Knowledge

Non-coding DNA

Source πŸ“

496:
Centromeric DNA consists of a number of repetitive DNA sequences that often take up a significant fraction of the genome because each centromere can be millions of base pairs in length. In humans, for example, the sequences of all 24 centromeres have been determined and they account for about 6% of the genome. However, it is unlikely that all of this noncoding DNA is essential since there is considerable variation in the total amount of centromeric DNA in different individuals. Centromeres are another example of functional noncoding DNA sequences that have been known for almost half a century and it is likely that they are more abundant than coding DNA.
228:
sequences and centromeres as expected. Much of the repetitive DNA seen in other eukaryotes has been deleted from the bladderwort genome since that lineage split from those of other plants. About 59% of the bladderwort genome consists of transposon-related sequences but since the genome is so much smaller than other genomes, this represents a considerable reduction in the amount of this DNA. The authors of the original 2013 article note that claims of additional functional elements in the non-coding DNA of animals do not seem to apply to plant genomes.
472: 585: 648:. Much of the remaining half of the genome that is currently without an explained origin is expected to have found its origin in transposable elements that were active so long ago (> 200 million years) that random mutations have rendered them unrecognizable. Genome size variation in at least two kinds of plants is mostly the result of retrotransposon sequences. 416:
genome. Combining that with about 1% coding sequences means that protein-coding genes occupy about 38% of the human genome. The calculations for noncoding genes are more complicated because there is considerable dispute over the total number of noncoding genes but taking only the well-defined examples means that noncoding genes occupy at least 6% of the genome.
388: 368:
Many regulatory sequences occur near promoters, usually upstream of the transcription start site of the gene. Some occur within a gene and a few are located downstream of the transcription termination site. In eukaryotes, there are some regulatory sequences that are located at a considerable distance
435:
be several hundred nucleotides in length in eukaryotes. They contain short elements that control the initiation of translation (5'-UTRs) and transcription termination (3'-UTRs) as well as regulatory elements that may control mRNA stability, processing, and targeting to different regions of the cell.
352:
bind to DNA and these transcription factors can either activate transcription (activators) or repress transcription (repressors). Regulatory elements were discovered in the 1960s and their general characteristics were worked out in the 1970s by studying specific transcription factors in bacteria and
675:
Variations in the number of STR repeats can cause genetic diseases when they lie within a gene but most of these regions appear to be non-functional junk DNA where the number of repeats can vary considerably from individual to individual. This is why these length differences are used extensively in
434:
in mRNA located between the 5' end of the gene and the translation initiation codon. These regions are called 5'-untranslated regions or 5'-UTRs. Similar regions called 3'-untranslated regions (3'-UTRs) are found at the end of the gene. The 5'-UTRs and 3'UTRs are very short in bacteria but they can
360:
Promoters and regulatory sequences represent an abundant class of noncoding DNA but they mostly consist of a collection of relatively short sequences so they do not take up a very large fraction of the genome. The exact amount of regulatory DNA in mammalian genome is unclear because it is difficult
227:
and regulatory sequences that are shorter than those in other plant species. The genes contain introns but there are fewer of them and they are smaller than the introns in other plant genomes. There are noncoding genes, including many copies of ribosomal RNA genes. The genome also contains telomere
694:
Junk DNA is DNA that has no biologically relevant function such as pseudogenes and fragments of once active transposons. Bacteria and viral genomes have very little junk DNA but some eukaryotic genomes may have a substantial amount of junk DNA. The exact amount of nonfunctional DNA in humans and
415:
Group I and group II introns take up only a small percentage of the genome when they are present. Spliceosomal introns (see Figure) are only found in eukaryotes and they can represent a substantial proportion of the genome. In humans, for example, introns in protein-coding genes cover 37% of the
311:
Noncoding genes account for only a few percent of prokaryotic genomes but they can represent a vastly higher fraction in eukaryotic genomes. In humans, the noncoding genes take up at least 6% of the genome, largely because there are hundreds of copies of ribosomal RNA genes. Protein-coding genes
203:
genome is only about one eighth the size of the human genome, yet seems to have a comparable number of genes. Genes take up about 30% of the pufferfish genome and the coding DNA is about 10%. (Non-coding DNA = 90%.) The reduced size of the pufferfish genome is due to a reduction in the length of
231:
According to a New York Times article, during the evolution of this species, "... genetic junk that didn't serve a purpose was expunged, and the necessary stuff was kept." According to Victor Albert of the University of Buffalo, the plant is able to expunge its so-called junk DNA and "have a
569:
Pseudogenes are junk DNA by definition and they evolve at the neutral rate as expected for junk DNA. Some former pseudogenes have secondarily acquired a function and this leads some scientists to speculate that most pseudogenes are not junk because they have a yet-to-be-discovered function.
495:
Centromeres are the sites where spindle fibers attach to newly replicated chromosomes in order to segregate them into daughter cells when the cell divides. Each eukaryotic chromosome has a single functional centromere that is seen as a constricted region in a condensed metaphase chromosome.
456:
The main features of replication origins are sequences where specific initiation proteins are bound. A typical replication origin covers about 100-200 base pairs of DNA. Prokaryotes have one origin of replication per chromosome or plasmid but there are usually multiple origins in eukaryotic
717:(SNPs) and the trait being examined and most of these SNPs are located in non-functional DNA. The association establishes a linkage that helps map the DNA region responsible for the trait but it does not necessarily identify the mutations causing the disease or phenotypic difference. 540:(SARs) and they consist of stretches of DNA that bind an RNA/protein complex to stabilize the loop. There are about 100,000 loops in the human genome and each one consists of about 100 bp of DNA. The total amount of DNA devoted to SARs accounts for about 0.3% of the human genome. 167:
where "C" refers to the haploid genome size. The paradox was resolved with the discovery that most of the differences were due to the expansion and contraction of repetitive DNA and not the number of genes. Some researchers speculated that this repetitive DNA was mostly
558:). Pseudogenes are only a small fraction of noncoding DNA in prokaryotic genomes because they are eliminated by negative selection. In some eukaryotes, however, pseudogenes can accumulate because selection is not powerful enough to eliminate them (see 220:(100.7 Mb) compared to most plants. It likely evolved from an ancestral genome that was 1,500 Mb in size. The bladderwort genome has roughly the same number of genes as other plants but the total amount of coding DNA comes to about 30% of the genome. 565:
The human genome contains about 15,000 pseudogenes derived from protein-coding genes and an unknown number derived from noncoding genes. They may cover a substantial fraction of the genome (~5%) since many of them contain former intron sequences.
660:(one after the other). The repeat segments are usually between 2 bp and 10 bp but longer ones are known. Highly repetitive DNA is rare in prokaryotes but common in eukaryotes, especially those with large genomes. It is sometimes called 643:
Over 8% of the human genome is made up of (mostly decayed) endogenous retrovirus sequences, as part of the over 42% fraction that is recognizably derived of retrotransposons, while another 3% can be identified to be the remains of
667:
Most of the highly repetitive DNA is found in centromeres and telomeres (see above) and most of it is functional although some might be redundant. The other significant fraction resides in short tandem repeats (STRs; also called
315:
The total number of noncoding genes in the human genome is controversial. Some scientists think that there are only about 5,000 noncoding genes while others believe that there may be more than 100,000 (see the article on
622:, classified as a short interspersed nuclear element, are the most abundant mobile elements in the human genome. Some examples have been found of SINEs exerting transcriptional control of some protein-encoding genes. 453:. These are regions of the genome where the DNA replication machinery is assembled and the DNA is unwound to begin DNA synthesis. In most cases, replication proceeds in both directions from the replication origin. 156:
and over the total size of the human genome. This means that 98–99% of the human genome consists of non-coding DNA and this includes many functional elements such as non-coding genes and regulatory sequences.
411:
during the processing to mature RNA. Introns are found in both types of genes: protein-coding genes and noncoding genes. They are present in prokaryotes but they are much more common in eukaryotic genomes.
672:) consisting of short stretches of a simple repeat such as ATC. There are about 350,000 STRs in the human genome and they are scattered throughout the genome with an average length of about 25 repeats. 175:
This led to the observation that the number of genes does not seem to correlate with perceived notions of complexity because the number of genes seems to be relatively constant, an issue termed the
3490: 365:
were characterized in the 1970s and the biochemical properties of transcription factors predict that in cells with large genomes, the majority of binding sites will not be biologically functional.
554:
Pseudogenes are mostly former genes that have become non-functional due to mutation, but the term also refers to inactive DNA sequences that are derived from RNAs produced by functional genes (
1136:
Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A (2002). "Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes".
