Knowledge

Dynamical system

Source 📝

50: 6677: 5032: 6669: 107: 3953:) = 0); or the patches may become smaller and smaller as some point is approached. The more subtle reason is a global constraint, where the trajectory starts out in a patch, and after visiting a series of other patches comes back to the original one. If the next time the orbit loops around phase space in a different way, then it is impossible to rectify the vector field in the whole series of patches. 3703: 4292:. At the bifurcation point the structure may change its stability, split into new structures, or merge with other structures. By using Taylor series approximations of the maps and an understanding of the differences that may be eliminated by a change of coordinates, it is possible to catalog the bifurcations of dynamical systems. 3695: â‰  0 will change exponentially in most cases, either converging exponentially fast towards a point, or diverging exponentially fast. Linear systems display sensitive dependence on initial conditions in the case of divergence. For nonlinear systems this is one of the (necessary but not sufficient) conditions for 3133: 2582:) shows that for a large class of systems it is always possible to construct a measure so as to make the evolution rule of the dynamical system a measure-preserving transformation. In the construction a given measure of the state space is summed for all future points of a trajectory, assuring the invariance. 4373:
In many dynamical systems, it is possible to choose the coordinates of the system so that the volume (really a Μ-dimensional volume) in phase space is invariant. This happens for mechanical systems derived from Newton's laws as long as the coordinates are the position and the momentum and the volume
2577:
The measure theoretical definition assumes the existence of a measure-preserving transformation. Many different invariant measures can be associated to any one evolution rule. If the dynamical system is given by a system of differential equations the appropriate measure must be determined. This makes
4756:
For non-linear autonomous ODEs it is possible under some conditions to develop solutions of finite duration, meaning here that in these solutions the system will reach the value zero at some time, called an ending time, and then stay there forever after. This can occur only when system trajectories
432:
as the founder of dynamical systems. PoincarĂ© published two now classical monographs, "New Methods of Celestial Mechanics" (1892–1899) and "Lectures on Celestial Mechanics" (1905–1910). In them, he successfully applied the results of their research to the problem of the motion of three bodies and
379:
The type of trajectory may be more important than one particular trajectory. Some trajectories may be periodic, whereas others may wander through many different states of the system. Applications often require enumerating these classes or maintaining the system within one class. Classifying all
3901:
is a loop in phase space and smooth deformations of the phase space cannot alter it being a loop. It is in the neighborhood of singular points and periodic orbits that the structure of a phase space of a dynamical system can be well understood. In the qualitative study of dynamical systems, the
363:
The systems studied may only be known approximately—the parameters of the system may not be known precisely or terms may be missing from the equations. The approximations used bring into question the validity or relevance of numerical solutions. To address these questions several notions of
4478:
In a Hamiltonian system, not all possible configurations of position and momentum can be reached from an initial condition. Because of energy conservation, only the states with the same energy as the initial condition are accessible. The states with the same energy form an energy shell Ω, a
2578:
it difficult to develop ergodic theory starting from differential equations, so it becomes convenient to have a dynamical systems-motivated definition within ergodic theory that side-steps the choice of measure and assumes the choice has been made. A simple construction (sometimes called the
4139:
This is known as the conjugation equation. Finding conditions for this equation to hold has been one of the major tasks of research in dynamical systems. Poincaré first approached it assuming all functions to be analytic and in the process discovered the non-resonant condition. If
355:, finding an orbit required sophisticated mathematical techniques and could be accomplished only for a small class of dynamical systems. Numerical methods implemented on electronic computing machines have simplified the task of determining the orbits of a dynamical system. 4645:
it becomes possible to classify the ergodic properties of ÎŠ. In using the Koopman approach of considering the action of the flow on an observable function, the finite-dimensional nonlinear problem involving Ί gets mapped into an infinite-dimensional linear problem
4716:
deals with the long-term qualitative behavior of dynamical systems. Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a
4757:
are not uniquely determined forwards and backwards in time by the dynamics, thus solutions of finite duration imply a form of "backwards-in-time unpredictability" closely related to the forwards-in-time unpredictability of chaos. This behavior cannot happen for
4544:
is a function that to each point of the phase space associates a number (say instantaneous pressure, or average height). The value of an observable can be computed at another time by using the evolution function φ. This introduces an operator
3017: 443:
developed many important approximation methods. His methods, which he developed in 1899, make it possible to define the stability of sets of ordinary differential equations. He created the modern theory of the stability of a dynamical system.
4964: 316:. There, as in other natural sciences and engineering disciplines, the evolution rule of dynamical systems is an implicit relation that gives the state of the system for only a short time into the future. (The relation is either a 3833:. The solutions for the map are no longer curves, but points that hop in the phase space. The orbits are organized in curves, or fibers, which are collections of points that map into themselves under the action of the map. 2695: 402:
The trajectories of the system may appear erratic, as if random. In these cases it may be necessary to compute averages using one very long trajectory or many different trajectories. The averages are well defined for
3961:
In general, in the neighborhood of a periodic orbit the rectification theorem cannot be used. Poincaré developed an approach that transforms the analysis near a periodic orbit to the analysis of a map. Pick a point
3197: 2991: 2563: 940: 358:
For simple dynamical systems, knowing the trajectory is often sufficient, but most dynamical systems are too complicated to be understood in terms of individual trajectories. The difficulties arise because:
248:
involving time derivatives". In order to make a prediction about the system's future behavior, an analytical solution of such equations or their integration over time through computer simulation is realized.
4854: 4462: 1810: 2751: 372:. The stability of the dynamical system implies that there is a class of models or initial conditions for which the trajectories would be equivalent. The operation for comparing orbits to establish their 1580: 2219:
Dynamical systems are usually defined over a single independent variable, thought of as time. A more general class of systems are defined over multiple independent variables and are therefore called
2479: 4134: 674: 2628:
is central to the theory of dynamical systems as seen in the previous sections: the basic reason for this fact is that the starting motivation of the theory was the study of time behavior of
7253: 4687:
systems, can exhibit strongly unpredictable behavior, which might seem to be random, despite the fact that they are fundamentally deterministic. This unpredictable behavior has been called
4636: 3663: 1423: 1365: 1013: 2414: 1080: 3937:
the dynamics of a point in a small patch is a straight line. The patch can sometimes be enlarged by stitching several patches together, and when this works out in the whole phase space
1151: 4471:, given a coordinate it is possible to derive the appropriate (generalized) momentum such that the associated volume is preserved by the flow. The volume is said to be computed by the 3559: 2786: 733: 4237:. Small changes in the vector field will only produce small changes in the Poincaré map and these small changes will reflect in small changes in the position of the eigenvalues of 3461: 1908: 1477: 771: 5096: 3786: 1679: 5438: 3128:{\displaystyle {\dot {\boldsymbol {x}}}-{\boldsymbol {v}}(t,{\boldsymbol {x}})=0\qquad \Leftrightarrow \qquad {\mathfrak {G}}\left(t,\Phi (t,{\boldsymbol {x}}_{0})\right)=0} 1976: 1940: 1858: 1834: 4266:
it is derived from) depends on a parameter Ό, the structure of the phase space will also depend on this parameter. Small changes may produce no qualitative changes in the
831: 1194: 4865: 328:.) To determine the state for all future times requires iterating the relation many times—each advancing time a small step. The iteration procedure is referred to as 5801: 4993: 4732:
has been known for years to involve complex—even chaotic—behavior. Chaos theory has been so surprising because chaos can be found within almost trivial systems. The
1725: 1237: 5061: 395:
where the qualitative behavior of the dynamical system changes. For example, it may go from having only periodic motions to apparently erratic behavior, as in the
5019: 6966: 4741: 3885:
The qualitative properties of dynamical systems do not change under a smooth change of coordinates (this is sometimes taken as a definition of qualitative): a
6796: 391:
The behavior of trajectories as a function of a parameter may be what is needed for an application. As a parameter is varied, the dynamical systems may have
5071: 2199:
is a set of functions from an integer lattice (again, with one or more dimensions) to a finite set, and Ί a (locally defined) evolution function. As such
3334:
Linear dynamical systems can be solved in terms of simple functions and the behavior of all orbits classified. In a linear system the phase space is the
520:
In the late 20th century the dynamical system perspective to partial differential equations started gaining popularity. Palestinian mechanical engineer
3902:
approach is to show that there is a change of coordinates (usually unspecified, but computable) that makes the dynamical system as simple as possible.
2646: 336:. If the system can be solved, then, given an initial point, it is possible to determine all its future positions, a collection of points known as a 4245: 2616:
of the dynamical system; they behave physically under small perturbations; and they explain many of the observed statistics of hyperbolic systems.
2569:
are studied. For continuous dynamical systems, the map Ί is understood to be a finite time evolution map and the construction is more complicated.
6676: 6436: 4665:. This idea has been generalized by Sinai, Bowen, and Ruelle (SRB) to a larger class of dynamical systems that includes dissipative systems. 4336:
on the unit circle. For a flow, it will occur when there are eigenvalues on the imaginary axis. For more information, see the main article on
2605:
and the invariant measures must be singular with respect to the Lebesgue measure. A small region of phase space shrinks under time evolution.
380:
possible trajectories has led to the qualitative study of dynamical systems, that is, properties that do not change under coordinate changes.
6227: 6208: 6186: 6162: 6131: 6112: 6080: 6058: 6018: 5999: 5980: 5942: 5923: 5904: 5874: 5853: 5825: 5785: 5762: 5740: 5710: 5649: 5607: 5474: 5450: 5346: 5318: 5160: 4225:
gives the conditions for the existence of a continuous function that maps the neighborhood of the fixed point of the map to the linear map
6629: 4472: 2586: 3141: 2935: 2609: 6576: 5462: 2304: 437:, which states that certain systems will, after a sufficiently long but finite time, return to a state very close to the initial state. 6909: 4513:
One of the questions raised by Boltzmann's work was the possible equality between time averages and space averages, what he called the
2517: 837: 6037: 5961: 4701:
perpendicular to an orbit can be decomposed into a combination of two parts: one with the points that converge towards the orbit (the
4277:
is reached. At this point the phase space changes qualitatively and the dynamical system is said to have gone through a bifurcation.
226: 6951: 6639: 4479:
sub-manifold of the phase space. The volume of the energy shell, computed using the Liouville measure, is preserved under evolution.
4388: 2268:. Although we lose the differential structure of the original system we can now use compactness arguments to analyze the new system ( 1769: 385: 7144: 5619: 5548: 5390: 2701: 498: 93: 71: 5382: 3945:. In most cases the patch cannot be extended to the entire phase space. There may be singular points in the vector field (where 2593:, chosen over other invariant measures, such as the measures supported on periodic orbits of the Hamiltonian system. For chaotic 452: 6826: 4774: 3926:
where the vector field becomes a series of parallel vectors of the same magnitude. This is known as the rectification theorem.
1510: 5076: 4765:. These solutions are non-Lipschitz functions at their ending times and cannot be analytical functions on the whole real line. 4762: 4733: 4021:. Not all these points will take the same amount of time to come back, but the times will be close to the time it takes  225:
of the dynamical system is a function that describes what future states follow from the current state. Often the function is
5241:
Gintautas, V.; et al. (2008). "Resonant forcing of select degrees of freedom of multidimensional chaotic map dynamics".
4160:
they will be resonant if one eigenvalue is an integer linear combination of two or more of the others. As terms of the form
3716: 2633: 1747: 495:
that jumpstarted significant research in dynamical systems. He also outlined a research program carried out by many others.
171: 6644: 6634: 4483: 2579: 1836:
is the domain for time – there are many choices, usually the reals or the integers, possibly restricted to be non-negative.
434: 4697:
are precisely defined dynamical systems that exhibit the properties ascribed to chaotic systems. In hyperbolic systems the
2427: 6104: 5809: 5591: 5086: 4193:
does not need to have any special symmetries, its eigenvalues will typically be complex numbers. When the eigenvalues of
3478:
the position vector. The solution to this system can be found by using the superposition principle (linearity). The case
3214: 2929:
The solution can be found using standard ODE techniques and is denoted as the evolution function already introduced above
6899: 6991: 6764: 5111: 3311: 3301: 3261: 1865: 4222: 4073: 629: 536:
systems. His pioneering work in applied nonlinear dynamics has been influential in the construction and maintenance of
6176: 4356: 2051: 229:, that is, for a given time interval only one future state follows from the current state. However, some systems are 6904: 433:
studied in detail the behavior of solutions (frequency, stability, asymptotic, and so on). These papers included the
6971: 6358: 4532:
and a series of other ergodic-like properties were introduced to capture the relevant aspects of physical systems.
7243: 6429: 4559: 3724: 3596: 3579: = 0, then the orbit remains there. For other initial conditions, the equation of motion is given by the 3362:) satisfy the differential equation for the vector field (but not necessarily the initial condition), then so will 3209:
Many of the concepts in dynamical systems can be extended to infinite-dimensional manifolds—those that are locally
2258: 1371: 1313: 948: 38: 2380: 1018: 7019: 5411: 4684: 4281: 3688:
it is possible to determine if an initial point will converge or diverge to the equilibrium point at the origin.
