Knowledge (XXG)

Normal space

Source đź“ť

403: 1407:, a product of a normal space and need not to be normal. Also, a subset of a normal space need not be normal (i.e. not every normal Hausdorff space is a completely normal Hausdorff space), since every Tychonoff space is a subset of its Stone–Čech compactification (which is normal Hausdorff). A more explicit example is the 984:
is a topological space where every point has an open neighbourhood that is normal. Every normal space is locally normal, but the converse is not true. A classical example of a completely regular locally normal space that is not normal is the
947:" and "normal Hausdorff space" also turn up in the literature—they simply mean that the space both is normal and satisfies the other condition mentioned. In particular, a normal Hausdorff space is the same thing as a T 1351: 864: 819: 1473:
if given two disjoint closed sets in it, one of which is countable, there are disjoint open sets containing them. Every normal space is pseudonormal, but not vice versa.
766: 721: 644: 624: 600: 580: 560: 676: 1358:
with respect to a map from a certain finite topological space with five points (two open and three closed) to the space with one open and two closed points.
951:
space. Given the historical confusion of the meaning of the terms, verbal descriptions when applicable are helpful, that is, "normal Hausdorff" instead of "T
1785: 1411:. The only large class of product spaces of normal spaces known to be normal are the products of compact Hausdorff spaces, since both compactness ( 132: 114: 1766: 1689: 1663: 1035: 1644: 1133: 603: 1593: 937: 246: 1164: 1493: 966: 414:, here represented by closed disks on opposite sides of the picture, are separated by their respective neighbourhoods 1790: 1499: 936:", whatever that may be.) The definitions given here are the ones usually used today. For more on this issue, see 1260: 1118: 369: 1160:
Every closed subset of a normal space is normal. The continuous and closed image of a normal space is normal.
1330: 1253: 773: 1412: 1171: 1122: 1071: 1021: 824: 779: 1056:
are perfectly normal Hausdorff. However, there exist non-paracompact manifolds that are not even normal.
998: 1476:
Counterexamples to some variations on these statements can be found in the lists above. Specifically,
1053: 981: 1650:
Kemoto, Nobuyuki (2004). "Higher Separation Axioms". In K.P. Hart; J. Nagata; J.E. Vaughan (eds.).
1477: 1447: 1137: 1087: 1064: 899: 891: 473: 1470: 1435: 1374: 1111: 1107: 1083: 1017: 962: 726: 681: 45: 1181: 769: 1580: 1762: 1685: 1659: 1640: 1632: 1396: 1103: 1075: 344: 292: 270: 52: 31: 1739: 1712: 1655: 1400: 1355: 1252:. In fancier terms, disjoint closed sets are not only separated by neighbourhoods, but also 1141: 1099: 1010: 308: 60: 40: 1459: 1408: 1382: 1039: 986: 974: 450: 296: 168: 96: 17: 1060: 629: 609: 585: 565: 545: 1755: 649: 1779: 1681: 1673: 1392: 1249: 1193: 1149: 1028: 1006: 944: 485: 396: 355: 150: 1744: 1727: 1717: 1700: 1388:
In fact, any space that satisfies any one of these three conditions must be normal.