724:.) About 12% of these polymorphisms are found in coding regions; about 40% are located in introns; and most of the rest are found in intergenic regions, including regulatory sequences. 144:
where the RNA transcript is functional (non-coding genes) and regulatory sequences, which means that almost all of the bacterial genome has a function. The amount of coding DNA in
3483: 698:
The nonfunctional DNA in bacterial genomes is mostly located in the intergenic fraction of non-coding DNA but in eukaryotic genomes it may also be found within
3476: 559: 232:
perfectly good multicellular plant with lots of different cells, organs, tissue types and flowers, and you can do it without the junk. Junk is not needed."
1231:
Ibarra-Laclette E, Lyons E, HernΓ‘ndez-GuzmΓ‘n G, PΓ©rez-Torres CA, Carretero-Paulet L, Chang TH, Lan T, Welch AJ, JuΓ‘rez MJ, Simpson J, et al. (2013).
2605:"Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice" 3449: 487:, wherein non-coding DNA is present at the centromeres (shown as narrow segment of each chromosome), and also occurs to a greater extent in darker ( 519: 148:
is usually a much smaller fraction of the genome because eukaryotic genomes contain large amounts of repetitive DNA not found in prokaryotes. The
3345: 3318: 2961: 1555: 1424: 536:
Both prokaryotic and eukarotic genomes are organized into large loops of protein-bound DNA. In eukaryotes, the bases of the loops are called
738: 152:
contains somewhere between 1–2% coding DNA. The exact number is not known because there are disputes over the number of functional coding
361:
to distinguish between spurious transcription factor binding sites and those that are functional. The binding characteristics of typical
720:
SNPs that are tightly linked to traits are the ones most likely to identify a causal mutation. (The association is referred to as tight
2750:
Kronenberg ZN, Fiddes IT, Gordon D, Murali S, Cantsilieris S, Meyerson OS, Underwood JG, Nelson BJ, Chaisson MJ, Dougherty ML (2018).
163:
in eukaryotes can vary over a wide range, even between closely related species. This puzzling observation was originally known as the
140:
typically take up 88% of the genome. The remaining 12% does not encode proteins, but much of it still has biological function through
713:(GWAS) identify linkages between alleles and observable traits such as phenotypes and diseases. Most of the associations are between 702:. There are many examples of functional DNA elements in non-coding DNA, and it is erroneous to equate non-coding DNA with junk DNA. 537: 531: 522:
are transcripts derived from telomeres. TERRA has been shown to maintain telomerase activity and lengthen the ends of chromosomes.
1307:
Lan T, Renner T, Ibarra-Laclette E, Farr KM, Chang TH, Cervantes-PΓ©rez SA, Zheng C, Sankoff D, Tang H, and Purbojati RW (2017).
743: 714: 710: 1367: 4144: 3739: 695:
other species with large genomes has not been determined and there is considerable controversy in the scientific literature.
2701:
Gymrek M, Willems T, Guilmatre A, Zeng H, Markus B, Georgiev S, Daly MJ, Price AL, Pritchard JK, Sharp AJ, Erlich Y (2016).
2654:"Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium" 312:
occupy about 38% of the genome; a fraction that is much higher than the coding region because genes contain large introns.
4280: 733: 241: 3436: 1734:
Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S (2012).
3928: 277:
genomes contain genes for a number of other noncoding RNAs but noncoding RNA genes are much more common in eukaryotes.
172:. The reasons for the changes in genome size are still being worked out and this problem is called the C-value Enigma. 3848: 3604: 905:"Reflections on the HUPO Human Proteome Project, the Flagship Project of the Human Proteome Organization, at 10 Years" 2136:
Cusanelli E, Chartrand P (May 2014). "Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology".
373:
but there is no rigorous definition of enhancer that distinguishes it from other transcription factor binding sites.
399:(top). After the introns have been removed via splicing, the mature mRNA sequence is ready for translation (bottom). 3440: 457:
chromosomes. The human genome contains about 100,000 origins of replication representing about 0.3% of the genome.
85: 4149: 1630:
Compe E, Egly JM (2021). "The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes".
763: 4318: 3996: 3897: 3814: 471: 345: 49: 1599: 4313: 4023: 3799: 748: 607: 603: 588: 579: 334:
Promoters are DNA segments near the 5' end of the gene where transcription begins. They are the sites where
189:) has been reported to contain more than 200 times the amount of DNA in humans (i.e. more than 600 billion 4251: 3567: 721: 341: 4011: 3984: 758: 629: 625: 450: 444: 293: 89: 1393: 3955: 3950: 3826: 2557: 1690: 1320: 1244: 1145: 349: 297: 65: 1489:
Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL, Wolf YI, et al. (October 2002).
4191: 4033: 3989: 3945: 3683: 3400:
Castillo-Davis CI (October 2005). "The evolution of noncoding DNA: how much junk, how much func?".
425: 370: 362: 329: 301: 285: 224: 77: 2495:
Nelson PN, Hooley P, Roden D, Davari Ejtehadi H, Rylance P, Warren P, et al. (October 2004).
4241: 3092: 2992: 2428: 2322: 2161: 2067: 1655: 1612: 1471: 1278: 1169: 1118: 1069: 1026: 831: 4236: 3940: 3417: 3388: 3341: 3314: 3283: 3234: 3185: 3136: 3084: 3033: 2984: 2942: 2891: 2873: 2832: 2781: 2732: 2683: 2634: 2585: 2526: 2477: 2420: 2371: 2314: 2273: 2210: 2153: 2118: 2059: 2010: 1959: 1910: 1859: 1765: 1716: 1674: 1647: 1604: 1551: 1520: 1463: 1420: 1348: 1270: 1204: 1196: 1161: 1110: 1061: 1018: 969: 934: 885: 823: 753: 281: 208: 3306: 3972: 3866: 3499: 3459: 3409: 3378: 3368: 3333: 3273: 3265: 3224: 3216: 3175: 3167: 3126: 3074: 3064: 3023: 2976: 2932: 2922: 2881: 2863: 2822: 2812: 2771: 2763: 2722: 2714: 2673: 2665: 2624: 2616: 2575: 2565: 2544:
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. (February 2001).
2516: 2508: 2467: 2459: 2410: 2402: 2361: 2353: 2304: 2263: 2255: 2200: 2192: 2145: 2108: 2098: 2049: 2041: 2028:
Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA, Caldas GV, et al. (2021).
2000: 1990: 1949: 1941: 1900: 1890: 1849: 1841: 1755: 1747: 1706: 1698: 1639: 1594: 1584: 1543: 1510: 1502: 1453: 1338: 1328: 1260: 1252: 1153: 1100: 1053: 1008: 1000: 961: 924: 916: 875: 865: 815: 181: 73: 584: 4229: 3923: 3902: 3831: 3634: 2228: 1643: 615: 611: 599: 515: 176: 81: 656:
Highly repetitive DNA consists of short stretches of DNA that are repeated many times in
3028: 3011: 2603:
Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Saniyal A, et al. (October 2006).
2561: 2415: 1694: 1589: 1572: 1324: 1248: 1149: 965: 819: 4219: 4106: 3836: 3819: 3624: 3554: 3337: 3278: 3253: 3229: 3204: 3180: 3155: 3079: 3052: 2937: 2910: 2886: 2851: 2827: 2800: 2776: 2751: 2727: 2702: 2678: 2653: 2629: 2604: 2521: 2496: 2472: 2447: 2366: 2341: 2268: 2243: 2205: 2180: 2113: 2086: 2054: 2029: 2005: 1978: 1954: 1929: 1905: 1878: 1854: 1829: 1760: 1735: 1711: 1678: 1547: 1343: 1308: 1265: 1232: 1013: 989:"What's in a genome? The C-value enigma and the evolution of eukaryotic genome content" 988: 929: 904: 880: 853: 806:
Kirchberger PC, Schmidt ML, and Ochman H (2020). "The ingenuity of bacterial genomes".
773: 669: 335: 317: 262: 252: 217: 109: 53: 3468: 3383: 3356: 2703:"Abundant contribution of short tandem repeats to gene expression variation in humans" 1515: 1490: 4302: 4259: 4224: 4067: 4057: 4028: 3661: 3654: 3096: 2512: 2071: 1659: 1616: 1309:"Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome" 1057: 835: 768: 677: 661: 657: 640:. Mutation within these retro-transcribed sequences can inactivate the viral genome. 404: 354: 305: 270: 265:. Noncoding genes are an important part of non-coding DNA and they include genes for 137: 69: 2996: 2326: 2165: 1475: 1282: 1173: 1122: 1030: 4308: 4246: 4089: 4049: 4016: 3788: 3774: 3672: 2432: 1491:"Congruent evolution of different classes of non-coding DNA in prokaryotic genomes" 1073: 619: 480: 408: 266: 149: 57: 42: 618:(SINEs), account for a large proportion of the genomic sequences in many species. 2927: 1538:
Bielawski JP, Jones C (2016). "Adaptive Molecular Evolution: Detection Methods".