3246: 3236: 1085: 506: 3496: 6723: 6668: 6100: 3934: 3200: 2220: 253: 64: 58: 31: 5091: 2762: 685: 7248: 6884: 6649: 6556: 5813: 4344: 3343: 3329: 774: 502: 381: 186:
or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a
6364: 3404: 6924: 6536: 5416: 5037: 4210: 3251: 2597:
the choice of invariant measure is technically more challenging. The measure needs to be supported on the
621: 206: 178:
by allowing different choices of the space and how time is measured. Time can be measured by integers, by
131: 75: 4329:) computed at the bifurcation point. For a map, the bifurcation will occur when there are eigenvalues of 1883: 1434: 738: 7074: 6981: 6779: 6606: 6541: 6516: 6422: 6250: 4694: 4658: 4654: 4529: 4468: 3720: 3395: 3271: 3008: 2637: 2511:
The map Ί embodies the time evolution of the dynamical system. Thus, for discrete dynamical systems the
2358: 1755: 482: 448: 412: 408: 317: 245: 6836: 3733: 3286: 411:. Understanding the probabilistic aspects of dynamical systems has helped establish the foundations of 6352: 4031:
The intersection of the periodic orbit with the Poincaré section is a fixed point of the Poincaré map
1640: 7084: 6914: 6736: 6581: 5260: 5207: 5066: 4758: 3969:
in the orbit Îł and consider the points in phase space in that neighborhood that are perpendicular to
3874: 3291: 373: 369: 4181:
The results on the existence of a solution to the conjugation equation depend on the eigenvalues of
1957: 1921: 1839: 1815: 7044: 7001: 6986: 6831: 6784: 6769: 6754: 6654: 6586: 6561: 6546: 6531: 6392: 5046: 4653:
The Liouville measure restricted to the energy surface Ω is the basis for the averages computed in
4537: 4352: 3981: 3281: 3242: 3227: 2629: 2374: 2075: 2047: 1600: 325: 321: 313: 167: 6301: 4959:{\displaystyle y(t)={\frac {1}{4}}\left(1-{\frac {t}{2}}+\left|1-{\frac {t}{2}}\right|\right)^{2}} 795: 7222: 7089: 6919: 6806: 6801: 6693: 6571: 6473: 6379: 5795: 5595: 5519: 5334: 5276: 5250: 4657:. An average in time along a trajectory is equivalent to an average in space computed with the 4528:
The ergodic hypothesis turned out not to be the essential property needed for the development of
4514: 4337: 4257: 3580: 3387: 2594: 2590: 2088: 2003: 1167: 525: 474: 456: 440: 392: 365: 289: 244:
is described as a "particle or ensemble of particles whose state varies over time and thus obeys
151: 5633: 1746:
More commonly there are two classes of definitions for a dynamical system: one is motivated by
7109: 7094: 7059: 7049: 6946: 6566: 6488: 6223: 6204: 6182: 6158: 6127: 6108: 6076: 6054: 6033: 6014: 5995: 5976: 5957: 5938: 5919: 5900: 5892: 5870: 5849: 5821: 5781: 5758: 5736: 5724: 5706: 5645: 5629: 5615: 5603: 5544: 5470: 5446: 5386: 5342: 5314: 5223: 5156: 4550: 4374:
is measured in units of (position) Ă— (momentum). The flow takes points of a subset
4348: 3820: 3338:-dimensional Euclidean space, so any point in phase space can be represented by a vector with 2512: 2334: 2251: 2200: 617: 509:
in 1964. One of the implications of the theorem is that if a discrete dynamical system on the
429: 297: 230: 195: 191: 6073:
Nonlinear dynamics and chaos: with applications to physics, biology chemistry and engineering
4972: 4169:– Σ (multiples of other eigenvalues) occurs in the denominator of the terms for the function 3851:, with a real eigenvalue smaller than one, then the straight lines given by the points along 7202: 7114: 7064: 6961: 6889: 6841: 6718: 6698: 6493: 5675: 5511: 5376: 5268: 5215: 5056: 4507: 3296: 2602: 2292: 2224: 1695: 1587: 1491: 1240: 1207: 344: 202: 147: 139: 111: 4343:
Some bifurcations can lead to very complicated structures in phase space. For example, the
3870:, is an invariant curve of the map. Points in this straight line run into the fixed point. 7134: 7029: 6956: 6789: 6601: 6591: 6396: 6383: 6266: 6068: 5694: 5536: 5101: 5051: 4998: 4533: 3266: 2613: 2248: 2244: 2192: 2184: 1996: 549: 466: 163: 17: 7124: 7069: 5439:
Dynamical systems on monoids: Toward a general theory of deterministic systems and motion
4517:. The hypothesis states that the length of time a typical trajectory spends in a region 3999: 3572: â‰  0 the origin is an equilibrium (or singular) point of the flow, that is, if 30:
This article is about the general aspects of dynamical systems. For the study field, see
5264: 5211: 7217: 7184: 7179: 7174: 6976: 6866: 6861: 6759: 6708: 6624: 6498: 5841: 5729: 5699: 5642:
Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective
5361:
Holmes, Philip. "Poincaré, celestial mechanics, dynamical-systems theory and "chaos"."
5149: 5106: 4368: 3306: 3232: 3206:
This equation is useful when modeling mechanical systems with complicated constraints.
2612:
appear to be the natural choice. They are constructed on the geometrical structure of
2309:
A dynamical system may be defined formally as a measure-preserving transformation of a
1915: 1751: 569: 514: 478: 465:. Birkhoff's most durable result has been his 1931 discovery of what is now called the 404: 183: 175: 159: 6292:. George D. Birkhoff's 1927 book already takes a modern approach to dynamical systems. 461: 388:
are examples of dynamical systems where the possible classes of orbits are understood.
7237: 7212: 7169: 7159: 7154: 7054: 7034: 6894: 6816: 6713: 6521: 6311: 6307: 6289: 6150: 6094: 6090: 5888: 5884: 5659: 4745: 4698: 4503: 2858:
There is no need for higher order derivatives in the equation, nor for the parameter
2848: 2350: 2346: 2310: 2288: 2114: 2039: 2020: 521: 492: 488: 301: 293: 143: 115: 5680: 5663: 5523: 4669:
replace the Boltzmann factor and they are defined on attractors of chaotic systems.
4214:
and when the eigenvalues are on the unit circle and complex, the dynamics is called
3823:, the origin is a fixed point of the map and the solutions are of the linear system 7164: 7129: 7039: 6996: 6851: 6846: 6445: 6335: 6260: 6254: 6196: 6172: 6146: 5750: 5280: 5176: 4737: 4725:?" or "Does the long-term behavior of the system depend on its initial condition?" 4718: 4689: 4678: 4510:'s derivation of the increase in entropy in a dynamical system of colliding atoms. 4263: 3696: 3210: 3011:
shown above gives a more general form of equations a dynamical system must satisfy
2877:
Depending on the properties of this vector field, the mechanical system is called
2820: 2136: 2043: 416: 285: 281: 273: 256:, which has applications to a wide variety of fields such as mathematics, physics, 218: 214: 106: 6811: 3276: 5134:
Nonlinear Dynamics and Chaos: with Applications to Physics, Biology and Chemistry
7149: 7139: 7024: 6774: 6596: 6503: 5720: 5406: 5198:
Melby, P.; et al. (2005). "Dynamics of Self-Adjusting Systems With Noise".
5081: 4729: 4713: 4666: 4310: 4267: 3681: 2874:), because these can be eliminated by considering systems of higher dimensions. 2024: 1288: 565: 561: 533: 265: 179: 123: 6337:, SUNY Stony Brook. Lists of conferences, researchers, and some open problems. 5503: 4482:
For systems where the volume is preserved by the flow, Poincaré discovered the
2690:{\displaystyle {\dot {\boldsymbol {x}}}={\boldsymbol {v}}(t,{\boldsymbol {x}})} 7207: 7104: 6551: 5467:
Methods, models, simulations and approaches towards a general theory of change
5443:
Methods, models, simulations and approaches towards a general theory of change
5272: 5027: 3897:) = 0) will remain a singular point under smooth transformations; a 3673: 3256: 1496: 577: 541: 396: 338: 170:. The most general definition unifies several concepts in mathematics such as 6298:. An introduction to dynamical systems from the periodic orbit point of view. 6269:
provides definitions, explanations and resources related to nonlinear science
3910:
A flow in most small patches of the phase space can be made very simple. If
1942:
into the space of diffeomorphisms of the manifold to itself. In other terms,
7119: 7079: 6821: 6483: 6468: 5515: 4722: 4347:
describes how a periodic orbit bifurcates into a torus and the torus into a
3342:
numbers. The analysis of linear systems is possible because they satisfy a
2598: 2284: 2280: 1864:, i.e. locally a Banach space or Euclidean space, or in the discrete case a 557: 529: 510: 352: 269: 261: 6244: 5227: 3922:) â‰  0, then there is a change of coordinates for a region around 2636:
must be solved before it becomes a dynamic system. For example consider an
517:
of period 3, then it must have periodic points of every other period.
5565: 3702: 3680:
determine the structure of the phase space. From the eigenvalues and the
1918:
of the manifold to itself. So, f is a "smooth" mapping of the time-domain
364:
stability have been introduced in the study of dynamical systems, such as
233:, in that random events also affect the evolution of the state variables. 6856: 6247:
has daily submissions of (non-refereed) manuscripts in dynamical systems.
5636:) has a sub-series on dynamical systems with reviews of current research. 4173:, the non-resonant condition is also known as the small divisor problem. 3316: 3203:
from the set of evolution functions to the field of the complex numbers.
2832: 2789: 2132: 2035: 1861: 573: 537: 277: 187: 155: 6279: 5378:
IUTAM Symposium on Exploiting Nonlinear Dynamics for Engineering Systems
2096:
is restricted to the non-negative reals, then the dynamical system is a
6526: 6478: 5897:
Differential Equations, dynamical systems, and an introduction to chaos
2492:
to itself, it is ÎŁ-measurable, and is measure-preserving. The triplet (
2188: 553: 481:, this theorem solved, at least in principle, a fundamental problem of 470: 257: 237: 5560:
Introduction to the Theory of Infinite-Dimensional Dissipative Systems
5219: 2257:, it is often useful to study the continuous extension Ί* of Ί to the 7099: 4280:
Bifurcation theory considers a structure in phase space (typically a
609: 6402: 3192:{\displaystyle {\mathfrak {G}}:{{(T\times M)}^{M}}\to \mathbf {C} } 2986:{\displaystyle {\boldsymbol {x}}(t)=\Phi (t,{\boldsymbol {x}}_{0})} 491:
made significant advances as well. His first contribution was the
6340: 5255: 4285: 3701: 3691:
The distance between two different initial conditions in the case
2836: 593: 545: 210: 105: 6323: 4241:
in the complex plane, implying that the map is still hyperbolic.
2558:{\displaystyle \Phi ^{n}=\Phi \circ \Phi \circ \dots \circ \Phi } 935:{\displaystyle \Phi (t_{2},\Phi (t_{1},x))=\Phi (t_{2}+t_{1},x),} 459:, a result that made him world-famous. In 1927, he published his 6030:
Introduction to Modern Dynamics: Chaos, Networks, Space and Time
3799:
a vector. As in the continuous case, the change of coordinates
3486: = 0 is just a straight line in the direction of  2155:
is restricted to the non-negative integers we call the system a
135: 6418: 6414: 5573:
Infinite-Dimensional Dynamical Systems in Mechanics and Physics
5375:
Rega, Giuseppe (2019). "Tribute to Ali H. Nayfeh (1933–2017)".
4502:
infinitely often. The Poincaré recurrence theorem was used by
4486:: Assume the phase space has a finite Liouville volume and let 4457:{\displaystyle \mathrm {vol} (A)=\mathrm {vol} (\Phi ^{t}(A)).} 4355:
describes how a stable periodic orbit goes through a series of
4288:) and studies its behavior as a function of the parameter  3836:
As in the continuous case, the eigenvalues and eigenvectors of
1805:{\displaystyle \langle {\mathcal {T}},{\mathcal {M}},f\rangle } 1766:
In the geometrical definition, a dynamical system is the tuple
485:. The ergodic theorem has also had repercussions for dynamics. 6346: 6283: 4197:
are not in the unit circle, the dynamics near the fixed point
2746:{\displaystyle {\boldsymbol {x}}|_{t=0}={\boldsymbol {x}}_{0}} 43: 6408: 4705:) and another of the points that diverge from the orbit (the 27:
Mathematical model of the time dependence of a point in space
6373:, Instituto Superior TĂ©cnico, Technical University of Lisbon 6329: 5973:
Dynamical Systems with Applications using Mathematica 2nd Ed
5954:
Dynamical Systems with Applications using MATLAB 2nd Edition
1963: 1927: 1895: 1845: 1821: 1788: 1778: 1750:
and is geometrical in flavor; and the other is motivated by
6399:, Institute of Computer Science, Czech Academy of Sciences. 4849:{\displaystyle y'=-{\text{sgn}}(y){\sqrt {|y|}},\,\,y(0)=1} 4641:
By studying the spectral properties of the linear operator
1428:
if we take one of the variables as constant. The function
6386:, IMPA, Instituto Nacional de MatemĂĄtica Pura e Applicada. 5755:
Elements of Differentiable Dynamics and Bifurcation Theory
5640:
Christian Bonatti; Lorenzo J. DĂ­az; Marcelo Viana (2005).
4728:
The chaotic behavior of complex systems is not the issue.