898:. Every perfectly normal space is completely normal, because perfect normality is a 1404: 1542: 1163:
The main significance of normal spaces lies in the fact that they admit "enough"
1167: 1145: 1046: 875: 262: 1366: 928:" and derived concepts occasionally have a different meaning. (Nonetheless, "T 358: 284: 1126: 1395:
of normal spaces is not necessarily normal. This fact was first proved by
1049:
Hausdorff spaces are normal, and all paracompact regular spaces are normal;
402: 1451: 1428: 887: 435: 258: 78: 1543:"Why are these two definitions of a perfectly normal space equivalent?" 1528:
Engelking, Theorem 1.5.19. This is stated under the assumption of a T
1442:" to "normal completely regular" is the same as what we usually call 1174:, as expressed by the following theorems valid for any normal space 387:
that are also disjoint. More intuitively, this condition says that
1024:) are perfectly normal regular, although not in general Hausdorff; 894:. The equivalence between these three characterizations is called 1001:
are normal Hausdorff spaces, or at least normal regular spaces:
768:. This is a stronger separation property than normality, as by 1502: â€“ Property of topological spaces stronger than normality 1496: â€“ Property of topological spaces stronger than normality 1098:
An important example of a non-normal topology is given by the
1480:
is normal but not regular, while the space of functions from
422:, here represented by larger, but still disjoint, open disks. 866:, but not precisely separated in general. It turns out that 886:
is perfectly normal if and only if every closed set is the
1532:
space, but the proof does not make use of that assumption.
492:
is completely normal if and only if every open subset of
1117:
A non-normal space of some relevance to analysis is the
1333: 1090:
is an example of a normal space that is not regular.
827: 782: 729: 684: 652: 632: 612: 588: 568: 548: 606:, in the sense that there is a continuous function 222: 202: 184: 167: 149: 131: 113: 95: 77: 59: 51: 39: 1754: 1701:"On the topological product of paracompact spaces" 1381:. This shows the relationship of normal spaces to 1345: 858: 813: 760: 715: 670: 638: 618: 594: 574: 554: 955:", or "completely normal Hausdorff" instead of "T 1419:axiom are preserved under arbitrary products. 1403:. In fact, since there exist spaces which are 772:disjoint closed sets in a normal space can be 527:is Hausdorff; equivalently, every subspace of 484:is completely normal if and only if every two 973:are discussed elsewhere; they are related to 8: 488:can be separated by neighbourhoods. Also, 1283:, then there exists a continuous function 1200:, then there exists a continuous function 1743: 1716: 1332: 924:Note that the terms "normal space" and "T 921:, is a perfectly normal Hausdorff space. 838: 826: 793: 781: 734: 728: 689: 683: 651: 631: 611: 587: 567: 547: 1423:Relationships to other separation axioms 1074:is completely normal, and every regular 932:" always means the same as "completely T 562:in which every two disjoint closed sets 401: 311:and their further strengthenings define 1616: 1576: 1564: 1512: 1484:to itself is Tychonoff but not normal. 