518:. Recent studies have shown that telomeres function to aid in its own stability. 17: 4270: 4136: 4084: 4079: 3592: 3445: 1845: 920: 852:
Piovesan A, Antonaros F, Vitale L, Strippoli P, Pelleri MC, Caracausi M (2019).
778: 213: 190: 160: 113: 105: 3220: 3171: 2390: 2196: 2087:"Centromeric satellite DNAs: hidden sequence variation in the human population" 1458: 1441: 4178: 4173: 4126: 4119: 4114: 4099: 4094: 3935: 3870: 3619: 3561: 3413: 3269: 3154:
Visscher PV, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017).
2868: 2406: 2357: 870: 784: 645: 633: 595: 555: 549: 511: 488: 466: 431: 430:
The standard biochemistry and molecular biology textbooks describe non-coding
369:
from the promoter region. These distant regulatory sequences are often called
274: 194: 93: 2877: 1995: 1200: 4183: 4168: 4155: 3907: 3695: 3614: 3609: 3599: 3587: 3526: 3373: 2767: 2259: 2181:"The self-organizing genome: Principles of genome architecture and function" 2045: 1333: 1157: 637: 484: 476: 320:). The difference is largely due to debate over the number of lncRNA genes. 304:(lncRNAs). In addition, there are a number of unique RNA genes that produce 145: 3421: 3392: 3287: 3238: 3189: 3140: 3088: 3069: 3037: 2988: 2946: 2895: 2836: 2785: 2736: 2687: 2638: 2589: 2530: 2481: 2424: 2375: 2318: 2277: 2214: 2157: 2122: 2063: 2014: 1963: 1945: 1914: 1863: 1769: 1720: 1651: 1608: 1524: 1467: 1352: 1274: 1165: 1114: 1089:"The modulation of DNA content: proximate causes and ultimate consequences" 1065: 1022: 1004: 973: 938: 889: 827: 3357:"The mammalian transcriptome and the function of non-coding DNA sequences" 3131: 3114: 2980: 2309: 2292: 2103: 1751: 1208: 4214: 4160: 4062: 4006: 4001: 3892: 3853: 3809: 3711: 3516: 3454: 2817: 2580: 1573:"Genome-Wide Analysis of Human Long Noncoding RNAs: A Provocative Review" 1506: 689: 505: 289: 198: 169: 133: 121: 97: 61: 1702: 1256: 4196: 4074: 3858: 3843: 3546: 3521: 2669: 2620: 1736:"GENCODE: the reference human genome annotation for The ENCODE Project" 1105: 1088: 699: 164: 117: 101: 45: 3115:"Genomewide association studies and assessment of the risk of disease" 3053:"The advantages and limitations of trait analysis with GWAS: a review" 2497:"Human endogenous retroviruses: transposable elements with potential?" 2448:"InvAluable junk: the cellular impact and function of Alu and B2 RNAs" 2149: 338:
binds to initiate RNA synthesis. Every gene has a noncoding promoter.
4287: 4265: 3962: 3885: 3880: 3645: 3536: 3531: 3463: 2570: 2545: 1979:"Analytical Biases Associated with GC-Content in Molecular Evolution" 1879:"The hunt for origins of DNA replication in multicellular eukaryotes" 1442:"The Noncoding RNA Revolution - Trashing Old Rules to Forge New Ones" 1368:"Genetic Tidying Up Made Humped Bladderworts Into Carnivorous Plants" 392: 382: 100:. Some non-coding regions appear to be mostly nonfunctional, such as 3012:"No Gene in the Genome Makes Sense Except in the Light of Evolution" 2718: 2463: 387: 1895: 280:
Typical classes of noncoding genes in eukaryotes include genes for
76:). Other functional regions of the non-coding DNA fraction include 3769: 3761: 3579: 3541: 583: 470: 386: 1783:
Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994).
514:, which provide protection from chromosomal deterioration during 4275: 3967: 3508: 3254:"Replicability and Prediction: Lessons and Challenges from GWAS" 3156:"10 Years of GWAS Discovery: Biology, Function, and Translation" 2652:
Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (October 2006).
854:"Human protein-coding genes and gene feature statistics in 2019" 396: 258: 153: 141: 3472: 403:
Introns are the parts of a gene that are transcribed into the
38: 952:
Thomas CA (1971). "The genetic organization of chromosomes".
223:
The remainder of the genome (70% non-coding DNA) consists of
2752:"High-resolution comparative analysis of great ape genomes" 2030:"Complete genomic and epigenetic maps of human centromeres" 391:
Illustration of an unspliced pre-mRNA precursor, with five
2852:"Gene overlapping and size constraints in the viral world" 706:
Genome-wide association studies (GWAS) and non-coding DNA
348:
of a nearby gene. They are almost always sequences where
3252:
Marigorta UM, RodrΓ­guez JA, Gibson G, Navarro A (2018).
510:
Telomeres are regions of repetitive DNA at the end of a
3328:
Gregory TR (2005). "Genome Size Evolution in Animals".
2962:"Genome as a Multipurpose Structure Built by Evolution" 1396:(Press release). Tucson, AZ, USA: University of Arizona 591:
in the cell (left) and how they can be acquired (right)
120:. Regions that are completely nonfunctional are called 2546:"Initial sequencing and analysis of the human genome" 1802:. Upper Saddle River, NJ, USA: Pearson/Prentice Hall. 1233:"Architecture and evolution of a minute plant genome" 2391:"Useful 'junk': Alu RNAs in the human transcriptome" 1813:
Moran L, Horton HR, Scrimgeour KG, Perry MD (2012).
4207: 4135: 4048: 3916: 3798: 3787: 3760: 3732: 3682: 3671: 3644: 3633: 3578: 3507: 1187:Ohno S (1972). "So much "junk" DNA in our genome". 2342:"Genomic gems: SINE RNAs regulate mRNA production" 2291:Wen YZ, Zheng LL, Qu LH, Ayala FJ, Lun ZR (2012). 1226: 1224: 1222: 1220: 1218: 3205:"The Post-GWAS Era: From Association to Function" 2446:Walters RD, Kugel JF, Goodrich JA (August 2009). 2340:Ponicsan SL, Kugel JF, Goodrich JA (April 2010). 1600:20.500.11820/ede40d70-b99c-42b0-a378-3b9b7b256a1b 1877:Urban JM, Foulk MS, Casella C, Gerbi SA (2015). 1044:Hahn MW, Wray GA (2002). "The g-value paradox". 574:Repeat sequences, transposons and viral elements 1313:Proceedings of the National Academy of Sciences 2244:"Are human translated pseudogenes functional?" 449:DNA synthesis begins at specific sites called 3484: 2389:HΓ€sler J, Samuelsson T, Strub K (July 2007). 2346:Current Opinion in Genetics & Development 193:vs a bit more than 3 billion in humans). The 179:. For example, the genome of the unicellular 8: 3016:Annual Review of Genomics and Human Genetics 2229:"Ensemble Human reference genome GRCh38.p13" 1930:"DNA replication originsβ€”where do we begin?" 1577:Annual Review of Genomics and Human Genetics 1419:. Cambridge UK: Cambridge University Press. 