1575:{\displaystyle \gamma _{x}\equiv \{\Phi (t,x):t\in I(x)\}} 407:
and a more detailed understanding has been worked out for
5296:
Applications of Dynamical Systems in Biology and Medicine
4494:
a subset of the phase space. Then almost every point of
3840:
determine the structure of phase space. For example, if
2082:
is taken to be the reals, the dynamical system is called
6389: 6370: 6332:. Concentrates on the applications of dynamical systems. 6295: 5200:
Chaos: An Interdisciplinary Journal of Nonlinear Science
5778:
Ergodic theory, symbolic dynamics and hyperbolic spaces
6409:
Center for Control, Dynamical Systems, and Computation
6376: 5935:
Dynamical Systems with Applications using Maple 2nd Ed
5916:
Introduction to the modern theory of dynamical systems
5731:
Geometric theory of dynamical systems: an introduction
5151:
Introduction to the Modern Theory of Dynamical Systems
4536:
approached the study of ergodic systems by the use of
4035:. By a translation, the point can be assumed to be at 3398:
function of the position in the phase space, that is,
2839:
acting on the given material point in the phase space
1266:
of the dynamical system: it associates to every point
6308:
Ordinary Differential Equations and Dynamical Systems
6096:
Ordinary Differential Equations and Dynamical Systems
5001: 4975: 4868: 4777: 4761:
differential equations according to the proof of the
4562: 4391: 4076: 3736: 3599: 3499: 3407: 3144: 3020: 2938: 2843:. The change is not a vector in the phase space  2765: 2704: 2649: 2520: 2474:{\displaystyle \mu (\Phi ^{-1}\sigma )=\mu (\sigma )} 2430: 2383: 2223:. Such systems are useful for modeling, for example, 1960: 1924: 1886: 1842: 1818: 1772: 1698: 1643: 1513: 1437: 1374: 1316: 1210: 1170: 1088: 1021: 951: 840: 798: 741: 688: 632: 312:
The concept of a dynamical system has its origins in
7193: 7010: 6937: 6875: 6745: 6732: 6684: 6615: 6459: 6452: 6263:. Models of bifurcation and chaos by Elmer G. Wiens 6124:
Introduction to Applied Dynamical Systems and Chaos
4995:and is not Lipschitz continuous at its ending time 4721:in the long term, and if so, what are the possible 4248:theorem gives the behavior near an elliptic point. 6355:, Ecole Polytechnique FĂ©dĂ©rale de Lausanne (EPFL). 5728: 5698: 5463:Reversible dynamics and the directionality of time 5148: 5013: 4987: 4958: 4848: 4630: 4456: 4128: 3780: 3657: 3553: 3455: 3191: 3127: 2985: 2780: 2745: 2689: 2557: 2473: 2408: 1970: 1934: 1902: 1852: 1828: 1804: 1739:must be defined for all time for every element of 1719: 1673: 1574: 1471: 1417: 1359: 1231: 1188: 1145: 1074: 1007: 934: 825: 765: 727: 668: 7254:Mathematical and quantitative methods (economics) 5564:online version of first edition on the EMIS site 5508:1985 24th IEEE Conference on Decision and Control 5097:Conley's fundamental theorem of dynamical systems 4129:{\displaystyle h^{-1}\circ F\circ h(x)=J\cdot x.} 3998:), of the orbit. The flow now defines a map, the 2585:Some systems have a natural measure, such as the 2329:is a monoid (usually the non-negative integers), 2207:represents the "space" lattice, while the one in 669:{\displaystyle \Phi :U\subseteq (T\times X)\to X} 6365:Systems Analysis, Modelling and Prediction Group 6282:. Nils Berglund's lecture notes for a course at 6220:Does God Play Dice? The New Mathematics of Chaos 5992:Dynamical Systems with Applications using Python 5772:Tim Bedford, Michael Keane and Caroline Series, 4039: = 0. The Taylor series of the map is 386:systems that have two numbers describing a state 376:changes with the different notions of stability. 37:"Dynamical" redirects here. For other uses, see 6257:— peer reviewed and written by invited experts. 5062:Dynamic approach to second language development 4744:arose with just second-degree polynomials; the 4382:) and invariance of the phase space means that 2481:. Combining the above, a map Ί is said to be a 252:The study of dynamical systems is the focus of 5818:Dynamics—the geometry of behavior, 2nd edition 5689:Introductory texts with a unique perspective: 4683:Simple nonlinear dynamical systems, including 3213:—in which case the differential equations are 280:. Dynamical systems are a fundamental part of 6430: 5668:Bulletin of the American Mathematical Society 4631:{\displaystyle (U^{t}a)(x)=a(\Phi ^{-t}(x)).} 4295:The bifurcations of a hyperbolic fixed point 3658:{\displaystyle \Phi ^{t}(x_{0})=e^{tA}x_{0}.} 2504:), Ί), for such a Ί, is then defined to be a 1418:{\displaystyle \Phi ^{t}(x)\equiv \Phi (t,x)} 1360:{\displaystyle \Phi _{x}(t)\equiv \Phi (t,x)} 1008:{\displaystyle \,t_{1},\,t_{2}+t_{1}\in I(x)} 8: 5800:: CS1 maint: multiple names: authors list ( 5469:, pp. 161–171, Singapore: World Scientific. 5465:". In Minati G., Abram M., Pessa E. (eds.), 5445:, pp. 173–185, Singapore: World Scientific. 5441:". In Minati G., Abram M., Pessa E. (eds.), 3706:Linear vector fields and a few trajectories. 2409:{\displaystyle \Phi ^{-1}\sigma \in \Sigma } 1799: 1773: 1569: 1527: 1140: 1104: 1075:{\displaystyle \ t_{2}\in I(\Phi (t_{1},x))} 201:At any given time, a dynamical system has a 168:the number of fish each springtime in a lake 5846:Chaos. An introduction to dynamical systems 5701:Mathematical methods of classical mechanics 5072:Infinite compositions of analytic functions 4490:be a phase space volume-preserving map and 4185:and the degree of smoothness required from 1146:{\displaystyle I(x):=\{t\in T:(t,x)\in U\}} 6742: 6456: 6437: 6423: 6415: 6411:, University of California, Santa Barbara. 6201:Mathematics and the Unexpected (Paperback) 3554:{\displaystyle \Phi ^{t}(x_{1})=x_{1}+bt.} 3007:Some formal manipulation of the system of 2377:if and only if, for every σ in ÎŁ, one has 1274:a unique image, depending on the variable 6304:. Tutorial on learning dynamical systems. 5914:Anatole Katok; Boris Hasselblatt (1996). 5679: 5254: 5155:. Cambridge: Cambridge University Press. 5000: 4974: 4950: 4930: 4906: 4884: 4867: 4827: 4826: 4816: 4808: 4806: 4792: 4776: 4604: 4570: 4561: 4433: 4415: 4392: 4390: 4081: 4075: 3763: 3741: 3735: 3646: 3633: 3617: 3604: 3598: 3533: 3517: 3504: 3498: 3409: 3408: 3406: 3184: 3174: 3157: 3155: 3146: 3145: 3143: 3105: 3100: 3070: 3069: 3050: 3036: 3022: 3021: 3019: 2974: 2969: 2939: 2937: 2767: 2766: 2764: 2737: 2732: 2716: 2711: 2705: 2703: 2679: 2665: 2651: 2650: 2648: 2525: 2519: 2441: 2429: 2388: 2382: 1962: 1961: 1959: 1926: 1925: 1923: 1894: 1893: 1885: 1844: 1843: 1841: 1820: 1819: 1817: 1787: 1786: 1777: 1776: 1771: 1697: 1642: 1518: 1512: 1442: 1436: 1379: 1373: 1321: 1315: 1209: 1169: 1087: 1054: 1029: 1020: 984: 971: 966: 957: 952: 950: 914: 901: 870: 851: 839: 797: 757: 743: 740: 704: 690: 687: 631: 94:Learn how and when to remove this message 6405:, Polytechnical University of Catalonia. 3889:of the vector field (a point where  2781:{\displaystyle {\dot {\boldsymbol {x}}}} 728:{\displaystyle \mathrm {proj} _{2}(U)=X} 428:Many people regard French mathematician 57:This article includes a list of general 6280:Geometrical theory of dynamical systems 5840:Kathleen T. Alligood, Tim D. Sauer and 5124: 3101: 3051: 3037: 3024: 2970: 2940: 2769: 2733: 2706: 2680: 2666: 2653: 544:that are common in daily life, such as 205:representing a point in an appropriate 5793: 5626:Encyclopaedia of Mathematical Sciences 4313:of the first derivative of the system 2608:For hyperbolic dynamical systems, the 2231:Compactification of a dynamical system 2203:are dynamical systems. The lattice in 1950:) is a diffeomorphism, for every time 154:that describe the swinging of a clock 6403:UPC Dynamical Systems Group Barcelona 5994:. Springer International Publishing. 5956:. Springer International Publishing. 5341:(Fourth ed.). Berlin: Springer. 5339:Economic Dynamics: Methods and Models 4859:Admits the finite duration solution: 4673:Nonlinear dynamical systems and chaos 3456:{\displaystyle {\dot {x}}=v(x)=Ax+b,} 2483:measure-preserving transformation of 2143:is taken to be the integers, it is a 164:random motion of particles in the air 7: 6286:at the advanced undergraduate level. 5504:"Finite Time Differential Equations" 5294:Jackson, T.; Radunskaya, A. (2015). 4284:, a periodic orbit, or an invariant 198:space-time structure defined on it. 6577:Measure-preserving dynamical system 5147:Katok, A.; Hasselblatt, B. (1995). 3723:dynamical system has the form of a 3147: 3071: 2305:Measure-preserving dynamical system 1903:{\displaystyle t\in {\mathcal {T}}} 1472:{\displaystyle \Phi _{x}:I(x)\to X} 766:{\displaystyle \mathrm {proj} _{2}} 397:transition to turbulence of a fluid 5664:"Differentiable dynamical systems" 5586:Works providing a broad coverage: 5461:Mazzola C. and Giunti M. (2012), " 5437:Giunti M. and Mazzola C. (2012), " 4601: 4430: 4422: 4419: 4416: 4399: 4396: 4393: 3914:is a point where the vector field 3601: 3501: 3087: 2956: 2552: 2540: 2534: 2522: 2438: 2403: 2385: 2070:; if not, the dynamical system is 1644: 1530: 1439: 1397: 1376: 1339: 1318: 1044: 891: 860: 841: 799: 753: 750: 747: 744: 700: 697: 694: 691: 633: 63:it lacks sufficient corresponding 25: 7145:Oleksandr Mykolayovych Sharkovsky 6324:Dynamical Systems Group Groningen 6267:Sci.Nonlinear FAQ 2.0 (Sept 2003) 6251:Encyclopedia of dynamical systems 4655:equilibrium statistical mechanics 4262:When the evolution map Ί (or the 4063:can only be expected to simplify 3781:{\displaystyle x_{n+1}=Ax_{n}+b,} 2620:Construction of dynamical systems 2279:In compact dynamical systems the 2235:Given a global dynamical system ( 499:Oleksandr Mykolaiovych Sharkovsky 209:. This state is often given by a 6675: 6667: 6341:Center for Dynamics and Geometry 5539:(2006). "Fundamental concepts". 5311:Advanced Engineering Mathematics 5030: 4742:Fermi–Pasta–Ulam–Tsingou problem 3875:other discrete dynamical systems 3185: 2801:is a finite dimensional manifold 2573:Relation to geometric definition 1674:{\displaystyle \Phi (t,x)\in S.