1399:. An example of this phenomenon is the 1346:{\displaystyle \emptyset \rightarrow X} 1067:are hereditarily normal and Hausdorff. 496:is normal with the subspace topology. 445:that is normal; this is equivalent to 36: 1244:. In fact, we can take the values of 1045:Generalizing the above examples, all 480:is a normal space. It turns out that 7: 1728:"Paracompactness and product spaces" 874:is normal and every closed set is a 859:{\displaystyle F\subseteq f^{-1}(1)} 814:{\displaystyle E\subseteq f^{-1}(0)} 870:is perfectly normal if and only if 307:. These conditions are examples of 1639:, Heldermann Verlag Berlin, 1989. 1469:A topological space is said to be 1334: 1086:are normal (even if not regular). 313:completely normal Hausdorff spaces 25: 1462:. These are what we usually call 1134:topology of pointwise convergence 1013:) are perfectly normal Hausdorff; 604:precisely separated by a function 325:perfectly normal Hausdorff spaces 1786:Properties of topological spaces 1652:Encyclopedia of General Topology 938:History of the separation axioms 1761:. Reading, MA: Addison-Wesley. 1745:10.1090/S0002-9904-1948-09118-2 1718:10.1090/S0002-9904-1947-08858-3 1555:Engelking, Theorem 2.1.6, p. 68 1438:. Thus, anything from "normal R 1152:metric spaces is never normal. 1136:. More generally, a theorem of 1337: 1275:is a continuous function from 853: 847: 808: 802: 749: 743: 704: 698: 665: 653: 1: 1094:Examples of non-normal spaces 30:For normal vector space, see 1031:Hausdorff spaces are normal; 1594:"separation axioms in nLab" 1494:Collectionwise normal space 1036:Stone–Čech compactification 997:Most spaces encountered in 761:{\displaystyle f^{-1}(1)=F} 716:{\displaystyle f^{-1}(0)=E} 397:separated by neighbourhoods 1807: 1500:Monotonically normal space 1248:to be entirely within the 515:, is a completely normal T 29: 1753:Willard, Stephen (1970). 1699:Sorgenfrey, R.H. (1947). 1450:, we see that all normal 1377:precisely subordinate to 993:Examples of normal spaces 468:, is a topological space 464:hereditarily normal space 242: 27:Type of topological space 1261:Tietze extension theorem 1119:topological vector space 261:and related branches of 18:Normal topological space 1254:separated by a function 1022:pseudometrisable spaces 774:separated by a function 542:is a topological space 458:completely normal space 1347: 1267:is a closed subset of 1072:second-countable space 860: 815: 762: 717: 672: 640: 620: 596: 576: 556: 540:perfectly normal space 423: 145:(completely Hausdorff) 1732:Bull. Amer. Math. Soc 1726:Stone, A. H. (1948). 1705:Bull. Amer. Math. Soc 1519:Willard, Exercise 15C 1434:, then it is in fact 1427:If a normal space is 1348: 1054:topological manifolds 999:mathematical analysis 896:Vedenissoff's theorem 861: 816: 763: 718: 673: 641: 621: 597: 577: 557: 523:, which implies that 405: 283:: every two disjoint 1448:Kolmogorov quotients 1365:is a locally finite 1331: 1259:More generally, the 1132:to itself, with the 1065:totally ordered sets 1042:is normal Hausdorff; 982:locally normal space 825: 780: 727: 682: 650: 630: 610: 586: 566: 546: 1413:Tychonoff's theorem 1138:Arthur Harold Stone 1110:, which is used