560:Nearly neutral theory of molecular evolution 273:. These genes were discovered in the 1960s. 37:) sequences are components of an organism's 1679:"Genomic views of distant-acting enhancers" 3795: 3679: 3641: 3491: 3477: 3469: 3108: 3106: 1834:Cold Spring Harbor Perspectives in Biology 1785:Molecular Biology of the Cell, 3rd edition 847: 845: 3382: 3372: 3277: 3228: 3179: 3130: 3078: 3068: 3027: 2936: 2926: 2885: 2867: 2826: 2816: 2775: 2726: 2677: 2628: 2579: 2569: 2520: 2471: 2414: 2365: 2308: 2267: 2204: 2112: 2102: 2053: 2004: 1994: 1953: 1904: 1894: 1853: 1759: 1710: 1598: 1588: 1514: 1457: 1394:"Carnivorous Plant Throws Out 'Junk' DNA" 1342: 1332: 1264: 1104: 1012: 928: 879: 869: 3450:Estonian Institute of Zoology and Botany 3313:. San Diego: Elsevier. pp. 89–162. 1815:Principles of Biochemistry Fifth Edition 3203:Gallagher MD, Chen-Plotkin, AS (2018). 2850:Brandes, Nadav; Linial, Michal (2016). 1817:. Upper Saddle River, NJ, USA: Pearson. 795: 520:Telomeric repeat-containing RNA (TERRA) 479:of a human, showing an overview of the 1302: 1300: 1298: 1296: 1294: 1292: 2801:"Factors behind junk DNA in bacteria" 2293:"Pseudogenes are not pseudo any more" 1787:. London, UK: Garland Publishing Inc. 1644:10.1146/annurev-biochem-090220-112253 7: 3355:Shabalina SA, Spiridonov NA (2004). 2969:Perspectives in Biology and Medicine 2501:Clinical and Experimental Immunology 2395:Cellular and Molecular Life Sciences 2138:Wiley Interdisciplinary Reviews. RNA 1540:Encyclopedia of Evolutionary Biology 1392:Hsu C, and Stolte D (May 13, 2013). 1087:Gregory TR, Hebert PD (April 1999). 801: 799: 739:Eukaryotic chromosome fine structure 407:sequence, but ultimately removed by 3119:The New England Journal of Medicine 3029:10.1146/annurev-genom-090413-025621 2909:Palazzo AF, Gregory TR (May 2014). 1590:10.1146/annurev-genom-112921-123710 966:10.1146/annurev.ge.05.120171.001321 909:Molecular & Cellular Proteomics 820:10.1146/annurev-micro-020518-115822 616:short interspersed nuclear elements 27:DNA that does not code for proteins 3209:American Journal of Human Genetics 3160:American Journal of Human Genetics 1548:10.1016/B978-0-12-800049-6.00171-2 612:long interspersed nuclear elements 128:Fraction of non-coding genomic DNA 48:sequences. Some non-coding DNA is 25: 3307:"Genome size evolution in plants" 3010:Haerty W, and Ponting CP (2014). 1928:Prioleau M, MacAlpine DM (2016). 1571:Ponting CP, and Haerty W (2022). 532:Scaffold/matrix attachment region 324:Promoters and regulatory elements 236:Types of non-coding DNA sequences 204:introns and less repetitive DNA. 3338:10.1016/B978-012301463-4/50003-6 2513:10.1111/j.1365-2249.2004.02592.x 1058:10.1046/j.1525-142X.2002.01069.x 3455:ENCODE: The human encyclopaedia 2248:Molecular Biology and Evolution 987:Elliott TA, Gregory TR (2015). 744:Gene-centered view of evolution 715:single-nucleotide polymorphisms 711:Genome-wide association studies 4145:Last universal common ancestor 3740:Defective interfering particle 3305:Bennett MD, Leitch IJ (2005). 1828:Leonard AC, MΓ©chali M (2013). 1189:Brookhaven Symposia in Biology 1: 4281:Clonally transmissible cancer 3717:Satellite-like nucleic acids 2799:Gil R, and Latorre A (2012). 1632:Annual Review of Biochemistry 808:Annual Review of Microbiology 734:Conserved non-coding sequence 628:sequences are the product of 242:Conserved non-coding sequence 2928:10.1371/journal.pgen.1004351 1977:Romiguier J, Roux C (2017). 636:genomes into the genomes of 3446:Fungal Genome Size Database 3437:Plant DNA C-values Database 3330:The Evolution of the Genome 3311:The Evolution of the Genome 1846:10.1101/cshperspect.a010116 1440:Cech TR, Steitz JA (2014). 921:10.1016/j.mcpro.2021.100062 538:scaffold attachment regions 526:Scaffold attachment regions 344:are sites that control the 261:: protein coding genes and 86:scaffold attachment regions 4335: 3837:Class II or DNA transposon 3832:Class I or retrotransposon 3441:Royal Botanic Gardens, Kew 3221:10.1016/j.ajhg.2018.04.002 3172:10.1016/j.ajhg.2017.06.005 3051:Korte A, Farlwo A (2013). 2197:10.1016/j.cell.2020.09.014 1459:10.1016/j.cell.2014.03.008 687: 577: 547: 529: 503: 464: 442: 423: 380: 327: 250: 239: 90:origins of DNA replication 4150:Earliest known life forms 4024:Repeated sequences in DNA 3414:10.1016/j.tig.2005.08.001 3270:10.1016/j.tig.2018.03.005 2869:10.1186/s13062-016-0128-3 2407:10.1007/s00018-007-7084-0 2358:10.1016/j.gde.2010.01.004 1830:"DNA replication origins" 1046:Evolution and Development 954:Annual Review of Genetics 871:10.1186/s13104-019-4343-8 764:Phylogenetic footprinting 3997:Endogenous viral element 3815:Horizontal gene transfer 3113:Manolio TA (July 2010). 2960:Morange, Michel (2014). 2397:(Submitted manuscript). 1996:10.3389/fgene.2017.00016 216:plant, has a very small 3694:dsDNA satellite virus ( 3374:10.1186/gb-2004-5-4-105 3309:. In Gregory RT (ed.). 2911:"The case for junk DNA" 2768:10.1126/science.aar6343 2046:10.1126/science.abl4178 1934:Genes & Development 1366:Klein J (19 May 2017). 1334:10.1073/pnas.1702072114 1158:10.1126/science.1072104 749:Gene regulatory network 604:mobile genetic elements 589:Mobile genetic elements 580:Repeated sequence (DNA) 4252:Helper dependent virus 3568:Biological dark matter 3070:10.1186/1746-4811-9-29 2242:Xu J, Zhang J (2015). 1946:10.1101/gad.285114.116 1495:Nucleic Acids Research 1415:Kampourakis K (2017). 1005:10.1098/rstb.2014.0331 993:Phil. Trans. R. Soc. B 722:linkage disequilibrium 592: 492: 451:origins of replication 439:Origins of replication 400: 294:short interfering RNAs 4012:Endogenous retrovirus 3985:Origin of replication 3701:ssDNA satellite virus 3691:ssRNA satellite virus 3132:10.1056/NEJMra0905980 2981:10.1353/pbm.2014.0008 2310:10.4161/rna.9.1.18277 2260:10.1093/molbev/msv268 2104:10.3390/genes10050352 1983:Frontiers in Genetics 1752:10.1101/gr.135350.111 1417:Making sense of genes 759:Intragenomic conflict 652:Highly repetitive DNA 630:reverse transcription 626:Endogenous retrovirus 587: 556:processed pseudogenes 474: 445:Origin of replication 390: 350:transcription factors 298:PIWI-interacting RNAs 240:Further information: 3956:Secondary chromosome 3951:Extrachromosomal DNA 3827:Transposable element 2818:10.3390/genes3040634 420:Untranslated regions 363:DNA-binding proteins 286:small nucleolar RNAs 78:regulatory sequences 4192:Model lipid bilayer 4034:Interspersed repeat 2562:2001Natur.409..860L 2179:Mistreli T (2020). 