} 1164:In particular, in the case that 1082:, where we have defined the set 48: 6353:Laboratory of Nonlinear Systems 6326:, IWI, University of Groningen. 6203:. University Of Chicago Press. 5681:10.1090/S0002-9904-1967-11798-1 5541:Ordinary Differential Equations 5077:List of dynamical system topics 3302:Quadratic map simulation system 3068: 3064: 2634:ordinary differential equations 2215:Multidimensional generalization 2211:represents the "time" lattice. 2056:differentiable dynamical system 1748:ordinary differential equations 221:in a geometrical manifold. The 172:ordinary differential equations 6910:Rabinovich–Fabrikant equations 6050:Chaos and time-series analysis 6047:Julien Clinton Sprott (2003). 6011:Differential Dynamical Systems 4878: 4872: 4837: 4831: 4817: 4809: 4803: 4797: 4622: 4619: 4613: 4597: 4588: 4582: 4579: 4563: 4448: 4445: 4439: 4426: 4409: 4403: 4233:. The hyperbolic case is also 4108: 4102: 4059:), so a change of coordinates 3819:from the equation. In the new 3623: 3610: 3523: 3510: 3432: 3426: 3215:partial differential equations 3181: 3170: 3158: 3111: 3090: 3065: 3055: 3041: 2996:The dynamical system is then ( 2980: 2959: 2950: 2944: 2712: 2684: 2670: 2468: 2462: 2453: 2434: 2299:Measure theoretical definition 1971:{\displaystyle {\mathcal {T}}} 1935:{\displaystyle {\mathcal {T}}} 1853:{\displaystyle {\mathcal {M}}} 1829:{\displaystyle {\mathcal {T}}} 1708: 1702: 1659: 1647: 1566: 1560: 1545: 1533: 1463: 1460: 1454: 1412: 1400: 1391: 1385: 1354: 1342: 1333: 1327: 1220: 1214: 1131: 1119: 1098: 1092: 1069: 1066: 1047: 1041: 1002: 996: 926: 894: 885: 882: 863: 844: 814: 802: 716: 710: 660: 657: 645: 1: 6347:Control and Dynamical Systems 6274:Online books or lecture notes 6105:American Mathematical Society 5087:People in systems and control 4246:Kolmogorov–Arnold–Moser (KAM) 2831:and represents the change of 2614:stable and unstable manifolds 2139:, and Ί is a function. When 588:In the most general sense, a 6390:Nonlinear Dynamics Workgroup 6359:Center for Dynamical Systems 6296:Chaos: classical and quantum 5112:Principle of maximum caliber 4752:Solutions of finite duration 4357:period-doubling bifurcations 4309:can be characterized by the 4221:In the hyperbolic case, the 3807: + (1 âˆ’  3262:Complex quadratic polynomial 2630:classical mechanical systems 2062:is locally diffeomorphic to 1735:. That is, the flow through 826:{\displaystyle \Phi (0,x)=x} 6645:PoincarĂ© recurrence theorem 6178:Chaos: Making a New Science 6053:. Oxford University Press. 6032:. Oxford University Press. 5780:. Oxford University Press. 5543:. Berlin: Springer Verlag. 3235:is an example of a chaotic 2610:Sinai–Ruelle–Bowen measures 2601:, but attractors have zero 2135:locally diffeomorphic to a 2052:continuously differentiable 1189:{\displaystyle U=T\times X} 435:PoincarĂ© recurrence theorem 160:the flow of water in a pipe 114:arises in the study of the 7270: 6640:Poincaré–Bendixson theorem 6302:Learning Dynamical Systems 5866:Discrete Dynamical Systems 5489:Discrete Dynamical Systems 4768:As example, the equation: 4734:Pomeau–Manneville scenario 4676: 4366: 4353:Feigenbaum period-doubling 4255: 3725:matrix difference equation 3327: 2420:if and only if, for every 2302: 2259:one-point compactification 2066:, the dynamical system is 1992:real-time dynamical system 1239:and thus that Ί defines a 507:discrete dynamical systems 469:. Combining insights from 39:Dynamical (disambiguation) 36: 29: 18:Nonlinear dynamical system 6992:Swinging Atwood's machine 6665: 6635:Krylov–Bogolyubov theorem 6512: 6371:Non-Linear Dynamics Group 5614:(available as a reprint: 5412:Franklin Institute Awards 5273:10.1007/s10955-007-9444-4 4013:, for points starting in 3312:Swinging Atwood's machine 2580:Krylov–Bogolyubov theorem 2110:discrete dynamical system 2104:Discrete dynamical system 2074:. This does not assume a 455:", a special case of the 6900:Lotka–Volterra equations 6724:Synchronization of chaos 6527:axiom A dynamical system 6122:Stephen Wiggins (2003). 5600:Foundations of mechanics 5502:Vardia T. Haimo (1985). 5309:Kreyszig, Erwin (2011). 5132:Strogatz, S. H. (2001). 3941:the dynamical system is 3474:a vector of numbers and 3324:Linear dynamical systems 2847:, but is instead in the 2221:multidimensional systems 2191:or a higher-dimensional 1684:Thus, in particular, if 382:Linear dynamical systems 254:dynamical systems theory 194:, without the need of a 32:Dynamical systems theory 6885:Double scroll attractor 6650:Stable manifold theorem 6557:False nearest neighbors 6028:David D. Nolte (2015). 5516:10.1109/CDC.1985.268832 4988:{\displaystyle t\geq 2} 4763:Picard-Lindelof theorem 4659:Boltzmann factor exp(−ÎČ 4223:Hartman–Grobman theorem 4156:are the eigenvalues of 3980:). These points are a 3583:: for an initial point 3581:exponential of a matrix 3344:superposition principle 3330:Linear dynamical system 2640:such as the following: 2054:we say the system is a 612:, written additively, 150:. Examples include the 130:is a system in which a 78:more precise citations. 6925:Van der Pol oscillator 6905:Mackey–Glass equations 6537:Box-counting dimension 6367:, University of Oxford 6361:, University of Bremen 5990:Stephen Lynch (2018). 5971:Stephen Lynch (2017). 5952:Stephen Lynch (2014). 5933:Stephen Lynch (2010). 5571:Temam, Roger (1997) . 5510:. pp. 1729–1733. 5417:The Franklin Institute 5365:193.3 (1990): 137–163. 5038:Systems science portal 5015: 4989: 4960: 4850: 4632: 4458: 4351:. In another example, 4345:Ruelle–Takens scenario 4270:until a special value 4130: 4017:and returning to  3782: 3707: 3659: 3555: 3457: 3252:Bouncing ball dynamics 3193: 3129: 3009:differential equations 2987: 2792:of the material point 2782: 2747: 2691: 2559: 2488:, if it is a map from 2475: 2410: 2349:, meaning that ÎŁ is a 1972: 1936: 1904: 1854: 1830: 1806: 1762:Geometrical definition 1721: 1720:{\displaystyle I(x)=T} 1675: 1576: 1473: 1419: 1361: 1233: 1232:{\displaystyle I(x)=T} 1190: 1147: 1076: 1009: 936: 827: 767: 729: 670: 453:Last Geometric Theorem 334:integrating the system 246:differential equations 119: 7075:Svetlana Jitomirskaya 6982:Multiscroll attractor 6827:Interval exchange map 6780:Dyadic transformation 6765:Complex quadratic map 6607:Topological conjugacy 6542:Correlation dimension 6517:Anosov diffeomorphism 6245:Arxiv preprint server 5602:. Benjamin–Cummings. 5092:Sharkovskii's theorem 5016: 4990: 4961: 4851: 4748:is piecewise linear. 4633: 4530:statistical mechanics 4469:Hamiltonian formalism 4459: 4131: 3931:rectification theorem 3847:is an eigenvector of 3783: 3705: 3660: 3556: 3458: 3390:, the vector field v( 3272:Dyadic transformation 3194: 3130: 2988: 2835:induced by the known 2783: 2748: 2692: 2638:initial value problem 2560: 2476: 2416:. A map Ί is said to 2411: 1988:real dynamical system 1982:Real dynamical system 1973: 1937: 1905: 1872:is an evolution rule 1855: 1831: 1807: 1722: 1676: 1577: 1474: 1420: 1362: 1296:, while the variable 1234: 1191: 1148: 1077: 1010: 937: 828: 768: 730: 671: 483:statistical mechanics 449:George David Birkhoff 413:statistical mechanics 351:Before the advent of 318:differential equation 118:, a dynamical system. 109: 7085:Edward Norton Lorenz 6218:Ian Stewart (1997). 6155:Celestial Encounters 6009:James Meiss (2007). 5487:Galor, Oded (2010). 5067:Feedback passivation 5014:{\displaystyle t=2.} 4999: 4973: 4866: 4775: 4759:Lipschitz continuous 4560: 4389: 4074: 3957:Near periodic orbits 3933:says that away from 3873:There are also many 3734: 3597: 3497: 3482: â‰  0 with 3405: 3292:List of chaotic maps 3142: 3018: 2936: 2763: 2702: 2647: 2518: 2428: 2418:preserve the measure 2381: 2076:symplectic structure 2072:infinite-dimensional 1958: 1922: 1884: 1840: 1816: 1770: 1696: 1641: 1603:of the flow through 1595:. The orbit through 1511: 1435: 1372: 1314: 1208: 1168: 1086: 1019: 949: 838: 796: 739: 686: 630: 503:Sharkovsky's theorem 370:structural stability 7045:Mitchell Feigenbaum 6987:Population dynamics 6972:HĂ©non–Heiles system 6832:Irrational rotation 6785:Dynamical billiards 6770:Coupled map lattice 6630:Liouville's theorem 6562:Hausdorff dimension 6547:Conservative system 6532:Bifurcation diagram 6310:. Lecture notes by 5863:Oded Galor (2011). 5848:. Springer Verlag. 5814:Christopher D. Shaw 5735:. Springer-Verlag. 5705:. Springer-Verlag. 5537:Arnold, Vladimir I. 5335:Gandolfo, Giancarlo 5265:2008JSP...130..617G 5212:2005Chaos..15c3902M 5047:Behavioral modeling 4538:functional analysis 4302:of a system family 4235:structurally stable 4177:Conjugation results 4067:to its linear part 3282:Irrational rotation 2595:dissipative systems 2591:Hamiltonian systems 2058:. If the manifold 2048:continuous function 1756:measure theoretical 1611:of the state space 1280:evolution parameter 451:proved PoincarĂ©'s " 322:difference equation 314:Newtonian mechanics 300:processes, and the 152:mathematical models 7223:Santa Fe Institute 7090:Aleksandr Lyapunov 6920:Three-body problem 6807:Gingerbreadman map 6694:Bifurcation theory 6572:Lyapunov stability 6395:2015-01-21 at the 6382:2017-06-02 at the 6261:Nonlinear Dynamics 6075:. Addison Wesley. 6069:Steven H. Strogatz 5899:. Academic Press. 5820:. Addison-Wesley. 5757:. Academic Press. 5596:Jerrold E. Marsden 5575:. Springer Verlag. 5407:"Ali Hasan Nayfeh" 5313:. Hoboken: Wiley. 