in 1084:fully normal spaces 1034:In particular, the 1018:pseudometric spaces 963:Fully normal spaces 943:Terms like "normal 900:hereditary property 892:continuous function 163:(regular Hausdorff) 1633:Engelking, Ryszard 1436:completely regular 1375:partition of unity 1373:, then there is a 1369:of a normal space 1343: 1299:in the sense that 1196:closed subsets of 1112:algebraic geometry 1108:spectrum of a ring 856: 811: 776:, in the sense of 758: 713: 668: 636: 616: 592: 572: 552: 424: 293:open neighborhoods 216:(completely normal 198:(normal Hausdorff) 46:topological spaces 1791:Separation axioms 1768:978-0-486-43479-7 1691:978-0-13-181629-9 1674:Munkres, James R. 1665:978-0-444-50355-8 1397:Robert Sorgenfrey 1208:to the real line 1104:algebraic variety 1011:metrizable spaces 639:{\displaystyle X} 619:{\displaystyle f} 595:{\displaystyle F} 575:{\displaystyle E} 555:{\displaystyle X} 449:being normal and 345:topological space 309:separation axioms 299:is also called a 271:topological space 255: 254: 236:(perfectly normal 41:Separation axioms 32:normal (geometry) 16:(Redirected from 1798: 1772: 1760: 1757:General Topology 1749: 1747: 1722: 1720: 1695: 1680:(2nd ed.). 1669: 1656:Elsevier Science 1637:General Topology 1620: 1614: 1608: 1607: 1605: 1604: 1590: 1584: 1574: 1568: 1562: 1556: 1553: 1547: 1546: 1539: 1533: 1526: 1520: 1517: 1478:SierpiĹ„ski space 1464:normal Hausdorff 1401:Sorgenfrey plane 1356:lifting property 1352: 1350: 1349: 1344: 1146:uncountably many 1140:states that the 1100:Zariski topology 1088:SierpiĹ„ski space 1061:order topologies 1052:All paracompact 882:. Equivalently, 865: 863: 862: 857: 846: 845: 820: 818: 817: 812: 801: 800: 767: 765: 764: 759: 742: 741: 722: 720: 719: 714: 697: 696: 677: 675: 674: 671:{\displaystyle } 669: 646:to the interval 645: 643: 642: 637: 625: 623: 622: 617: 601: 599: 598: 593: 581: 579: 578: 573: 561: 559: 558: 553: 472:such that every 466: 465: 406:The closed sets 238: Hausdorff) 233: 228: 218: Hausdorff) 213: 208: 195: 190: 175: 174: 160: 155: 142: 137: 122: 121: 106: 101: 88: 83: 70: 65: 37: 21: 1806: 1805: 1801: 1800: 1799: 1797: 1796: 1795: 1776: 1775: 1769: 1752: 1738:(10): 977–982. 1725: 1698: 1692: 1672: 1666: 1649: 1629: 1624: 1623: 1615: 1611: 1602: 1600: 1592: 1591: 1587: 1575: 1571: 1563: 1559: 1554: 1550: 1541: 1540: 1536: 1531: 1527: 1523: 1518: 1514: 1509: 1490: 1455: 1441: 1432: 1425: 1418: 1409:Tychonoff plank 1383:paracompactness 1329: 1328: 1182:Urysohn's lemma 1158: 1096: 1040:Tychonoff space 1020:(and hence all 1009:(and hence all 995: 987:Nemytskii plane 975:paracompactness 970: 958: 954: 950: 935: 931: 927: 918: 910: 879: 834: 823: 822: 789: 778: 777: 770:Urysohn's lemma 730: 725: 724: 685: 680: 679: 648: 647: 628: 627: 608: 607: 584: 583: 564: 563: 544: 543: 534: 518: 512: 504: 463: 462: 439: 431: 341: 332: 320: 304: 297:Hausdorff space 281: 276:that satisfies 251: 237: 231: 229: 226: 217: 211: 209: 206: 193: 191: 188: 176: 172: 171: 158: 156: 153: 140: 138: 135: 123: 119: 117: 104: 102: 99: 86: 84: 81: 68: 66: 63: 43: 35: 28: 23: 22: 15: 12: 11: 5: 1804: 1802: 1794: 1793: 1788: 1778: 1777: 1774: 1773: 1767: 1750: 1723: 1711:(6): 631–632. 