1703:10.1038/nature08451 1695:2009Natur.461..199V 1673:Visel A, Rubin EM, 1325:2017PNAS..114E4435L 1319:(22): E4435–E4441. 1257:10.1038/nature12132 1249:2013Natur.498...94I 1150:2002Sci...297.1301A 1144:(5585): 1301–1310. 426:Untranslated region 342:Regulatory elements 330:Promoter (genetics) 302:long noncoding RNAs 185:(formerly known as 112:, and fragments of 3502:organic structures 3402:Trends in Genetics 3258:Trends in Genetics 2670:10.1101/gr.5282906 2621:10.1101/gr.5290206 1883:F1000Prime Reports 1677:(September 2009). 1542:. pp. 16–25. 1507:10.1093/nar/gkf549 1106:10.1101/gr.9.4.317 999:(1678): 20140331. 858:BMC Research Notes 678:DNA fingerprinting 608:repeated sequences 606:. Retrotransposon 593: 493: 401: 282:small nuclear RNAs 259:two types of genes 4296: 4295: 4237:Non-cellular life 4044: 4043: 3783: 3782: 3756: 3755: 3710:ssRNA satellite ( 3347:978-0-12-301463-4 3332:. pp. 3–87. 3320:978-0-08-047052-8 2664:(10): 1252–1261. 2615:(10): 1262–1269. 2556:(6822): 860–921. 2401:(14): 1793–1800. 2150:10.1002/wrna.1220 1940:(15): 1683–1697. 1689:(7261): 199–205. 1557:978-0-12-800426-5 1501:(19): 4264–4271. 1426:978-1-107-12813-2 903:Omenn GS (2021). 754:Intergenic region 209:Utricularia gibba 18:Non-coding region 16:(Redirected from 4326: 3973:Gene duplication 3796: 3792:self-replication 3680: 3642: 3500:Self-replicating 3493: 3486: 3479: 3470: 3425: 3396: 3386: 3376: 3351: 3324: 3292: 3291: 3281: 3249: 3243: 3242: 3232: 3200: 3194: 3193: 3183: 3151: 3145: 3144: 3134: 3110: 3101: 3100: 3082: 3072: 3048: 3042: 3041: 3031: 3007: 3001: 3000: 2966: 2957: 2951: 2950: 2940: 2930: 2906: 2900: 2899: 2889: 2871: 2847: 2841: 2840: 2830: 2820: 2796: 2790: 2789: 2779: 2747: 2741: 2740: 2730: 2698: 2692: 2691: 2681: 2649: 2643: 2642: 2632: 2600: 2594: 2593: 2583: 2573: 2571:10.1038/35057062 2541: 2535: 2534: 2524: 2492: 2486: 2485: 2475: 2443: 2437: 2436: 2418: 2386: 2380: 2379: 2369: 2337: 2331: 2330: 2312: 2288: 2282: 2281: 2271: 2239: 2233: 2232: 2225: 2219: 2218: 2208: 2176: 2170: 2169: 2133: 2127: 2126: 2116: 2106: 2085:Miga KH (2019). 2082: 2076: 2075: 2057: 2025: 2019: 2018: 2008: 1998: 1974: 1968: 1967: 1957: 1925: 1919: 1918: 1908: 1898: 1874: 1868: 1867: 1857: 1825: 1819: 1818: 1810: 1804: 1803: 1798:Lewin B (2004). 1795: 1789: 1788: 1780: 1774: 1773: 1763: 1746:(9): 1760–1774. 1731: 1725: 1724: 1714: 1670: 1664: 1663: 1627: 1621: 1620: 1602: 1592: 1568: 1562: 1561: 1535: 1529: 1528: 1518: 1486: 1480: 1479: 1461: 1437: 1431: 1430: 1412: 1406: 1405: 1403: 1401: 1389: 1383: 1382: 1380: 1378: 1363: 1357: 1356: 1346: 1336: 1304: 1287: 1286: 1268: 1228: 1213: 1212: 1184: 1178: 1177: 1133: 1127: 1126: 1108: 1084: 1078: 1077: 1041: 1035: 1034: 1016: 984: 978: 977: 949: 943: 942: 932: 900: 894: 893: 883: 873: 849: 840: 839: 803: 610:, which include 600:retrotransposons 182:Polychaos dubium 56:molecules (e.g. 52:into functional 21: 4334: 4333: 4329: 4328: 4327: 4325: 4324: 4323: 4319:Gene expression 4299: 4298: 4297: 4292: 4242:Synthetic virus 4230:Artificial cell 4203: 4131: 4040: 3929:RNA replication 3924:DNA replication 3912: 3903:Group II intron 3801: 3791: 3779: 3770:Mammalian prion 3752: 3728: 3707:dsRNA satellite 3704:ssDNA satellite 3674: 3667: 3636: 3629: 3574: 3503: 3497: 3433: 3428: 3408:(10): 533–536. 3399: 3354: 3348: 3327: 3321: 3304: 3300: 3298:Further reading 3295: 3251: 3250: 3246: 3202: 3201: 3197: 3153: 3152: 3148: 3112: 3111: 3104: 3050: 3049: 3045: 3009: 3008: 3004: 2964: 2959: 2958: 2954: 2921:(5): e1004351. 2908: 2907: 2903: 2849: 2848: 2844: 2798: 2797: 2793: 2749: 2748: 2744: 2719:10.1038/ng.3461 2707:Nature Genetics 2700: 2699: 2695: 2658:Genome Research 2651: 2650: 2646: 2609:Genome Research 2602: 2601: 2597: 2543: 2542: 2538: 2494: 2493: 2489: 2464:10.1002/iub.227 2445: 2444: 2440: 2388: 2387: 2383: 2339: 2338: 2334: 2290: 2289: 2285: 2241: 2240: 2236: 2227: 2226: 2222: 2178: 2177: 2173: 2135: 2134: 2130: 2084: 2083: 2079: 2027: 2026: 2022: 1976: 1975: 1971: 1927: 1926: 1922: 1876: 1875: 1871: 1840:(10): a010116. 1827: 1826: 1822: 1812: 1811: 1807: 1797: 1796: 1792: 1782: 1781: 1777: 1740:Genome Research 1733: 1732: 1728: 1672: 1671: 1667: 1629: 1628: 1624: 1570: 1569: 1565: 1558: 1537: 1536: 1532: 1488: 1487: 1483: 1439: 1438: 1434: 1427: 1414: 1413: 1409: 1399: 1397: 1391: 1390: 1386: 1376: 1374: 1365: 1364: 1360: 1306: 1305: 1290: 1243:(7452): 94–98. 1230: 1229: 1216: 1186: 1185: 1181: 1135: 1134: 1130: 1093:Genome Research 1086: 1085: 1081: 1043: 1042: 1038: 986: 985: 981: 951: 950: 946: 902: 901: 897: 851: 850: 843: 805: 804: 797: 793: 730: 708: 692: 686: 670:microsatellites 654: 646:DNA transposons 582: 576: 552: 546: 534: 528: 516:DNA replication 508: 502: 469: 463: 447: 441: 428: 422: 385: 379: 332: 326: 263:noncoding genes 255: 249: 247:Noncoding genes 244: 238: 177:G-value Paradox 165:C-value Paradox 130: 82:gene expression 74:regulatory RNAs 28: 23: 22: 15: 12: 11: 5: 4332: 4330: 4322: 4321: 4316: 4314:Non-coding DNA 4311: 4301: 4300: 4294: 4293: 4291: 4290: 4285: 4284: 4283: 4278: 4268: 4262: 4256: 4255: 4254: 4249: 4239: 4234: 4233: 4232: 4227: 4217: 4211: 4209: 4205: 4204: 4202: 4201: 4200: 4199: 4194: 4186: 4181: 4176: 4171: 4165: 4164: 4163: 4152: 4147: 4141: 4139: 4133: 4132: 4130: 4129: 4124: 4123: 4122: 4117: 4109: 4107:Kappa organism 4104: 4103: 4102: 4097: 4092: 4087: 4082: 4072: 4071: 4070: 4065: 4054: 4052: 4046: 4045: 4042: 4041: 4039: 4038: 4037: 4036: 4031: 4021: 4020: 4019: 4014: 4009: 4004: 3994: 3993: 3992: 3982: 3981: 3980: 3978:Non-coding DNA 3975: 3970: 3960: 3959: 3958: 3953: 3948: 3943: 3933: 3932: 3931: 3920: 3918: 3914: 3913: 3911: 3910: 3905: 3900: 3898:Group I intron 3895: 3890: 3889: 3888: 3878: 3877: 3876: 3873: 3864: 3861: 3856: 3851: 3841: 3840: 3839: 3834: 3824: 3823: 3822: 3820:Genomic island 3817: 3806: 3804: 3800:Mobile genetic 3793: 3785: 3784: 3781: 3780: 3778: 3777: 3772: 3766: 3764: 3758: 3757: 3754: 3753: 3751: 3750: 3749: 3748: 3745: 3736: 3734: 3730: 3729: 3727: 3726: 3725: 3724: 3721: 3715: 3708: 3705: 3702: 3699: 3692: 3688: 3686: 3677: 3669: 3668: 3666: 3665: 3658: 3650: 3648: 3639: 3631: 3630: 3628: 3627: 3625:dsDNA-RT virus 3622: 3620:ssRNA-RT virus 3617: 3615:(βˆ’)ssRNA virus 3612: 3610:(+)ssRNA virus 3607: 3602: 3597: 3596: 3595: 3584: 3582: 3576: 3575: 3573: 3572: 3571: 3570: 3565: 3555:Incertae sedis 3551: 3550: 3549: 3544: 3539: 3534: 3524: 3519: 3513: 3511: 3505: 3504: 3498: 3496: 3495: 3488: 3481: 3473: 3467: 3466: 3452: 3443: 3432: 3431:External links 3429: 3427: 3426: 3397: 3361:Genome Biology 3352: 3346: 3325: 3319: 3301: 3299: 3296: 3294: 3293: 3264:(7): 504–517. 