5052:Cognitive modeling 5011: 4985: 4956: 4846: 4695:Hyperbolic systems 4628: 4515:ergodic hypothesis 4484:recurrence theorem 4454: 4378:into the points Ί( 4338:Bifurcation theory 4258:Bifurcation theory 4252:Bifurcation theory 4126: 3778: 3708: 3655: 3551: 3453: 3189: 3125: 2983: 2778: 2743: 2687: 2632:. But a system of 2565:for every integer 2555: 2471: 2406: 2357:and ÎŒ is a finite 2169:cellular automaton 2163:Cellular automaton 2068:finite-dimensional 1968: 1932: 1900: 1850: 1826: 1802: 1717: 1671: 1572: 1469: 1415: 1357: 1264:evolution function 1229: 1196:we have for every 1186: 1143: 1072: 1005: 932: 823: 763: 725: 666: 526:nonlinear dynamics 505:on the periods of 475:ergodic hypothesis 457:three-body problem 441:Aleksandr Lyapunov 409:hyperbolic systems 393:bifurcation points 366:Lyapunov stability 330:solving the system 290:bifurcation theory 120: 7244:Dynamical systems 7231: 7230: 7095:BenoĂźt Mandelbrot 7060:Martin Gutzwiller 7050:Peter Grassberger 6933: 6932: 6915:Rössler attractor 6663: 6662: 6567:Invariant measure 6489:Lyapunov exponent 6377:Dynamical Systems 6290:Dynamical systems 6229:978-0-14-025602-4 6210:978-0-226-19990-0 6188:978-0-14-009250-9 6164:978-0-691-02743-2 6141:Popularizations: 6133:978-0-387-00177-7 6114:978-0-8218-8328-0 6082:978-0-201-54344-5 6060:978-0-19-850839-7 6020:978-0-89871-635-1 6001:978-3-319-78145-7 5982:978-3-319-61485-4 5944:978-0-8176-4389-8 5925:978-0-521-57557-7 5906:978-0-12-349703-1 5893:Robert L. Devaney 5876:978-3-642-07185-0 5855:978-0-387-94677-1 5827:978-0-201-56716-8 5787:978-0-19-853390-0 5764:978-0-12-601710-6 5742:978-0-387-90668-3 5725:Welington de Melo 5712:978-0-387-96890-2 5651:978-3-540-22066-4 5609:978-0-8053-0102-1 5475:978-981-4383-32-5 5451:978-981-4383-32-5 5419:. 4 February 2014 5348:978-3-642-13503-3 5320:978-0-470-64613-7 5220:10.1063/1.1953147 5179:. Springer Nature 5162:978-0-521-34187-5 4969:that is zero for 4938: 4914: 4892: 4821: 4795: 4707:unstable manifold 4551:transfer operator 4540:. An observable 4473:Liouville measure 4349:strange attractor 4147:, ...,  3821:coordinate system 3815:removes the term 3417: 3030: 2775: 2659: 2626:evolution in time 2587:Liouville measure 2347:probability space 2252:topological space 2201:cellular automata 1024: 584:Formal definition 462:Dynamical Systems 298:self-organization 116:Lorenz oscillator 104: 103: 96: 16:(Redirected from 7261: 7203:Butterfly effect 7115:Itamar Procaccia 7065:Brosl Hasslacher 6962:Elastic pendulum 6890:Duffing equation 6837:Kaplan–Yorke map 6755:Arnold's cat map 6743: 6719:Stability theory 6704:Dynamical system 6699:Control of chaos 6679: 6671: 6655:Takens's theorem 6587:PoincarĂ© section 6457: 6439: 6432: 6425: 6416: 6233: 6214: 6192: 6168: 6137: 6118: 6086: 6064: 6043: 6024: 6005: 5986: 5967: 5948: 5929: 5910: 5885:Morris W. Hirsch 5880: 5859: 5831: 5810:Ralph H. Abraham 5805: 5799: 5791: 5768: 5746: 5734: 5716: 5704: 5685: 5683: 5655: 5613: 5576: 5563: 5558:Chueshov, I. D. 5554: 5528: 5527: 5499: 5493: 5492: 5484: 5478: 5459: 5453: 5435: 5429: 5428: 5426: 5424: 5403: 5397: 5396: 5385:. pp. 1–2. 5372: 5366: 5359: 5353: 5352: 5331: 5325: 5324: 5306: 5300: 5299: 5291: 5285: 5284: 5258: 5238: 5232: 5231: 5195: 5189: 5188: 5186: 5184: 5173: 5167: 5166: 5154: 5144: 5138: 5137: 5129: 5057:Complex dynamics 5040: 5035: 5034: 5033: 5020: 5018: 5017: 5012: 4994: 4992: 4991: 4986: 4965: 4963: 4962: 4957: 4955: 4954: 4949: 4945: 4944: 4940: 4939: 4931: 4915: 4907: 4893: 4885: 4855: 4853: 4852: 4847: 4822: 4820: 4812: 4807: 4796: 4793: 4785: 4685:piecewise linear 4637: 4635: 4634: 4629: 4612: 4611: 4575: 4574: 4463: 4461: 4460: 4455: 4438: 4437: 4425: 4402: 4135: 4133: 4132: 4127: 4089: 4088: 3982:PoincarĂ© section 3787: 3785: 3784: 3779: 3768: 3767: 3752: 3751: 3697:chaotic behavior 3664: 3662: 3661: 3656: 3651: 3650: 3641: 3640: 3622: 3621: 3609: 3608: 3560: 3558: 3557: 3552: 3538: 3537: 3522: 3521: 3509: 3508: 3462: 3460: 3459: 3454: 3419: 3418: 3410: 3287:Kaplan–Yorke map 3237:piecewise linear 3228:Arnold's cat map 3198: 3196: 3195: 3190: 3188: 3180: 3179: 3178: 3173: 3151: 3150: 3134: 3132: 3131: 3126: 3118: 3114: 3110: 3109: 3104: 3075: 3074: 3054: 3040: 3032: 3031: 3023: 2992: 2990: 2989: 2984: 2979: 2978: 2973: 2943: 2787: 2785: 2784: 2779: 2777: 2776: 2768: 2752: 2750: 2749: 2744: 2742: 2741: 2736: 2727: 2726: 2715: 2709: 2696: 2694: 2693: 2688: 2683: 2669: 2661: 2660: 2652: 2603:Lebesgue measure 2564: 2562: 2561: 2556: 2530: 2529: 2506:dynamical system 2480: 2478: 2477: 2472: 2449: 2448: 2415: 2413: 2412: 2407: 2396: 2395: 2293:simply connected 2283:of any orbit is 2225:image processing 2117:dynamical system 1999:dynamical system 1977: 1975: 1974: 1969: 1967: 1966: 1941: 1939: 1938: 1933: 1931: 1930: 1909: 1907: 1906: 1901: 1899: 1898: 1859: 1857: 1856: 1851: 1849: 1848: 1835: 1833: 1832: 1827: 1825: 1824: 1811: 1809: 1808: 1803: 1792: 1791: 1782: 1781: 1726: 1724: 1723: 1718: 1680: 1678: 1677: 1672: 1581: 1579: 1578: 1573: 1523: 1522: 1478: 1476: 1475: 1470: 1447: 1446: 1424: 1422: 1421: 1416: 1384: 1383: 1366: 1364: 1363: 1358: 1326: 1325: 1307:We often write 1262:) is called the 1238: 1236: 1235: 1230: 1195: 1193: 1192: 1187: 1152: 1150: 1149: 1144: 1081: 1079: 1078: 1073: 1059: 1058: 1034: 1033: 1022: 1014: 1012: 1011: 1006: 989: 988: 976: 975: 962: 961: 941: 939: 938: 933: 919: 918: 906: 905: 875: 874: 856: 855: 832: 830: 829: 824: 772: 770: 769: 764: 762: 761: 756: 734: 732: 731: 726: 709: 708: 703: 675: 673: 672: 667: 590:dynamical system 242:dynamical system 148:parametric curve 138:dependence of a 128:dynamical system 112:Lorenz attractor 99: 92: 88: 85: 79: 74:this article by 65:inline citations 52: 51: 44: 21: 7269: 7268: 7264: 7263: 7262: 7260: 7259: 7258: 7234: 7233: 7232: 7227: 7195: 7189: 7135:Caroline Series 7030:Mary Cartwright 7012: 7006: 6957:Double pendulum 6939: 6929: 6878: 6871: 6797:Exponential map 6748: 6734: 6728: 6686: 6680: 6673: 6659: 6625:Ergodic theorem 6618: 6611: 6602:Stable manifold 6592:Recurrence plot 6508: 6462: 6448: 6443: 6397:Wayback Machine 6384:Wayback Machine 6318:Research groups 6241: 6236: 6230: 6217: 6211: 6195: 6189: 6171: 6165: 6145: 6134: 6121: 6115: 6089: 6083: 6067: 6061: 6046: 6040: 6027: 6021: 6008: 6002: 5989: 5983: 5970: 5964: 5951: 5945: 5932: 5926: 5913: 5907: 5883: 5877: 5862: 5856: 5839: 5828: 5808: 5792: 5788: 5771: 5765: 5749: 5743: 5719: 5713: 5693: 5658: 5652: 5639: 5610: 5590: 5583: 5581:Further reading 5570: 5557: 5551: 5535: 5532: 5531: 5501: 5500: 5496: 5486: 5485: 5481: 5460: 5456: 5436: 5432: 5422: 5420: 5405: 5404: 5400: 5393: 5374: 5373: 5369: 5363:Physics Reports 5360: 5356: 5349: 5333: 5332: 5328: 5321: 5308: 5307: 5303: 5293: 5292: 5288: 5240: 5239: 5235: 5197: 5196: 5192: 5182: 5180: 5175: 5174: 5170: 5163: 5146: 5145: 5141: 5131: 5130: 5126: 5121: 5116: 5102:System dynamics 5036: 5031: 5029: 5026: 4997: 4996: 4971: 4970: 4923: 4919: 4899: 4895: 4894: 4864: 4863: 4778: 4773: 4772: 4754: 4712:This branch of 4703:stable manifold 4681: 4675: 4646:involving  4600: 4566: 4558: 4557: 4429: 4387: 4386: 4371: 4365: 4363:Ergodic systems 4334: 4328: 4321: 4307: 4301: 4276: 4260: 4254: 4203: 4179: 4168: 4155: 4146: 4077: 4072: 4071: 4055: + O( 4027: 3997: 3979: 3968: 3959: 3935:singular points 3908: 3883: 3861: 3846: 3832: 3759: 3737: 3732: 3731: 3713: 3642: 3629: 3613: 3600: 3595: 3594: 3589: 3578: 3529: 3513: 3500: 3495: 3494: 3403: 3402: 3384: 3332: 3326: 3321: 3267:Double pendulum 3247:outer billiards 3223: 3156: 3140: 3139: 3099: 3080: 3076: 3016: 3015: 2968: 2934: 2933: 2788:represents the 2761: 2760: 2731: 2710: 2700: 2699: 2645: 2644: 2624:The concept of 2622: 2575: 2521: 2516: 2515: 2437: 2426: 2425: 2384: 2379: 2378: 2365:, ÎŁ). A map Ί: 2313:, the triplet ( 2307: 2301: 2245:locally compact 2233: 2217: 2165: 2106: 1997:continuous time 1984: 1956: 1955: 1920: 1919: 1882: 1881: 1838: 1837: 1814: 1813: 1768: 1767: 1764: 1694: 1693: 1639: 1638: 1514: 1509: 1508: 1438: 1433: 1432: 1375: 1370: 1369: 1317: 1312: 1311: 1304:of the system. 1254:The function Ί( 1206: 1205: 1166: 1165: 1084: 1083: 1050: 1025: 1017: 1016: 980: 967: 953: 947: 946: 910: 897: 866: 847: 836: 835: 794: 793: 742: 737: 736: 689: 684: 683: 628: 627: 616:is a non-empty 586: 493:Smale horseshoe 467:ergodic theorem 426: 405:ergodic systems 310: 184:complex numbers 146:, such as in a 100: 89: 83: 80: 70:Please help to 69: 53: 49: 42: 35: 28: 23: 22: 15: 12: 11: 5: 7267: 7265: 7257: 7256: 7251: 7249:Systems theory 7246: 7236: 7235: 7229: 7228: 7226: 7225: 7220: 7218:Predictability 7215: 7210: 7205: 7199: 7197: 7191: 7190: 7188: 7187: 7185:Lai-Sang Young 7182: 7180:James A. Yorke 7177: 7175:Amie Wilkinson 7172: 7167: 7162: 7157: 7152: 7147: 7142: 7137: 7132: 7127: 7122: 7117: 7112: 7110:Henri PoincarĂ© 7107: 7102: 7097: 7092: 7087: 7082: 7077: 7072: 7067: 7062: 7057: 7052: 7047: 7042: 7037: 7032: 7027: 7022: 7016: 7014: 7008: 7007: 7005: 7004: 6999: 6994: 6989: 6984: 6979: 6977:Kicked rotator 6974: 6969: 6964: 6959: 6954: 6949: 6947:Chua's circuit 6943: 6941: 6935: 6934: 6931: 6930: 6928: 6927: 6922: 6917: 6912: 6907: 6902: 6897: 6892: 6887: 6881: 6879: 6876: 6873: 6872: 6870: 6869: 6867:Zaslavskii map 6864: 6862:Tinkerbell map 6859: 6854: 6849: 6844: 6839: 6834: 6829: 6824: 6819: 6814: 6809: 6804: 6799: 6794: 6793: 6792: 6782: 6777: 6772: 6767: 6762: 6757: 6751: 6749: 6746: 6740: 6730: 6729: 6727: 6726: 6721: 6716: 6711: 6709:Ergodic theory 6706: 6701: 6696: 6690: 6688: 6682: 6681: 6666: 6664: 6661: 6660: 6658: 6657: 6652: 6647: 6642: 6637: 6632: 6627: 6621: 6619: 6616: 6613: 6612: 6610: 6609: 6604: 6599: 6594: 6589: 6584: 6579: 6574: 6569: 6564: 6559: 6554: 6549: 6544: 6539: 6534: 6529: 6524: 6519: 6513: 6510: 6509: 6507: 6506: 6501: 6499:Periodic point 6496: 6491: 6486: 6481: 6476: 6471: 6465: 6463: 6460: 6454: 6450: 6449: 6444: 6442: 6441: 6434: 6427: 6419: 6413: 6412: 6406: 6400: 6387: 6374: 6368: 6362: 6356: 6350: 6344: 6338: 6333: 6327: 6320: 6319: 6315: 6314: 6305: 6299: 6293: 6287: 6276: 6275: 6271: 6270: 6264: 6258: 6248: 6240: 6239:External links 6237: 6235: 6234: 6228: 6215: 6209: 6193: 6187: 6169: 6163: 6139: 6138: 6132: 6119: 6113: 6091:Teschl, Gerald 6087: 6081: 6065: 6059: 6044: 6039:978-0199657032 6038: 6025: 6019: 6006: 6000: 5987: 5981: 5968: 5963:978-3319068190 5962: 5949: 5943: 5930: 5924: 5911: 5905: 5881: 5875: 5860: 5854: 5842:James A. Yorke 5833: 5832: 5826: 5806: 5786: 5769: 5763: 5747: 5741: 5717: 5711: 5687: 5686: 5674:(6): 747–817. 