1696: 1690: 1670: 1664: 1647: 1628: 1625: 1622: 1621: 1609: 1585: 1569: 1557: 1548: 1534: 1529: 1521: 1511: 1510: 1508: 1505: 1504: 1503: 1497: 1489: 1486: 1453: 1444:normal regular 1439: 1430: 1424: 1421: 1416: 1342: 1339: 1336: 1236:) = 1 for all 1220:) = 0 for all 1157: 1154: 1095: 1092: 1080: 1079: 1076:Lindelöf space 1070:Every regular 1068: 1057: 1050: 1043: 1032: 1025: 1014: 994: 991: 968: 956: 952: 948: 933: 929: 925: 916: 908: 877: 855: 852: 849: 844: 841: 837: 833: 830: 810: 807: 804: 799: 796: 792: 788: 785: 757: 754: 751: 748: 745: 740: 737: 733: 712: 709: 706: 703: 700: 695: 692: 688: 667: 664: 661: 658: 655: 635: 615: 591: 571: 551: 532: 516: 510: 502: 486:separated sets 437: 429: 370:neighbourhoods 354:if, given any 340: 337: 330: 318: 302: 291:have disjoint 279: 253: 252: 250: 249: 243: 240: 239: 234: 225: 220: 219: 214: 205: 200: 199: 196: 187: 182: 181: 178: 170: 165: 164: 161: 152: 147: 146: 143: 134: 129: 128: 125: 116: 111: 110: 107: 98: 93: 92: 89: 80: 75: 74: 71: 62: 57: 56: 55:classification 49: 48: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1803: 1792: 1789: 1787: 1784: 1783: 1781: 1770: 1764: 1759: 1758: 1751: 1746: 1741: 1737: 1733: 1729: 1724: 1719: 1714: 1710: 1706: 1702: 1697: 1693: 1687: 1683: 1682:Prentice-Hall 1679: 1675: 1671: 1667: 1661: 1657: 1654:. Amsterdam: 1653: 1648: 1646: 1645:3-88538-006-4 1642: 1638: 1634: 1631: 1630: 1626: 1619:, Section 17. 1618: 1613: 1610: 1599: 1595: 1589: 1586: 1582: 1578: 1573: 1570: 1567:, p. 213 1566: 1561: 1558: 1552: 1549: 1544: 1538: 1535: 1525: 1522: 1516: 1513: 1506: 1501: 1498: 1495: 1492: 1491: 1487: 1485: 1483: 1479: 1474: 1472: 1467: 1465: 1461: 1457: 1449: 1445: 1437: 1433: 1422: 1420: 1414: 1410: 1406: 1402: 1398: 1394: 1389: 1386: 1384: 1380: 1376: 1372: 1368: 1364: 1359: 1357: 1353: 1340: 1324: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1295:that extends 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1257: 1255: 1251: 1250:unit interval 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1177: 1173: 1169: 1166: 1161: 1155: 1153: 1151: 1147: 1143: 1139: 1135: 1131: 1128: 1124: 1120: 1115: 1113: 1109: 1105: 1101: 1093: 1091: 1089: 1085: 1077: 1073: 1069: 1066: 1062: 1058: 1055: 1051: 1048: 1044: 1041: 1037: 1033: 1030: 1026: 1023: 1019: 1015: 1012: 1008: 1007:metric spaces 1004: 1003: 1002: 1000: 992: 990: 988: 983: 978: 976: 972: 964: 960: 946: 945:regular space 941: 939: 922: 920: 912: 903: 901: 897: 893: 889: 885: 881: 873: 869: 850: 842: 839: 835: 831: 828: 805: 797: 794: 790: 786: 783: 775: 771: 755: 752: 746: 738: 735: 731: 710: 707: 701: 693: 690: 686: 662: 659: 656: 633: 613: 605: 589: 569: 549: 541: 536: 530: 526: 522: 514: 506: 497: 495: 491: 487: 483: 479: 475: 471: 467: 459: 454: 452: 448: 444: 441: 433: 421: 417: 413: 409: 404: 400: 398: 394: 390: 386: 382: 378: 374: 371: 367: 363: 360: 357: 353: 349: 346: 338: 336: 334: 326: 322: 314: 310: 306: 298: 294: 290: 286: 282: 275: 272: 268: 264: 260: 248: 245: 244: 241: 235: 230: 221: 215: 210: 201: 197: 192: 183: 179: 177: 166: 162: 157: 148: 144: 139: 130: 126: 124: 112: 108: 103: 94: 90: 85: 76: 72: 67: 58: 54: 50: 47: 42: 38: 33: 19: 1756: 1735: 1731: 1708: 1704: 