3244: 3215:(5): 717–730. 3195: 3146: 3102: 3043: 3002: 2975:(1): 162–171. 2952: 2901: 2856:Biology Direct 2842: 2811:(4): 634–650. 2791: 2762:(6393): 1085. 2742: 2693: 2644: 2595: 2536: 2487: 2458:(8): 831–837. 2438: 2381: 2352:(2): 149–155. 2332: 2283: 2254:(3): 755–760. 2234: 2220: 2171: 2144:(3): 407–419. 2128: 2077: 2020: 1969: 1920: 1896:10.12703/P7-30 1869: 1820: 1805: 1790: 1775: 1726: 1665: 1622: 1563: 1556: 1530: 1481: 1432: 1425: 1407: 1384: 1372:New York Times 1358: 1288: 1214: 1179: 1128: 1099:(4): 317–324. 1079: 1036: 979: 944: 895: 841: 794: 792: 789: 788: 787: 781: 776: 774:Non-coding RNA 771: 766: 761: 756: 751: 746: 741: 736: 729: 726: 707: 704: 688:Main article: 685: 682: 653: 650: 578:Main article: 575: 572: 548:Main article: 545: 542: 530:Main article: 527: 524: 504:Main article: 501: 498: 465:Main article: 462: 459: 443:Main article: 440: 437: 424:Main article: 421: 418: 381:Main article: 378: 375: 336:RNA polymerase 328:Main article: 325: 322: 318:Non-coding RNA 306:catalytic RNAs 300:(piRNAs), and 253:Non-coding RNA 248: 245: 237: 234: 218:nuclear genome 191:pairs of bases 138:coding regions 129: 126: 110:intergenic DNA 54:non-coding RNA 31:Non-coding DNA 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4331: 4320: 4317: 4315: 4312: 4310: 4307: 4306: 4304: 4289: 4286: 4282: 4279: 4277: 4274: 4273: 4272: 4269: 4267: 4263: 4261: 4260:Nanobacterium 4257: 4253: 4250: 4248: 4245: 4244: 4243: 4240: 4238: 4235: 4231: 4228: 4226: 4225:Cell division 4223: 4222: 4221: 4218: 4216: 4213: 4212: 4210: 4206: 4198: 4195: 4193: 4190: 4189: 4187: 4185: 4182: 4180: 4177: 4175: 4172: 4170: 4166: 4162: 4159: 4158: 4157: 4153: 4151: 4148: 4146: 4143: 4142: 4140: 4138: 4134: 4128: 4125: 4121: 4118: 4116: 4113: 4112: 4110: 4108: 4105: 4101: 4098: 4096: 4093: 4091: 4088: 4086: 4083: 4081: 4078: 4077: 4076: 4073: 4069: 4068:Hydrogenosome 4066: 4064: 4061: 4060: 4059: 4058:Mitochondrion 4056: 4055: 4053: 4051: 4050:Endosymbiosis 4047: 4035: 4032: 4030: 4029:Tandem repeat 4027: 4026: 4025: 4022: 4018: 4015: 4013: 4010: 4008: 4005: 4003: 4000: 3999: 3998: 3995: 3991: 3988: 3987: 3986: 3983: 3979: 3976: 3974: 3971: 3969: 3966: 3965: 3964: 3961: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3938: 3937: 3934: 3930: 3927: 3926: 3925: 3922: 3921: 3919: 3917:Other aspects 3915: 3909: 3906: 3904: 3901: 3899: 3896: 3894: 3891: 3887: 3884: 3883: 3882: 3879: 3874: 3872: 3868: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3846: 3845: 3842: 3838: 3835: 3833: 3830: 3829: 3828: 3825: 3821: 3818: 3816: 3813: 3812: 3811: 3808: 3807: 3805: 3803: 3797: 3794: 3790: 3786: 3776: 3773: 3771: 3768: 3767: 3765: 3763: 3759: 3746: 3743: 3742: 3741: 3738: 3737: 3735: 3731: 3722: 3719: 3718: 3716: 3713: 3709: 3706: 3703: 3700: 3697: 3693: 3690: 3689: 3687: 3685: 3681: 3678: 3676: 3670: 3664: 3663: 3662:Avsunviroidae 3659: 3657: 3656: 3655:Pospiviroidae 3652: 3651: 3649: 3647: 3643: 3640: 3638: 3632: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3594: 3591: 3590: 3589: 3586: 3585: 3583: 3581: 3577: 3569: 3566: 3564: 3563: 3559: 3558: 3557: 3556: 3552: 3548: 3545: 3543: 3540: 3538: 3535: 3533: 3530: 3529: 3528: 3525: 3523: 3520: 3518: 3515: 3514: 3512: 3510: 3509:Cellular life 3506: 3501: 3494: 3489: 3487: 3482: 3480: 3475: 3474: 3471: 3465: 3462: 3461: 3456: 3453: 3451: 3447: 3444: 3442: 3438: 3435: 3434: 3430: 3423: 3419: 3415: 3411: 3407: 3403: 3398: 3394: 3390: 3385: 3380: 3375: 3370: 3366: 3362: 3358: 3353: 3349: 3343: 3339: 3335: 3331: 3326: 3322: 3316: 3312: 3308: 3303: 3302: 3297: 3289: 3285: 3280: 3275: 3271: 3267: 3263: 3259: 3255: 3248: 3245: 3240: 3236: 3231: 3226: 3222: 3218: 3214: 3210: 3206: 3199: 3196: 3191: 3187: 3182: 3177: 3173: 3169: 3165: 3161: 3157: 3150: 3147: 3142: 3138: 3133: 3128: 3125:(2): 166–76. 3124: 3120: 3116: 3109: 3107: 3103: 3098: 3094: 3090: 3086: 3081: 3076: 3071: 3066: 3062: 3058: 3057:Plant Methods 3054: 3047: 3044: 3039: 3035: 3030: 3025: 3021: 3017: 3013: 3006: 3003: 2998: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2963: 2956: 2953: 2948: 2944: 2939: 2934: 2929: 2924: 2920: 2916: 2915:PLOS Genetics 2912: 2905: 2902: 2897: 2893: 2888: 2883: 2879: 2875: 2870: 2865: 2861: 2857: 2853: 2846: 2843: 2838: 2834: 2829: 2824: 2819: 2814: 2810: 2806: 2802: 2795: 2792: 2787: 2783: 2778: 2773: 2769: 2765: 2761: 2757: 2753: 2746: 2743: 2738: 2734: 2729: 2724: 2720: 2716: 2712: 2708: 2704: 2697: 2694: 2689: 2685: 2680: 2675: 2671: 2667: 2663: 2659: 2655: 2648: 2645: 2640: 2636: 2631: 2626: 2622: 2618: 2614: 2610: 2606: 2599: 2596: 2591: 2587: 2582: 2581:2027.42/62798 2577: 2572: 2567: 2563: 2559: 2555: 2551: 2547: 2540: 2537: 2532: 2528: 2523: 2518: 2514: 2510: 2506: 2502: 2498: 2491: 2488: 2483: 2479: 2474: 2469: 2465: 2461: 2457: 2453: 2449: 2442: 2439: 2434: 2430: 2426: 2422: 2417: 2412: 2408: 2404: 2400: 2396: 2392: 2385: 2382: 2377: 2373: 2368: 2363: 2359: 2355: 2351: 2347: 2343: 2336: 2333: 2328: 2324: 2320: 2316: 2311: 2306: 2302: 2298: 2294: 2287: 2284: 2279: 2275: 2270: 2265: 2261: 2257: 2253: 2249: 2245: 2238: 2235: 2230: 2224: 2221: 2216: 2212: 2207: 2202: 2198: 2194: 2190: 2186: 2182: 2175: 2172: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2132: 2129: 2124: 2120: 2115: 2110: 2105: 2100: 2096: 2092: 2088: 2081: 2078: 2073: 2069: 2065: 2061: 2056: 2051: 2047: 2043: 2039: 2035: 2031: 2024: 2021: 2016: 2012: 2007: 2002: 1997: 1992: 1988: 1984: 1980: 1973: 1970: 1965: 1961: 1956: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1921: 1916: 1912: 1907: 1902: 1897: 1892: 1888: 1884: 1880: 1873: 1870: 1865: 1861: 1856: 1851: 1847: 1843: 1839: 1835: 1831: 1824: 1821: 1816: 1809: 1806: 1801: 1794: 1791: 1786: 1779: 1776: 1771: 1767: 1762: 1757: 1753: 1749: 1745: 1741: 1737: 1730: 1727: 1722: 1718: 1713: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1675:Pennacchio LA 1669: 1666: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1633: 1626: 1623: 1618: 1614: 1610: 1606: 1601: 1596: 1591: 1586: 1582: 1578: 1574: 1567: 1564: 1559: 1553: 1549: 1545: 1541: 1534: 1531: 1526: 1522: 1517: 1512: 1508: 1504: 1500: 1496: 1492: 