5656: 5650: 5637: 5623: 5608: 5584: 5582: 5579: 5578: 5577: 5568: 5555: 5549: 5530: 5529: 5494: 5479: 5454: 5430: 5398: 5391: 5367: 5354: 5347: 5326: 5319: 5301: 5286: 5233: 5190: 5168: 5161: 5139: 5123: 5122: 5120: 5117: 5115: 5114: 5109: 5107:Systems theory 5104: 5099: 5094: 5089: 5084: 5079: 5074: 5069: 5064: 5059: 5054: 5049: 5043: 5042: 5041: 5025: 5022: 5010: 5007: 5004: 4984: 4981: 4978: 4967: 4966: 4953: 4948: 4943: 4937: 4934: 4929: 4926: 4922: 4918: 4913: 4910: 4905: 4902: 4898: 4891: 4888: 4883: 4880: 4877: 4874: 4871: 4857: 4856: 4845: 4842: 4839: 4836: 4833: 4830: 4825: 4819: 4815: 4811: 4805: 4802: 4799: 4791: 4788: 4784: 4781: 4753: 4750: 4699:tangent spaces 4677:Main article: 4674: 4671: 4639: 4638: 4627: 4624: 4621: 4618: 4615: 4610: 4607: 4603: 4599: 4596: 4593: 4590: 4587: 4584: 4581: 4578: 4573: 4569: 4565: 4465: 4464: 4453: 4450: 4447: 4444: 4441: 4436: 4432: 4428: 4424: 4421: 4418: 4414: 4411: 4408: 4405: 4401: 4398: 4395: 4369:Ergodic theory 4367:Main article: 4364: 4361: 4332: 4326: 4317: 4305: 4299: 4274: 4256:Main article: 4253: 4250: 4201: 4178: 4175: 4164: 4151: 4144: 4137: 4136: 4125: 4122: 4119: 4116: 4113: 4110: 4107: 4104: 4101: 4098: 4095: 4092: 4087: 4084: 4080: 4047:) =  4025: 3995: 3977: 3966: 3958: 3955: 3907: 3904: 3899:periodic orbit 3887:singular point 3882: 3881:Local dynamics 3879: 3859: 3844: 3830: 3789: 3788: 3777: 3774: 3771: 3766: 3762: 3758: 3755: 3750: 3747: 3744: 3740: 3712: 3709: 3666: 3665: 3654: 3649: 3645: 3639: 3636: 3632: 3628: 3625: 3620: 3616: 3612: 3607: 3603: 3587: 3576: 3562: 3561: 3550: 3547: 3544: 3541: 3536: 3532: 3528: 3525: 3520: 3516: 3512: 3507: 3503: 3464: 3463: 3452: 3449: 3446: 3443: 3440: 3437: 3434: 3431: 3428: 3425: 3422: 3416: 3413: 3383: 3380: 3370:) +  3328:Main article: 3325: 3322: 3320: 3319: 3314: 3309: 3304: 3299: 3294: 3289: 3284: 3279: 3274: 3269: 3264: 3259: 3254: 3249: 3240: 3230: 3224: 3222: 3219: 3187: 3183: 3177: 3172: 3169: 3166: 3163: 3160: 3154: 3149: 3136: 3135: 3124: 3121: 3117: 3113: 3108: 3103: 3098: 3095: 3092: 3089: 3086: 3083: 3079: 3073: 3067: 3063: 3060: 3057: 3053: 3049: 3046: 3043: 3039: 3035: 3029: 3026: 2994: 2993: 2982: 2977: 2972: 2967: 2964: 2961: 2958: 2955: 2952: 2949: 2946: 2942: 2927: 2926: 2922:) = 0 for all 2905: 2856: 2855: 2802: 2796: 2774: 2771: 2754: 2753: 2740: 2735: 2730: 2725: 2722: 2719: 2714: 2708: 2697: 2686: 2682: 2678: 2675: 2672: 2668: 2664: 2658: 2655: 2621: 2618: 2574: 2571: 2554: 2551: 2548: 2545: 2542: 2539: 2536: 2533: 2528: 2524: 2470: 2467: 2464: 2461: 2458: 2455: 2452: 2447: 2444: 2440: 2436: 2433: 2424:in ÎŁ, one has 2405: 2402: 2399: 2394: 2391: 2387: 2373:is said to be 2303:Main article: 2300: 2297: 2232: 2229: 2216: 2213: 2164: 2161: 2105: 2102: 1983: 1980: 1965: 1954:in the domain 1929: 1916:diffeomorphism 1897: 1892: 1889: 1847: 1823: 1801: 1798: 1795: 1790: 1785: 1780: 1775: 1763: 1760: 1752:ergodic theory 1716: 1713: 1710: 1707: 1704: 1701: 1682: 1681: 1670: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1646: 1585:is called the 1583: 1582: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1521: 1517: 1494:is called the 1482:is called the 1480: 1479: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1445: 1441: 1426: 1425: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1382: 1378: 1367: 1356: 1353: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1329: 1324: 1320: 1300:represents an 1228: 1225: 1222: 1219: 1216: 1213: 1185: 1182: 1179: 1176: 1173: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1071: 1068: 1065: 1062: 1057: 1053: 1049: 1046: 1043: 1040: 1037: 1032: 1028: 1004: 1001: 998: 995: 992: 987: 983: 979: 974: 970: 965: 960: 956: 943: 942: 931: 928: 925: 922: 917: 913: 909: 904: 900: 896: 893: 890: 887: 884: 881: 878: 873: 869: 865: 862: 859: 854: 850: 846: 843: 833: 822: 819: 816: 813: 810: 807: 804: 801: 779: 778: 775:projection map 760: 755: 752: 749: 746: 724: 721: 718: 715: 712: 707: 702: 699: 696: 693: 677: 676: 665: 662: 659: 656: 653: 650: 647: 644: 641: 638: 635: 585: 582: 570:rocket engines 515:periodic point 479:measure theory 430:Henri PoincarĂ© 425: 422: 421: 420: 400: 389: 377: 309: 306: 223:evolution rule 176:ergodic theory 134:describes the 102: 101: 56: 54: 47: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7266: 7255: 7252: 7250: 7247: 7245: 7242: 7241: 7239: 7224: 7221: 7219: 7216: 7214: 7213:Edge of chaos 7211: 7209: 7206: 7204: 7201: 7200: 7198: 7192: 7186: 7183: 7181: 7178: 7176: 7173: 7171: 7170:Marcelo Viana 7168: 7166: 7163: 7161: 7160:Audrey Terras 7158: 7156: 7155:Floris Takens 7153: 7151: 7148: 7146: 7143: 7141: 7138: 7136: 7133: 7131: 7128: 7126: 7123: 7121: 7118: 7116: 7113: 7111: 7108: 7106: 7103: 7101: 7098: 7096: 7093: 7091: 7088: 7086: 7083: 7081: 7078: 7076: 7073: 7071: 7068: 7066: 7063: 7061: 7058: 7056: 7055:Celso Grebogi 7053: 7051: 7048: 7046: 7043: 7041: 7038: 7036: 7035:Chen Guanrong 7033: 7031: 7028: 7026: 7023: 7021: 7020:Michael Berry 7018: 7017: 7015: 7009: 7003: 7000: 6998: 6995: 6993: 6990: 6988: 6985: 6983: 6980: 6978: 6975: 6973: 6970: 6968: 6965: 6963: 6960: 6958: 6955: 6953: 6950: 6948: 6945: 6944: 6942: 6936: 6926: 6923: 6921: 6918: 6916: 6913: 6911: 6908: 6906: 6903: 6901: 6898: 6896: 6895:Lorenz system 6893: 6891: 6888: 6886: 6883: 6882: 6880: 6874: 6868: 6865: 6863: 6860: 6858: 6855: 6853: 6850: 6848: 6845: 6843: 6842:Langton's ant 6840: 6838: 6835: 6833: 6830: 6828: 6825: 6823: 6820: 6818: 6817:Horseshoe map 6815: 6813: 6810: 6808: 6805: 6803: 6800: 6798: 6795: 6791: 6788: 6787: 6786: 6783: 6781: 6778: 6776: 6773: 6771: 6768: 6766: 6763: 6761: 6758: 6756: 6753: 6752: 6750: 6744: 6741: 6738: 6731: 6725: 6722: 6720: 6717: 6715: 6714:Quantum chaos 6712: 6710: 6707: 6705: 6702: 6700: 6697: 6695: 6692: 6691: 6689: 6683: 6678: 6674: 6670: 6656: 6653: 6651: 6648: 6646: 6643: 6641: 6638: 6636: 6633: 6631: 6628: 6626: 6623: 6622: 6620: 6614: 6608: 6605: 6603: 6600: 6598: 6595: 6593: 6590: 6588: 6585: 6583: 6580: 6578: 6575: 6573: 6570: 6568: 6565: 6563: 6560: 6558: 6555: 6553: 6550: 6548: 6545: 6543: 6540: 6538: 6535: 6533: 6530: 6528: 6525: 6523: 6522:Arnold tongue 6520: 6518: 6515: 6514: 6511: 6505: 6502: 6500: 6497: 6495: 6492: 6490: 6487: 6485: 6482: 6480: 6477: 6475: 6472: 6470: 6467: 6466: 6464: 6458: 6455: 6451: 6447: 6440: 6435: 6433: 6428: 6426: 6421: 6420: 6417: 6410: 6407: 6404: 6401: 6398: 6394: 6391: 6388: 6385: 6381: 6378: 6375: 6372: 6369: 6366: 6363: 6360: 6357: 6354: 6351: 6348: 6345: 6343:, Penn State. 6342: 6339: 6336: 6334: 6331: 6328: 6325: 6322: 6321: 6317: 6316: 6313: 6312:Gerald Teschl 6309: 6306: 6303: 6300: 6297: 6294: 6291: 6288: 6285: 6281: 6278: 6277: 6273: 6272: 6268: 6265: 6262: 6259: 6256: 6252: 6249: 6246: 6243: 6242: 6238: 6231: 6225: 6221: 6216: 6212: 6206: 6202: 6198: 6194: 6190: 6184: 6180: 6179: 6174: 6170: 6166: 6160: 6157:. Princeton. 6156: 6152: 6151:Philip Holmes 6148: 6144: 6143: 6142: 6135: 6129: 6125: 6120: 6116: 6110: 6106: 6102: 6098: 6097: 6092: 6088: 6084: 6078: 6074: 6070: 6066: 6062: 6056: 6052: 6049: 6045: 6041: 6035: 6031: 6026: 6022: 6016: 6012: 6007: 6003: 5997: 5993: 5988: 5984: 5978: 5974: 5969: 5965: 5959: 5955: 5950: 5946: 5940: 5936: 5931: 5927: 5921: 5918:. Cambridge. 5917: 5912: 5908: 5902: 5898: 5894: 5890: 5889:Stephen Smale 5886: 5882: 5878: 5872: 5868: 5865: 5861: 5857: 5851: 5847: 5843: 5838: 5837: 5836: 5829: 5823: 5819: 5815: 5811: 5807: 5803: 5797: 5789: 5783: 5779: 5775: 5770: 5766: 5760: 5756: 5752: 5748: 5744: 5738: 5733: 5732: 5726: 5722: 5718: 5714: 5708: 5703: 5702: 5696: 5692: 5691: 5690: 5682: 5677: 5673: 5669: 5665: 5661: 5660:Stephen Smale 5657: 5653: 5647: 5643: 5638: 5635: 5631: 5627: 5624: 5621: 5620:0-201-40840-6 5617: 5611: 5605: 5601: 5597: 5593: 5592:Ralph Abraham 5589: 5588: 5587: 5580: 5574: 5569: 5566: 5561: 5556: 5552: 5550:3-540-34563-9 5546: 5542: 5538: 5534: 5533: 5525: 5521: 5517: 5513: 5509: 5505: 5498: 5495: 5490: 5483: 5480: 5476: 5472: 5468: 5464: 5458: 5455: 5452: 5448: 5444: 5440: 5434: 5431: 5418: 5414: 5413: 5408: 5402: 5399: 5394: 5392:9783030236922 5388: 5384: 5380: 5379: 5371: 5368: 5364: 5358: 5355: 5350: 5344: 5340: 5336: 5330: 5327: 5322: 5316: 5312: 5305: 5302: 5297: 5290: 5287: 5282: 5278: 5274: 5270: 5266: 5262: 5257: 5252: 5248: 5244: 5243:J. Stat. Phys 5237: 5234: 5229: 5225: 5221: 5217: 5213: 5209: 5206:(3): 033902. 5205: 5201: 5194: 5191: 5178: 5172: 5169: 5164: 5158: 5153: 5152: 5143: 5140: 5135: 5128: 5125: 5118: 5113: 5110: 5108: 5105: 5103: 5100: 5098: 5095: 5093: 5090: 5088: 5085: 5083: 5080: 5078: 5075: 5073: 5070: 5068: 5065: 5063: 5060: 5058: 5055: 5053: 5050: 5048: 5045: 5044: 5039: 5028: 5023: 5021: 5008: 5005: 5002: 4982: 4979: 4976: 4951: 4946: 4941: 4935: 4932: 4927: 4924: 4920: 4916: 4911: 4908: 4903: 4900: 4896: 4889: 4886: 4881: 4875: 4869: 4862: 4861: 4860: 4843: 4840: 4834: 4828: 4823: 4813: 4800: 4789: 4786: 4782: 4779: 4771: 4770: 4769: 4766: 4764: 4760: 4751: 4749: 4747: 4746:horseshoe map 4743: 4739: 4735: 4731: 4726: 4724: 4720: 4715: 4710: 4708: 4704: 4700: 4696: 4692: 4691: 4686: 4680: 4672: 4670: 4668: 4664: 4662: 4656: 4651: 4649: 4644: 4625: 4616: 4608: 4605: 4594: 4591: 4585: 4576: 4571: 4567: 4556: 4555: 4554: 4552: 4548: 4543: 4539: 4535: 4531: 4526: 4524: 4520: 4516: 4511: 4509: 4506:to object to 4505: 4501: 4497: 4493: 4489: 4485: 4480: 4476: 4474: 4470: 4451: 4442: 4434: 4412: 4406: 4385: 4384: 4383: 4381: 4377: 4370: 4362: 4360: 4358: 4354: 4350: 4346: 4341: 4339: 4335: 4325: 4320: 4316: 4312: 4308: 4298: 4293: 4291: 4287: 4283: 4278: 4273: 4269: 4265: 4259: 4251: 4249: 4247: 4242: 4240: 4236: 4232: 4229: Â·  4228: 4224: 4219: 4217: 4213: 4212: 4207: 4200: 4196: 4192: 4188: 4184: 4176: 4174: 4172: 4167: 4163: 4159: 4154: 4150: 4143: 4123: 4120: 4117: 4114: 4111: 4105: 4099: 4096: 4093: 4090: 4085: 4082: 4078: 4070: 4069: 4068: 4066: 4062: 4058: 4054: 4051: Â·  4050: 4046: 4042: 4038: 4034: 4029: 4024: 4020: 4016: 4012: 4009: â†’  4008: 4005: :  4004: 4001: 