: 798: 797: 796: 779: 776: 771: 767: 763: 758: 754: 750: 745: 741: 733: 732: 731: 715: 710: 695: 691: 675: 668: 652: 630: 625: 606: 604: 602: 598: 594: 590: 586: 582: 577: 575: 571: 567: 562: 560: 556: 552: 548: 540: 521: 517: 494: 490: 486: 483: 480: 475: 471: 467: 464: 442: 438: 434: 431: 428: 425: 422: 417: 413: 404: 400: 396: 395: 392: 388: 387: 383: 379: 375: 372: 369: 366: 351: 331: 311: 303: 287: 279: 278: 274: 272: 259: 256: 253: 248: 245: 242: 238: 234: 229: 225: 204: 184: 162: 158: 134: 131: 126: 122: 118: 113: 109: 101: 100: 99: 98: 94: 90: 86: 70: 58: 56: 54: 50: 46: 42: 38: 34: 30: 19: 1457: 1456: 1426: 1404: 1395: 1386: 1377: 1368: 1359: 1350: 1341: 1328:as required. 1170: 1166: 1126: 1020:such that 886: 794: 688:) under the 610: 600: 592: 584: 580: 578: 563: 544: 398: 390: 149: 84: 62: 52: 33:Emmy Noether 31:, named for 28: 26: 611:The space 364:is compact. 217:such that 49:compactness 1474:Categories 1460:PlanetMath 1416:References 275:Properties 95:: for any 85:Noetherian 83:is called 59:Definition 1316:⋯ 1109:⋯ 972:… 914:… 872:⋯ 869:⊆ 847:⊆ 825:⊆ 780:⋯ 777:⊇ 764:⊇ 751:⊇ 487:∪ 484:⋯ 481:∪ 378:Hausdorff 257:⋯ 135:⋯ 132:⊇ 119:⊇ 1425:(1977), 1231:for all 1169:for all 645:(affine 302:subspace 97:sequence 1451:0463157 607:Example 587:), the 457:, then 389:Proof: 35:, is a 1449:  1439:  1254:Hence 1127:Since 945:Since 566:ideals 376:Every 1333:Notes 694:ideal 667:field 53:every 1437:ISBN 91:for 591:of 579:If 553:an 304:of 177:of 1476:: 1447:MR 1445:, 1431:, 1403:. 1385:. 1367:. 1349:. 1173:, 1466:. 1407:. 1389:. 1371:. 1353:. 1313:= 1308:2 1305:+ 1302:m 1298:Y 1294:= 1289:1 1286:+ 1283:m 1279:Y 1275:= 1270:m 1266:Y 1242:. 1239:i 1217:i 1213:Y 1209:= 1206:) 1203:) 1198:i 1194:Y 1190:( 1187:I 1184:( 1181:V 1171:Y 1167:Y 1153:) 1150:) 1147:Y 1144:( 1141:I 1138:( 1135:V 1112:. 1106:= 1103:) 1098:2 1095:+ 1092:m 1088:Y 1084:( 1081:I 1078:= 1075:) 1070:1 1067:+ 1064:m 1060:Y 1056:( 1053:I 1050:= 1047:) 1042:m 1038:Y 1034:( 1031:I 1008:m 988:] 983:n 979:x 975:, 969:, 964:1 960:x 956:[ 953:k 933:. 930:] 925:n 921:x 917:, 911:, 906:1 902:x 898:[ 895:k 866:) 861:3 857:Y 853:( 850:I 844:) 839:2 835:Y 831:( 828:I 822:) 817:1 813:Y 809:( 806:I 772:3 768:Y 759:2 755:Y 746:1 742:Y 716:n 711:k 706:A 676:k 653:n 631:n 626:k 621:A 601:R 593:R 585:R 581:R 522:i 518:X 495:n 491:X 476:1 472:X 468:= 465:X 443:n 439:X 435:, 432:. 429:. 426:. 423:, 418:1 414:X 399:X 384:. 352:X 332:X 312:X 288:X 260:. 254:= 249:1 246:+ 243:m 239:Y 235:= 230:m 226:Y 205:m 185:X 163:i 159:Y 127:2 123:Y 114:1 110:Y 71:X 20:)

Index

Noetherian space
Emmy Noether
topological space
descending chain condition
ascending chain condition
compactness
descending chain condition
closed subsets
sequence
subspace
Hausdorff
discrete topology
irreducible components
algebraic geometry
Zariski topology
irreducible set
algebraic sets
ideals
ascending chain condition
Noetherian rings
prime spectrum
Noetherian scheme
field
Zariski topology
ideal
"general topology - $ V$ is Noetherian space if only if every open subset of $ V$ is compact"
"Lemma 5.9.3 (04Z8)—The Stacks project"
"Lemma 5.9.4 (0053)—The Stacks project"
"general topology - Question about Noetherian topological spaces"
Hartshorne, Robin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.