1485: 1482: 1477: 1473: 1469: 1465: 1460: 1455: 1451: 1447: 1443: 1436: 1433: 1428: 1422: 1418: 1411: 1408: 1395: 1388: 1385: 1373: 1369: 1362: 1359: 1354: 1350: 1345: 1340: 1335: 1330: 1326: 1322: 1318: 1314: 1310: 1303: 1301: 1299: 1297: 1295: 1293: 1289: 1284: 1280: 1276: 1272: 1267: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1227: 1225: 1223: 1221: 1219: 1215: 1210: 1206: 1202: 1198: 1194: 1190: 1183: 1180: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1132: 1129: 1124: 1120: 1116: 1112: 1107: 1102: 1098: 1094: 1090: 1083: 1080: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1028: 1024: 1020: 1015: 1010: 1006: 1002: 998: 994: 990: 983: 980: 975: 971: 967: 963: 959: 955: 948: 945: 940: 936: 931: 926: 922: 918: 914: 910: 906: 899: 896: 891: 887: 882: 877: 872: 867: 863: 859: 855: 848: 846: 842: 837: 833: 829: 825: 821: 817: 813: 809: 802: 800: 796: 790: 786: 782: 780: 777: 775: 772: 770: 769:Transcriptome 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 731: 727: 725: 723: 718: 716: 712: 705: 703: 701: 696: 691: 683: 681: 679: 673: 671: 665: 663: 662:satellite DNA 659: 651: 649: 647: 641: 639: 635: 631: 627: 623: 621: 620:Alu sequences 617: 613: 609: 605: 601: 597: 590: 586: 581: 573: 571: 567: 563: 561: 557: 551: 543: 541: 539: 533: 525: 523: 521: 517: 513: 507: 499: 497: 490: 486: 482: 478: 473: 468: 460: 458: 454: 452: 446: 438: 436: 433: 427: 419: 417: 413: 410: 406: 405:precursor RNA 398: 394: 389: 384: 376: 374: 372: 366: 364: 358: 356: 355:bacteriophage 351: 347: 346:transcription 343: 339: 337: 331: 323: 321: 319: 313: 309: 307: 303: 299: 295: 291: 287: 283: 278: 276: 272: 271:ribosomal RNA 268: 264: 260: 254: 246: 243: 235: 233: 229: 226: 221: 219: 215: 211: 210: 205: 202: 200: 196: 192: 188: 184: 183: 178: 173: 171: 166: 162: 158: 155: 151: 147: 143: 139: 135: 127: 125: 123: 119: 115: 111: 107: 103: 99: 95: 91: 87: 83: 80:that control 79: 75: 71: 70:ribosomal RNA 67: 63: 59: 55: 51: 47: 44: 40: 36: 32: 19: 4247:Viral vector 4090:Gerontoplast 4017:Transpoviron 3977: 3789:Nucleic acid 3775:Fungal prion 3673:Helper-virus 3660: 3653: 3560: 3553: 3458: 3405: 3401: 3364: 3360: 3329: 3310: 3261: 3257: 3247: 3212: 3208: 3198: 3163: 3159: 3149: 3122: 3118: 3060: 3056: 3046: 3019: 3015: 3005: 2972: 2968: 2955: 2918: 2914: 2904: 2859: 2855: 2845: 2808: 2804: 2794: 2759: 2755: 2745: 2713:(1): 22–29. 2710: 2706: 2696: 2661: 2657: 2647: 2612: 2608: 2598: 2553: 2549: 2539: 2504: 2500: 2490: 2455: 2451: 2441: 2398: 2394: 2384: 2349: 2345: 2335: 2303:(1): 27–32. 2300: 2296: 2286: 2251: 2247: 2237: 2223: 2191:(1): 28–45. 2188: 2184: 2174: 2141: 2137: 2131: 2094: 2090: 2080: 2040:(6588): 56. 2037: 2033: 2023: 1986: 1982: 1972: 1937: 1933: 1923: 1886: 1882: 1872: 1837: 1833: 1823: 1814: 1808: 1799: 1793: 1784: 1778: 1743: 1739: 1729: 1686: 1682: 1668: 1635: 1631: 1625: 1580: 1576: 1566: 1539: 1533: 1498: 1494: 1484: 1452:(1): 77–94. 1449: 1445: 1435: 1416: 1410: 1398:. Retrieved 1387: 1375:. Retrieved 1371: 1361: 1316: 1312: 1240: 1236: 1192: 1188: 1182: 1141: 1137: 1131: 1096: 1092: 1082: 1052:(2): 73–75. 1049: 1045: 1039: 996: 992: 982: 957: 953: 947: 912: 908: 898: 861: 857: 811: 807: 719: 709: 697: 693: 674: 666: 655: 642: 624: 614:(LINEs) and 594: 568: 564: 553: 535: 509: 494: 481:human genome 455: 448: 429: 414: 409:RNA splicing 402: 367: 359: 340: 333: 314: 310: 288:(sno RNAs), 279: 267:transfer RNA 256: 230: 222: 207: 206: 197: 187:Amoeba dubia 186: 180: 174: 159: 150:human genome 131: 58:transfer RNA 41:that do not 34: 30: 29: 4271:Cancer cell 4137:Abiogenesis 4085:Chromoplast 4080:Chloroplast 3863:Degradative 3605:dsRNA virus 3600:ssDNA virus 3593:Giant virus 3588:dsDNA virus 3166:(1): 5–22. 2297:RNA Biology 1638:: 193–219. 1583:: 153–172. 1195:: 366–370. 960:: 237–256. 814:: 815–834. 779:Gene desert 596:Transposons 544:Pseudogenes 461:Centromeres 432:nucleotides 275:Prokaryotic 214:bladderwort 161:Genome size 114:transposons 106:pseudogenes 94:centromeres 50:transcribed 4303:Categories 4179:Proteinoid 4174:Coacervate 4127:Nitroplast 4120:Trophosome 4115:Bacteriome 4100:Apicoplast 4095:Leucoplast 3936:Chromosome 3854:Resistance 3562:Parakaryon 3367:(4): 105. 2507:(1): 1–9. 2452:IUBMB Life 2097:(5): 353. 1800:Genes VIII 915:: 100062. 864:(1): 315. 791:References 785:Onion Test 638:germ cells 634:retrovirus 550:Pseudogene 512:chromosome 491:) regions. 475:Schematic 467:Centromere 296:(siRNAs), 292:(miRNAs), 284:(snRNAs), 257:There are 251:See also: 195:pufferfish 146:eukaryotes 4188:Research 4169:Protocell 3908:Retrozyme 3867:Virulence 3849:Fertility 3696:Virophage 3684:Satellite 3675:dependent 3527:Eukaryota 3097:206976469 3022:: 71–92. 2878:1745-6150 2862:(1): 26. 2072:247853627 1660:235595550 1617:248049706 1201:101819442 836:220699395 500:Telomeres 485:G banding 477:karyogram 371:enhancers 290:microRNAs 225:promoters 98:telomeres 4215:Organism 4208:See also 4184:Sulphobe 4161:Ribozyme 4156:RNA life 4063:Mitosome 4007:Prophage 4002:Provirus 3990:Replicon 3946:Circular 3893:Phagemid 3810:Mobilome 3802:elements 3712:Virusoid 3635:Subviral 3547:Protista 3532:Animalia 3517:Bacteria 3422:16098630 3393:15059247 3288:29716745 3239:29727686 3190:28686856 3141:20647212 3089:23876160 3038:24773316 2997:27613442 2989:25345709 2947:24809441 2896:27209091 2837:24705080 2786:29880660 2737:26642241 2688:16954538 2639:16963705 2590:11237011 2531:15373898 2482:19621349 2425:17514354 2416:11136058 2376:20176473 2327:13161678 2319:22258143 2278:26589994 2215:32976797 2166:36918311 2158:24523222 2123:31072070 2064:35357911 2015:28261263 1964:27542827 1915:25926981 1864:23838439 1770:22955987 1721:19741700 1652:34153211 1609:35395170 1525:12364605 1476:14852160 1468:24679528 1353:28507139 1283:18219754 1275:23665961 1174:10310355 1166:12142439 1123:16791399 1115:10207154 1066:12004964 1031:12095046 1023:26323762 974:16097657 939:33640492 890:31164174 828:32692614 728:See also 690:Junk DNA 684:Junk DNA 506:Telomere 395:and six 201:rubripes 199:Takifugu 170:junk DNA 134:bacteria 122:junk DNA 62:microRNA 4197:Jeewanu 4111:Organs 4075:Plastid 3875:Cryptic 3844:Plasmid 3542:Plantae 3522:Archaea 3279:6003860 3230:5986732 3181:5501872 3080:3750305 2938:4014423 2887:4875738 2828:3899985 2777:6178954 2756:Science 2728:4909355 2679:1581434 2630:1581435 2558:Bibcode 2522:1809191 2473:4049031 2433:5938630 2367:2859989 2269:5009996 2206:7541718 2114:6562703 2055:9233505 2034:Science 2006:5309256 1955:5002974 1906:4371235 1855:3783049 1761:3431492 1712:2923221 1691:Bibcode 1400:May 29, 1377:May 30, 1344:5465930 1321:Bibcode 1266:4972453 1245:Bibcode 1209:5065367 1146:Bibcode 1138:Science 1074:2810069 1014:4571570 930:8058560 881:6549324 700:introns 489:GC poor 393:introns 377:Introns 118:viruses 102:introns 46:protein 4288:Virome 4266:Nanobe 3963:Genome 3941:Linear 3886:Fosmid 3881:Cosmid 3646:Viroid 3637:agents 3464:ENCODE 3460:Nature 3420:  3391:  3384:395773 3381:  3344:  3317:  3286:  3276:  3237:  3227:  3188:  3178:  3139:  3095:  3087:  3077:  3063:: 29. 