3994: 3990: 3986: 3983: 3976: 3972: 3965: 3956: 3954: 3952: 3948: 3944: 3940: 3936: 3932: 3927: 3925: 3921: 3917: 3913: 3906:Rectification 3905: 3903: 3900: 3896: 3892: 3888: 3880: 3878: 3876: 3871: 3869: 3866: âˆˆ  3865: 3858: 3854: 3850: 3843: 3839: 3834: 3829: 3826: 3822: 3818: 3814: 3810: 3806: 3803: â†’  3802: 3798: 3795:a matrix and 3794: 3775: 3772: 3769: 3764: 3760: 3756: 3753: 3748: 3745: 3742: 3738: 3730: 3729: 3728: 3726: 3722: 3718: 3717:discrete-time 3710: 3704: 3700: 3698: 3694: 3689: 3687: 3683: 3679: 3675: 3671: 3652: 3647: 3643: 3637: 3634: 3630: 3626: 3618: 3614: 3605: 3593: 3592: 3591: 3586: 3582: 3575: 3571: 3567: 3548: 3545: 3542: 3539: 3534: 3530: 3526: 3518: 3514: 3505: 3493: 3492: 3491: 3489: 3485: 3481: 3477: 3473: 3469: 3450: 3447: 3444: 3441: 3438: 3435: 3429: 3423: 3420: 3414: 3411: 3401: 3400: 3399: 3397: 3393: 3389: 3381: 3379: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3345: 3341: 3337: 3331: 3323: 3318: 3315: 3313: 3310: 3308: 3305: 3303: 3300: 3298: 3297:Lorenz system 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3255: 3253: 3250: 3248: 3244: 3241: 3238: 3234: 3231: 3229: 3226: 3225: 3220: 3218: 3216: 3212: 3211:Banach spaces 3207: 3204: 3202: 3175: 3167: 3164: 3161: 3152: 3122: 3119: 3115: 3106: 3096: 3093: 3084: 3081: 3077: 3061: 3058: 3047: 3044: 3033: 3027: 3014: 3013: 3012: 3010: 3005: 3003: 2999: 2975: 2965: 2962: 2953: 2947: 2932: 2931: 2930: 2925: 2921: 2917: 2913: 2909: 2906: 2903: 2899: 2895: 2891: 2887: 2883: 2880: 2879: 2878: 2875: 2873: 2869: 2865: 2861: 2853: 2850: 2849:tangent space 2846: 2842: 2838: 2834: 2830: 2826: 2822: 2818: 2814: 2810: 2806: 2803: 2800: 2797: 2795: 2791: 2772: 2759: 2758: 2757: 2738: 2728: 2723: 2720: 2717: 2698: 2676: 2673: 2662: 2656: 2643: 2642: 2641: 2639: 2635: 2631: 2627: 2619: 2617: 2615: 2611: 2606: 2604: 2600: 2596: 2592: 2588: 2583: 2581: 2572: 2570: 2568: 2549: 2546: 2543: 2537: 2531: 2526: 2514: 2509: 2507: 2503: 2499: 2495: 2491: 2487: 2486: 2465: 2459: 2456: 2450: 2445: 2442: 2431: 2423: 2419: 2400: 2397: 2392: 2389: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2351:sigma-algebra 2348: 2344: 2340: 2336: 2332: 2328: 2325:), Ί). Here, 2324: 2320: 2316: 2312: 2311:measure space 2306: 2298: 2296: 2294: 2290: 2286: 2282: 2277: 2275: 2271: 2267: 2263: 2260: 2256: 2253: 2250: 2246: 2242: 2238: 2230: 2228: 2226: 2222: 2214: 2212: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2162: 2160: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2116: 2115:discrete-time 2111: 2103: 2101: 2099: 2095: 2091: 2090: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2040:diffeomorphic 2037: 2033: 2029: 2026: 2022: 2021:open interval 2018: 2014: 2010: 2006: 2005: 2000: 1998: 1993: 1989: 1981: 1979: 1953: 1949: 1945: 1917: 1913: 1890: 1887: 1879: 1876: â†’  1875: 1871: 1867: 1863: 1796: 1793: 1783: 1761: 1759: 1757: 1753: 1749: 1744: 1742: 1738: 1734: 1730: 1714: 1711: 1705: 1699: 1691: 1687: 1668: 1665: 1662: 1656: 1653: 1650: 1637: 1636: 1635: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1589: 1563: 1557: 1554: 1551: 1548: 1542: 1539: 1536: 1524: 1519: 1515: 1507: 1506: 1505: 1503: 1499: 1498: 1493: 1489: 1485: 1466: 1457: 1451: 1448: 1443: 1431: 1430: 1429: 1409: 1406: 1403: 1394: 1388: 1380: 1368: 1351: 1348: 1345: 1336: 1330: 1322: 1310: 1309: 1308: 1305: 1303: 1302:initial state 1299: 1295: 1291: 1290: 1285: 1281: 1278:, called the 1277: 1273: 1269: 1265: 1261: 1257: 1252: 1250: 1246: 1242: 1241:monoid action 1226: 1223: 1217: 1211: 1203: 1199: 1183: 1180: 1177: 1174: 1171: 1162: 1160: 1156: 1137: 1134: 1128: 1125: 1122: 1116: 1113: 1110: 1107: 1101: 1095: 1089: 1063: 1060: 1055: 1051: 1038: 1035: 1030: 1026: 999: 993: 990: 985: 981: 977: 972: 968: 963: 958: 954: 929: 923: 920: 915: 911: 907: 902: 898: 888: 879: 876: 871: 867: 857: 852: 848: 834: 820: 817: 811: 808: 805: 792: 791: 790: 788: 784: 776: 758: 722: 719: 713: 705: 682: 681: 680: 663: 654: 651: 648: 642: 639: 636: 626: 625: 624: 623: 619: 615: 611: 607: 603: 599: 595: 591: 583: 581: 579: 575: 571: 567: 563: 559: 555: 551: 547: 543: 539: 535: 531: 527: 523: 522:Ali H. Nayfeh 518: 516: 512: 508: 504: 500: 496: 494: 490: 489:Stephen Smale 486: 484: 480: 476: 472: 468: 464: 463: 458: 454: 450: 445: 442: 438: 436: 431: 423: 418: 414: 410: 406: 401: 398: 394: 390: 387: 383: 378: 375: 371: 367: 362: 361: 360: 356: 354: 349: 347: 346: 341: 340: 335: 331: 327: 323: 319: 315: 307: 305: 303: 302:edge of chaos 299: 295: 294:self-assembly 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 250: 247: 243: 239: 234: 232: 228: 227:deterministic 224: 220: 216: 212: 208: 204: 199: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 144:ambient space 141: 137: 133: 129: 125: 117: 113: 108: 98: 95: 87: 84:February 2022 77: 73: 67: 66: 60: 55: 46: 45: 40: 33: 19: 7165:Mary Tsingou 7130:David Ruelle 7125:Otto Rössler 7070:Michel HĂ©non 7040:Leon O. Chua 6997:Tilt-A-Whirl 6967:FPUT problem 6852:Standard map 6847:Logistic map 6703: 6672: 6446:Chaos theory 6255:Scholarpedia 6219: 6200: 6197:Ivar Ekeland 6177: 6173:James Gleick 6154: 6147:Florin Diacu 6140: 6126:. Springer. 6123: 6095: 6072: 6051: 6048: 6029: 6010: 5991: 5975:. Springer. 5972: 5953: 5937:. Springer. 5934: 5915: 5896: 5869:. Springer. 5867: 5864: 5845: 5834: 5817: 5777: 5773: 5754: 5751:David Ruelle 5730: 5700: 5695:V. I. Arnold 5688: 5671: 5667: 5644:. Springer. 5641: 5625: 5599: 5585: 5572: 5559: 5540: 5507: 5497: 5488: 5482: 5466: 5457: 5442: 5433: 5421:. Retrieved 5410: 5401: 5377: 5370: 5362: 5357: 5338: 5329: 5310: 5304: 5295: 5289: 5246: 5242: 5236: 5203: 5199: 5193: 5181:. Retrieved 5171: 5150: 5142: 5133: 5127: 4968: 4858: 4767: 4755: 4738:logistic map 4727: 4719:steady state 4711: 4706: 4702: 4688: 4682: 4679:Chaos theory 4667:SRB measures 4660: 4652: 4647: 4642: 4640: 4546: 4541: 4527: 4522: 4518: 4512: 4499: 4495: 4491: 4487: 4481: 4477: 4466: 4379: 4375: 4372: 4342: 4330: 4323: 4318: 4314: 4303: 4296: 4294: 4289: 4279: 4271: 4264:vector field 4261: 4243: 4238: 4234: 4230: 4226: 4220: 4215: 4209: 4205: 4198: 4194: 4190: 4186: 4182: 4180: 4170: 4165: 4161: 4157: 4152: 4148: 4141: 4138: 4064: 4060: 4056: 4052: 4048: 4044: 4040: 4036: 4032: 4030: 4022: 4018: 4014: 4010: 4006: 4002: 4000:PoincarĂ© map 3992: 3988: 3984: 3974: 3970: 3963: 3960: 3950: 3946: 3942: 3938: 3930: 3928: 3923: 3919: 3915: 3911: 3909: 3898: 3894: 3890: 3886: 3884: 3872: 3867: 3863: 3856: 3852: 3848: 3841: 3837: 3835: 3827: 3824: 3816: 3812: 3808: 3804: 3800: 3796: 3792: 3790: 3714: 3692: 3690: 3685: 3682:eigenvectors 3677: 3669: 3667: 3584: 3573: 3569: 3568:is zero and 3565: 3563: 3487: 3483: 3479: 3475: 3471: 3467: 3465: 3391: 3385: 3375: 3371: 3367: 3363: 3359: 3355: 3351: 3347: 3339: 3335: 3333: 3208: 3205: 3137: 3006: 3001: 2997: 2995: 2928: 2923: 2919: 2915: 2911: 2907: 2901: 2897: 2893: 2889: 2885: 2881: 2876: 2871: 2867: 2863: 2859: 2857: 2851: 2844: 2840: 2828: 2824: 2821:vector field 2816: 2812: 2808: 2804: 2798: 2793: 2755: 2625: 2623: 2607: 2584: 2576: 2566: 2510: 2505: 2501: 2497: 2493: 2489: 2484: 2482: 2421: 2417: 2375:ÎŁ-measurable 2370: 2366: 2362: 2354: 2342: 2338: 2330: 2326: 2322: 2318: 2314: 2308: 2278: 2273: 2269: 2265: 2261: 2254: 2240: 2236: 2234: 2218: 2208: 2204: 2196: 2193:integer grid 2187:such as the 2180: 2176: 2172: 2171:is a tuple ( 2168: 2166: 2157:semi-cascade 2156: 2152: 2148: 2144: 2140: 2137:Banach space 2128: 2127:, Ί), where 2124: 2120: 2119:is a tuple ( 2113: 2109: 2107: 2097: 2093: 2087: 2083: 2079: 2071: 2067: 2063: 2059: 2055: 2044:Banach space 2031: 2027: 2025:real numbers 2016: 2012: 2008: 2007:is a tuple ( 2002: 1995: 1991: 1987: 1985: 1951: 1947: 1943: 1911: 1910:) such that 1877: 1873: 1869: 1765: 1745: 1740: 1736: 1732: 1728: 1689: 1685: 1683: 1632: 1628: 1624: 1620: 1616: 1615:is called Ί- 1612: 1608: 1604: 1596: 1592: 1586: 1584: 1501: 1495: 1487: 1483: 1481: 1427: 1306: 1301: 1297: 1293: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1253: 1248: 1244: 1201: 1197: 1163: 1158: 1154: 944: 786: 782: 781:and for any 780: 678: 613: 605: 601: 597: 589: 587: 519: 497: 487: 460: 446: 439: 427: 357: 350: 343: 337: 333: 329: 311: 286:logistic map 282:chaos theory 251: 241: 235: 222: 215:real numbers 200: 190:or simply a 127: 121: 90: 81: 62: 7150:Nina Snaith 7140:Yakov Sinai 7025:Rufus Bowen 6775:Duffing map 6760:Baker's map 6685:Theoretical 6597:SRB measure 6504:Phase space 6474:Bifurcation 6330:Chaos @ UMD 6222:. Penguin. 6181:. Penguin. 5721:Jacob Palis 5491:. Springer. 5298:. Springer. 5183:17 February 5082:Oscillation 4730:Meteorology 4714:mathematics 4498:returns to 4311:eigenvalues 4282:fixed point 4268:phase space 3674:eigenvalues 3307:Rössler map 3233:Baker's map 2908:homogeneous 2179:, Ί), with 2046:, and Ί a 1758:in flavor. 1619:if for all 1607:. A subset 1294:state space 1289:phase space 1270:in the set 773:is the 2nd 620:and Ί is a 604:, Ί) where 566:jet engines 562:skyscrapers 534:engineering 374:equivalence 266:engineering 207:state space 124:mathematics 76:introducing 7238:Categories 7208:Complexity 7105:Edward Ott 6952:Convection 6877:Continuous 6552:Ergodicity 6349:, Caltech. 6253:A part of 6101:Providence 5835:Textbooks 5249:(3): 617. 5136:. Perseus. 5119:References 4723:attractors 4525:)/vol(Ω). 4211:hyperbolic 4208:is called 3943:integrable 3470:a matrix, 3257:Circle map 3201:functional 2882:autonomous 2243:, Ί) on a 2050:. If Ί is 2015:, Ί) with 1504:. The set 1497:trajectory 1286:is called 578:spacecraft 542:structures 530:mechanical 501:developed 339:trajectory 326:time scale 288:dynamics, 231:stochastic 59:references 7120:Mary Rees 7080:Bryna Kra 7013:theorists 6822:Ikeda map 6812:HĂ©non map 6802:Gauss map 6484:Limit set 6469:Attractor 5796:cite book 5634:0938-0396 5423:25 August 5337:(2009) . 