3036:  2995:  2987:  2945:  2935:  2894:  2884:  2876:  2835:  2825:  2784:  2774:  2735:  2725:  2686:  2676:  2637:  2627:  2588:  2550:Nature 2529:  2519:  2480:  2470:  2431:  2423:  2413:  2374:  2364:  2325:  2317:  2276:  2266:  2213:  2203:  2164:  2156:  2121:  2111:  2070:  2062:  2052:  2013:  2003:  1989:: 16. 1962:  1952:  1913:  1903:  1889:: 30. 1862:  1852:  1768:  1758:  1719:  1709:  1683:Nature 1658:  1650:  1615:  1607:  1554:  1523:  1516:140549 1513:  1474:  1466:  1423:  1351:  1341:  1281:  1273:  1263:  1237:Nature 1207:  1199:  1172:  1164:  1121:  1113:  1072:  1064:  1029:  1021:  1011:  972:  937:  927:  888:  878:  834:  826:  658:tandem 383:Intron 136:, the 96:; and 72:, and 43:encode 3762:Prion 3733:Other 3580:Virus 3537:Fungi 3093:S2CID 2993:S2CID 2965:(PDF) 2805:Genes 2429:S2CID 2323:S2CID 2162:S2CID 2091:Genes 2068:S2CID 1656:S2CID 1613:S2CID 1472:S2CID 1279:S2CID 1170:S2CID 1119:S2CID 1070:S2CID 1027:S2CID 832:S2CID 397:exons 154:exons 142:genes 66:piRNA 35:ncDNA 4276:HeLa 4220:Cell 3968:Gene 3418:PMID 3389:PMID 3342:ISBN 3315:ISBN 3284:PMID 3235:PMID 3186:PMID 3137:PMID 3085:PMID 3034:PMID 2985:PMID 2943:PMID 2892:PMID 2874:ISSN 2833:PMID 2782:PMID 2733:PMID 2684:PMID 2635:PMID 2586:PMID 2527:PMID 2478:PMID 2421:PMID 2372:PMID 2315:PMID 2274:PMID 2211:PMID 2185:Cell 2154:PMID 2119:PMID 2060:PMID 2011:PMID 1960:PMID 1911:PMID 1860:PMID 1766:PMID 1717:PMID 1648:PMID 1605:PMID 1552:ISBN 1521:PMID 1464:PMID 1446:Cell 1421:ISBN 1402:2022 1379:2022 1349:PMID 1271:PMID 1205:PMID 1197:OCLC 1162:PMID 1111:PMID 1062:PMID 1019:PMID 970:PMID 935:PMID 886:PMID 824:PMID 783:The 602:are 598:and 269:and 212:, a 116:and 4309:DNA 3859:Col 3747:DNA 3744:RNA 3723:DNA 3720:RNA 3457:at 3448:at 3439:at 3410:doi 3379:PMC 3369:doi 3334:doi 3274:PMC 3266:doi 3225:PMC 3217:doi 3213:102 3176:PMC 3168:doi 3164:101 3127:doi 3123:363 3075:PMC 3065:doi 3024:doi 2977:doi 2933:PMC 2923:doi 2882:PMC 2864:doi 2823:PMC 2813:doi 2772:PMC 2764:doi 2760:360 2723:PMC 2715:doi 2674:PMC 2666:doi 2625:PMC 2617:doi 2576:hdl 2566:doi 2554:409 2517:PMC 2509:doi 2505:138 2468:PMC 2460:doi 2411:PMC 2403:doi 2362:PMC 2354:doi 2305:doi 2264:PMC 2256:doi 2201:PMC 2193:doi 2189:183 2146:doi 2109:PMC 2099:doi 2050:PMC 2042:doi 2038:376 2001:PMC 1991:doi 1950:PMC 1942:doi 1901:PMC 1891:doi 1850:PMC 1842:doi 1756:PMC 1748:doi 1707:PMC 1699:doi 1687:461 1640:doi 1595:hdl 1585:doi 1544:doi 1511:PMC 1503:doi 1454:doi 1450:157 1339:PMC 1329:doi 1317:114 1261:PMC 1253:doi 1241:498 1154:doi 1142:297 1101:doi 1054:doi 1009:PMC 1001:doi 997:370 962:doi 925:PMC 917:doi 876:PMC 866:doi 816:doi 632:of 562:). 483:on 132:In 39:DNA 4305:: 3871:Ti 3416:. 3406:21 3404:. 3387:. 3377:. 3363:. 3359:. 3340:. 3282:. 3272:. 3262:34 3260:. 3256:. 3233:. 3223:. 3211:. 3207:. 3184:. 3174:. 3162:. 3158:. 3135:. 3121:. 3117:. 3105:^ 3091:. 3083:. 3073:. 3059:. 3055:. 3032:. 3020:25 3018:. 3014:. 2991:. 2983:. 2973:57 2971:. 2967:. 2941:. 2931:. 2919:10 2917:. 2913:. 2890:. 2880:. 2872:. 2860:11 2858:. 2854:. 2831:. 2821:. 2807:. 2803:. 2780:. 2770:. 2758:. 2754:. 2731:. 2721:. 2711:48 2709:. 2705:. 2682:. 2672:. 2662:16 2660:. 2656:. 2633:. 2623:. 2613:16 2611:. 2607:. 2584:. 2574:. 2564:. 2552:. 2548:. 2525:. 2515:. 2503:. 2499:. 2476:. 2466:. 2456:61 2454:. 2450:. 2427:. 2419:. 2409:. 2399:64 2393:. 2370:. 2360:. 2350:20 2348:. 2344:. 2321:. 2313:. 2299:. 2295:. 2272:. 2262:. 2252:33 2250:. 2246:. 2209:. 2199:. 2187:. 2183:. 2160:. 2152:. 2140:. 2117:. 2107:. 2095:10 2093:. 2089:. 2066:. 2058:. 2048:. 2036:. 2032:. 2009:. 1999:. 1985:. 1981:. 1958:. 1948:. 1938:30 1936:. 1932:. 1909:. 1899:. 1885:. 1881:. 1858:. 1848:. 1836:. 1832:. 1764:. 1754:. 1744:22 1742:. 1738:. 1715:. 1705:. 1697:. 1685:. 1681:. 1654:. 1646:. 1636:90 1634:. 1611:. 1603:. 1593:. 1581:23 1579:. 1575:. 1550:. 1519:. 1509:. 1499:30 1497:. 1493:. 1470:. 1462:. 1448:. 1444:. 1370:. 1347:. 1337:. 1327:. 1315:. 1311:. 1291:^ 1277:. 1269:. 1259:. 1251:. 1239:. 1235:. 1217:^ 1203:. 1193:23 1191:. 1168:. 1160:. 1152:. 1140:. 1117:. 1109:. 1095:. 1091:. 1068:. 1060:. 1048:. 1025:. 1017:. 1007:. 995:. 991:. 968:. 956:. 933:. 923:. 913:20 911:. 907:. 884:. 874:. 862:12 860:. 856:. 844:^ 830:. 822:. 812:74 810:. 798:^ 680:. 664:. 357:. 308:. 124:. 108:, 104:, 92:; 88:; 84:; 68:, 64:, 60:, 4264:? 4258:? 4167:† 4154:? 3869:/ 3714:) 3698:) 3492:e 3485:t 3478:v 3424:. 3412:: 3395:. 3371:: 3365:5 3350:. 3336:: 3323:. 3290:. 3268:: 3241:. 3219:: 3192:. 3170:: 3143:. 3129:: 3099:. 3067:: 3061:9 3040:. 3026:: 2999:. 2979:: 2949:. 2925:: 2898:. 2866:: 2839:. 2815:: 2809:3 2788:. 2766:: 2739:. 2717:: 2690:. 2668:: 2641:. 2619:: 2592:. 2578:: 2568:: 2560:: 2533:. 2511:: 2484:. 2462:: 2435:. 2405:: 2378:. 2356:: 2329:. 2307:: 2301:9 2280:. 2258:: 2231:. 2217:. 2195:: 2168:. 2148:: 2142:5 2125:. 2101:: 2074:. 2044:: 2017:. 1993:: 1987:8 1966:. 1944:: 1917:. 1893:: 1887:7 1866:. 1844:: 1838:5 1772:. 1750:: 1723:. 1701:: 1693:: 1662:. 1642:: 1619:. 1597:: 1587:: 1560:. 1546:: 1527:. 1505:: 1478:. 1456:: 1429:. 1404:. 1381:. 1355:. 1331:: 1323:: 1285:. 1255:: 1247:: 1211:. 1176:. 1156:: 1148:: 1125:. 1103:: 1097:9 1076:. 1056:: 1050:4 1033:. 1003:: 976:. 964:: 958:5 941:. 919:: 892:. 868:: 838:. 818:: 33:( 20:)

Index

Non-coding region
DNA
encode
protein
transcribed
non-coding RNA
transfer RNA
microRNA
piRNA
ribosomal RNA
regulatory RNAs
regulatory sequences
gene expression
scaffold attachment regions
origins of DNA replication
centromeres
telomeres
introns
pseudogenes
intergenic DNA
transposons
viruses
junk DNA
bacteria
coding regions
genes
eukaryotes
human genome
exons
Genome size

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