5256:0705.0311 4980:≥ 4928:− 4904:− 4790:− 4606:− 4602:Φ 4508:Boltzmann 4431:Φ 4118:⋅ 4097:∘ 4091:∘ 4083:− 3672:= 0, the 3602:Φ 3502:Φ 3415:˙ 3277:HĂ©non map 3243:Billiards 3182:→ 3165:× 3088:Φ 3066:⇔ 3034:− 3028:˙ 2957:Φ 2773:˙ 2657:˙ 2599:attractor 2553:Φ 2550:∘ 2547:⋯ 2544:∘ 2541:Φ 2538:∘ 2535:Φ 2523:Φ 2466:σ 2460:μ 2451:σ 2443:− 2439:Φ 2432:μ 2404:Σ 2401:∈ 2398:σ 2390:− 2386:Φ 2285:non-empty 2281:limit set 2249:Hausdorff 2098:semi-flow 2092:; and if 1891:∈ 1800:⟩ 1774:⟨ 1690:invariant 1663:∈ 1645:Φ 1617:invariant 1555:∈ 1531:Φ 1525:≡ 1516:γ 1464:→ 1440:Φ 1398:Φ 1395:≡ 1377:Φ 1340:Φ 1337:≡ 1319:Φ 1181:× 1135:∈ 1111:∈ 1045:Φ 1036:∈ 991:∈ 892:Φ 861:Φ 842:Φ 800:Φ 661:→ 652:× 643:⊆ 634:Φ 558:buildings 511:real line 447:In 1913, 353:computers 324:or other 304:concept. 270:economics 262:chemistry 7196:articles 6938:Physical 6857:Tent map 6747:Discrete 6687:branches 6617:Theorems 6453:Concepts 6393:Archived 6380:Archived 6199:(1990). 6175:(1988). 6153:(1996). 6093:(2012). 6071:(1994). 6013:. SIAM. 5895:(2003). 5844:(2000). 5816:(1992). 5776:(1991). 5753:(1989). 5727:(1982). 5697:(1982). 5662:(1967). 5598:(1978). 5524:45426376 5383:Springer 5228:16252993 5177:"Nature" 5024:See also 4783:′ 4740:and the 4216:elliptic 3394:) is an 3317:Tent map 3221:Examples 2833:velocity 2790:velocity 2513:iterates 2189:integers 2133:manifold 2038:locally 2036:manifold 1862:manifold 1727:for all 1627:and all 1591:through 1500:through 1490:and its 1486:through 1153:for any 622:function 574:aircraft 538:machines 524:applied 308:Overview 278:medicine 217:or by a 188:manifold 156:pendulum 132:function 7194:Related 7002:Weather 6940:systems 6733:Chaotic 6479:Fractal 5281:8677631 5261:Bibcode 5208:Bibcode 4736:of the 4534:Koopman 4521:is vol( 4504:Zermelo 4467:In the 3991:,  3862:, with 2884:, when 2756:where 2359:measure 2345:) is a 2337:, and ( 2289:compact 2276:, Ί*). 2185:lattice 2145:cascade 2078:. When 2023:in the 1754:and is 1599:is the 735:(where 554:bridges 473:on the 471:physics 424:History 415:and of 274:history 258:biology 238:physics 72:improve 7100:Hee Oh 6735:maps ( 6582:Mixing 6226:  6207:  6185:  6161:  6130:  6111:  6079:  6057:  6036:  6017:  5998:  5979:  5960:  5941:  5922:  5903:  5873:  5852:  5824:  5784:  5761:  5739:  5709:  5648:  5632:  5618:  5606:  5547:  5522:  5473:  5449:  5389:  5345:  5317:  5279:  5226:  5159:  4549:, the 4189:. As 3855:  3721:affine 3396:affine 3386:For a 3354:) and 3138:where 3004:, Ί). 2837:forces 2084:global 1880:(with 1023:  610:monoid 550:cranes 513:has a 292:, the 276:, and 219:vector 196:smooth 166:, and 162:, the 142:in an 61:, but 7011:Chaos 6790:outer 6494:Orbit 5520:S2CID 5277:S2CID 5251:arXiv 4690:chaos 4286:torus 3791:with 3668:When 3564:When 3466:with 3382:Flows 3346:: if 3199:is a 2910:when 2819:is a 2500:, ÎŁ, 2341:, ÎŁ, 2333:is a 2321:, ÎŁ, 2151:. If 2147:or a 2131:is a 2086:or a 2042:to a 2001:, or 1914:is a 1866:graph 1860:is a 1688:is Ί- 1601:image 1588:orbit 1492:graph 1204:that 679:with 608:is a 594:tuple 592:is a 546:ships 477:with 417:chaos 345:orbit 211:tuple 203:state 140:point 6737:list 6461:Core 6224:ISBN 6205:ISBN 6183:ISBN 6159:ISBN 6149:and 6128:ISBN 6109:ISBN 6077:ISBN 6055:ISBN 6034:ISBN 6015:ISBN 5996:ISBN 5977:ISBN 5958:ISBN 5939:ISBN 5920:ISBN 5901:ISBN 5891:and 5871:ISBN 5850:ISBN 5822:ISBN 5812:and 5802:link 5782:ISBN 5774:eds. 5759:ISBN 5737:ISBN 5723:and 5707:ISBN 5646:ISBN 5630:ISSN 5616:ISBN 5604:ISBN 5594:and 5545:ISBN 5471:ISBN 5447:ISBN 5425:2019 5387:ISBN 5343:ISBN 5315:ISBN 5224:PMID 5185:2017 5157:ISBN 4244:The 3929:The 3711:Maps 3388:flow 3245:and 2896:) = 2361:on ( 2291:and 2247:and 2089:flow 2004:flow 1484:flow 1015:and 945:for 576:and 540:and 532:and 384:and 296:and 240:, a 180:real 174:and 136:time 126:, a 110:The 6284:ETH 5676:doi 5512:doi 5269:doi 5247:130 5216:doi 4794:sgn 4709:). 4204:of 3684:of 3676:of 3378:). 3239:map 2862:in 2827:or 2823:in 2589:in 2496:, ( 2353:on 2335:set 2317:, ( 2264:of 2149:map 2100:. 2019:an 1731:in 1631:in 1623:in 1292:or 1247:on 1243:of 1200:in 1157:in 785:in 618:set 528:in 368:or 342:or 332:or 236:In 213:of 192:set 182:or 122:In 7240:: 6107:. 6103:: 6099:. 5887:, 5798:}} 5794:{{ 5672:73 5670:. 5666:. 5518:. 5506:. 5415:. 5409:. 5381:. 5275:. 5267:. 5259:. 5245:. 5222:. 5214:. 5204:15 5202:. 5009:2. 4693:. 4650:. 4553:, 4475:. 4359:. 4340:. 4331:DF 4315:DF 4218:. 4028:. 3877:. 3727:: 3719:, 3715:A 3699:. 3590:, 3490:: 3217:. 3000:, 2918:, 2892:, 2852:TM 2817:TM 2815:→ 2811:× 2807:: 2508:. 2369:→ 2295:. 2287:, 2274:X* 2272:, 2262:X* 2239:, 2227:. 2195:, 2183:a 2175:, 2167:A 2159:. 2123:, 2112:, 2108:A 2034:a 2030:, 2011:, 1994:, 1990:, 1986:A 1978:. 1868:. 1812:. 1743:. 1692:, 1282:. 1251:. 1161:. 1102::= 789:: 600:, 580:. 572:, 568:, 564:, 560:, 556:, 552:, 548:, 348:. 320:, 284:, 272:, 268:, 264:, 260:, 158:, 6739:) 6438:e 6431:t 6424:v 6232:. 6213:. 6191:. 6167:. 6136:. 6117:. 6085:. 6063:. 6042:. 6023:. 6004:. 5985:. 5966:. 5947:. 5928:. 5909:. 5879:. 5858:. 5830:. 5804:) 5790:. 5767:. 5745:. 5715:. 5684:. 5678:: 5654:. 5628:( 5622:) 5612:. 5567:. 5562:. 5553:. 5526:. 5514:: 5477:. 5427:. 5395:. 5351:. 5323:. 5283:. 5271:: 5263:: 5253:: 5230:. 5218:: 5210:: 5187:. 5165:. 5006:= 5003:t 4983:2 4977:t 4952:2 4947:) 4942:| 4936:2 4933:t 4925:1 4921:| 4917:+ 4912:2 4909:t 4901:1 4897:( 4890:4 4887:1 4882:= 4879:) 4876:t 4873:( 4870:y 4844:1 4841:= 4838:) 4835:0 4832:( 4829:y 4824:, 4818:| 4814:y 4810:| 4804:) 4801:y 4798:( 4787:= 4780:y 4663:) 4661:H 4648:U 4643:U 4626:. 4623:) 4620:) 4617:x 4614:( 4609:t 4598:( 4595:a 4592:= 4589:) 4586:x 4583:( 4580:) 4577:a 4572:t 4568:U 4564:( 4547:U 4542:a 4523:A 4519:A 4500:A 4496:A 4492:A 4488:F 4452:. 4449:) 4446:) 4443:A 4440:( 4435:t 4427:( 4423:l 4420:o 4417:v 4413:= 4410:) 4407:A 4404:( 4400:l 4397:o 4394:v 4380:A 4376:A 4333:ÎŒ 4327:0 4324:x 4322:( 4319:ÎŒ 4306:ÎŒ 4304:F 4300:0 4297:x 4290:ÎŒ 4275:0 4272:ÎŒ 4239:J 4231:x 4227:J 4206:F 4202:0 4199:x 4195:J 4191:J 4187:h 4183:J 4171:h 4166:i 4162:λ 4158:J 4153:Îœ 4149:λ 4145:1 4142:λ 4124:. 4121:x 4115:J 4112:= 4109:) 4106:x 4103:( 4100:h 4094:F 4086:1 4079:h 4065:F 4061:h 4057:x 4053:x 4049:J 4045:x 4043:( 4041:F 4037:x 4033:F 4026:0 4023:x 4019:S 4015:S 4011:S 4007:S 4003:F 3996:0 3993:x 3989:Îł 3987:( 3985:S 3978:0 3975:x 3973:( 3971:v 3967:0 3964:x 3951:x 3949:( 3947:v 3939:M 3924:y 3920:y 3918:( 3916:v 3912:y 3895:x 3893:( 3891:v 3868:R 3864:α 3860:1 3857:u 3853:α 3849:A 3845:1 3842:u 3838:A 3831:0 3828:x 3825:A 3817:b 3813:b 3811:) 3809:A 3805:x 3801:x 3797:b 3793:A 3776:, 3773:b 3770:+ 3765:n 3761:x 3757:A 3754:= 3749:1 3746:+ 3743:n 3739:x 3693:A 3686:A 3678:A 3670:b 3653:. 3648:0 3644:x 3638:A 3635:t 3631:e 3627:= 3624:) 3619:0 3615:x 3611:( 3606:t 3588:0 3585:x 3577:0 3574:x 3570:A 3566:b 3549:. 3546:t 3543:b 3540:+ 3535:1 3531:x 3527:= 3524:) 3519:1 3515:x 3511:( 3506:t 3488:b 3484:A 3480:b 3476:x 3472:b 3468:A 3451:, 3448:b 3445:+ 3442:x 3439:A 3436:= 3433:) 3430:x 3427:( 3424:v 3421:= 3412:x 3392:x 3376:t 3374:( 3372:w 3368:t 3366:( 3364:u 3360:t 3358:( 3356:w 3352:t 3350:( 3348:u 3340:N 3336:N 3186:C 3176:M 3171:) 3168:M 3162:T 3159:( 3153:: 3148:G 3123:0 3120:= 3116:) 3112:) 3107:0 3102:x 3097:, 3094:t 3091:( 3085:, 3082:t 3078:( 3072:G 3062:0 3059:= 3056:) 3052:x 3048:, 3045:t 3042:( 3038:v 3025:x 3002:M 2998:T 2981:) 2976:0 2971:x 2966:, 2963:t 2960:( 2954:= 2951:) 2948:t 2945:( 2941:x 2924:t 2920:0 2916:t 2914:( 2912:v 2904:) 2902:x 2900:( 2898:v 2894:x 2890:t 2888:( 2886:v 2872:x 2870:, 2868:t 2866:( 2864:v 2860:t 2854:. 2845:M 2841:M 2829:C 2825:R 2813:M 2809:T 2805:v 2799:M 2794:x 2770:x 2739:0 2734:x 2729:= 2724:0 2721:= 2718:t 2713:| 2707:x 2685:) 2681:x 2677:, 2674:t 2671:( 2667:v 2663:= 2654:x 2567:n 2532:= 2527:n 2502:ÎŒ 2498:X 2494:T 2490:X 2485:X 2469:) 2463:( 2457:= 2454:) 2446:1 2435:( 2422:σ 2393:1 2371:X 2367:X 2363:X 2355:X 2343:ÎŒ 2339:X 2331:X 2327:T 2323:ÎŒ 2319:X 2315:T 2270:R 2266:X 2255:X 2241:X 2237:R 2209:T 2205:M 2197:M 2181:T 2177:M 2173:T 2153:T 2141:T 2129:M 2125:M 2121:T 2094:T 2080:T 2064:R 2060:M 2032:M 2028:R 2017:T 2013:M 2009:T 1964:T 1952:t 1948:t 1946:( 1944:f 1928:T 1912:f 1896:T 1888:t 1878:f 1874:t 1870:f 1846:M 1822:T 1797:f 1794:, 1789:M 1784:, 1779:T 1741:S 1737:x 1733:S 1729:x 1715:T 1712:= 1709:) 1706:x 1703:( 1700:I 1686:S 1669:. 1666:S 1660:) 1657:x 1654:, 1651:t 1648:( 1633:T 1629:t 1625:S 1621:x 1613:X 1609:S 1605:x 1597:x 1593:x 1570:} 1567:) 1564:x 1561:( 1558:I 1552:t 1549:: 1546:) 1543:x 1540:, 1537:t 1534:( 1528:{ 1520:x 1502:x 1488:x 1467:X 1461:) 1458:x 1455:( 1452:I 1449:: 1444:x 1413:) 1410:x 1407:, 1404:t 1401:( 1392:) 1389:x 1386:( 1381:t 1355:) 1352:x 1349:, 1346:t 1343:( 1334:) 1331:t 1328:( 1323:x 1298:x 1284:X 1276:t 1272:X 1268:x 1260:x 1258:, 1256:t 1249:X 1245:T 1227:T 1224:= 1221:) 1218:x 1215:( 1212:I 1202:X 1198:x 1184:X 1178:T 1175:= 1172:U 1159:X 1155:x 1141:} 1138:U 1132:) 1129:x 1126:, 1123:t 1120:( 1117:: 1114:T 1108:t 1105:{ 1099:) 1096:x 1093:( 1090:I 1070:) 1067:) 1064:x 1061:, 1056:1 1052:t 1048:( 1042:( 1039:I 1031:2 1027:t 1003:) 1000:x 997:( 994:I 986:1 982:t 978:+ 973:2 969:t 964:, 959:1 955:t 930:, 927:) 924:x 921:, 916:1 912:t 908:+ 903:2 899:t 895:( 889:= 886:) 883:) 880:x 877:, 872:1 868:t 864:( 858:, 853:2 849:t 845:( 821:x 818:= 815:) 812:x 809:, 806:0 803:( 787:X 783:x 777:) 759:2 754:j 751:o 748:r 745:p 723:X 720:= 717:) 714:U 711:( 706:2 701:j 698:o 695:r 692:p 664:X 658:) 655:X 649:T 646:( 640:U 637:: 614:X 606:T 602:X 598:T 596:( 419:. 399:. 97:) 91:( 86:) 82:( 68:. 41:. 34:. 20:)

Index

Nonlinear dynamical system
Dynamical systems theory
Dynamical (disambiguation)
references
inline citations
improve
introducing
Learn how and when to remove this message

Lorenz attractor
Lorenz oscillator
mathematics
function
time
point
ambient space
parametric curve
mathematical models
pendulum
the flow of water in a pipe
random motion of particles in the air
the number of fish each springtime in a lake
ordinary differential equations
ergodic theory
real
complex numbers
manifold
set
smooth
state

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