1677: 1651: 1636: 1617:Willard 1970 1612: 1601:. Retrieved 1597: 1588: 1577:Willard 1970 1572: 1565:Munkres 2000 1560: 1551: 1537: 1524: 1515: 1481: 1475: 1471:pseudonormal 1468: 1463: 1443: 1426: 1390: 1387: 1378: 1370: 1362: 1360: 1327: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1258: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1189: 1185: 1180: 1175: 1162: 1159: 1129: 1116: 1097: 1081: 996: 979: 961: 942: 923: 914: 906: 904: 895: 883: 871: 867: 539: 537: 528: 524: 520: 509:completely T 508: 500: 498: 493: 489: 481: 477: 469: 461: 457: 455: 446: 442: 427: 425: 419: 415: 411: 407: 392: 388: 384: 380: 376: 372: 368:, there are 365: 361: 352:normal space 351: 347: 342: 328: 324: 316: 312: 300: 288: 277: 273: 267:normal space 266: 256: 223: 203: 185: 133:completely T 73:(Kolmogorov) 1598:ncatlab.org 1579:, pp.  1415:) and the T 1047:paracompact 915:perfectly T 531:must be a T 359:closed sets 339:Definitions 295:. A normal 285:closed sets 263:mathematics 180:(Tychonoff) 109:(Hausdorff) 1780:Categories 1627:References 1603:2021-10-12 1367:open cover 1315:) for all 1212:such that 1165:continuous 1156:Properties 1106:or on the 1082:Also, all 1078:is normal. 678:such that 53:Kolmogorov 1507:Citations 1460:Tychonoff 1446:. Taking 1338:→ 1335:∅ 1172:functions 1127:real line 1125:from the 1123:functions 840:− 832:⊆ 795:− 787:⊆ 736:− 691:− 451:Hausdorff 127:(Urysohn) 91:(FrĂ©chet) 1678:Topology 1676:(2000). 1488:See also 1466:spaces. 1354:has the 1326:The map 1194:disjoint 1192:are two 1170:-valued 888:zero set 474:subspace 356:disjoint 259:topology 1581:100–101 1393:product 1150:compact 1142:product 1121:of all 1029:compact 967:fully T 602:can be 535:space. 395:can be 278:Axiom T 247:History 173:3½ 1765:  1688:  1662:  1643:  1456:spaces 1405:Dowker 1102:on an 971:spaces 519:space 333:spaces 323:, and 321:spaces 232:  212:  194:  159:  141:  120:½ 105:  87:  69:  1263:: If 1204:from 1184:: If 1038:of a 919:space 913:, or 911:space 890:of a 626:from 513:space 507:, or 505:space 460:, or 440:space 434:is a 432:space 350:is a 327:, or 315:, or 305:space 269:is a 1763:ISBN 1686:ISBN 1660:ISBN 1641:ISBN 1458:are 1307:) = 1271:and 1228:and 1188:and 1168:real 1148:non- 1059:All 1027:All 1016:All 1005:All 965:and 821:and 723:and 582:and 418:and 410:and 391:and 379:and 364:and 265:, a 1740:doi 1713:doi 1361:If 1319:in 1279:to 1240:in 1224:in 1144:of 1063:on 959:". 880:set 476:of 383:of 375:of 287:of 257:In 44:in 1782:: 1736:54 1734:. 1730:. 1709:53 1707:. 1703:. 1684:. 1658:. 1635:, 1596:. 1391:A 1385:. 1323:. 1291:→ 1287:: 1256:. 1178:. 1114:. 989:. 980:A 977:. 940:. 905:A 902:. 538:A 499:A 456:A 453:. 426:A 399:. 343:A 335:. 1771:. 1748:. 1742:: 1721:. 1715:: 1694:. 1668:. 1606:. 1583:. 1545:. 1530:1 1482:R 1454:1 1452:T 1440:0 1431:0 1429:R 1417:2 1379:U 1371:X 1363:U 1341:X 1321:A 1317:x 1313:x 1311:( 1309:f 1305:x 1303:( 1301:F 1297:f 1293:R 1289:X 1285:F 1281:R 1277:A 1273:f 1269:X 1265:A 1246:f 1242:B 1238:x 1234:x 1232:( 1230:f 1226:A 1222:x 1218:x 1216:( 1214:f 1210:R 1206:X 1202:f 1198:X 1190:B 1186:A 1176:X 1130:R 969:4 957:5 953:4 949:4 934:4 930:5 926:4 917:4 909:6 907:T 884:X 878:δ 876:G 872:X 868:X 854:) 851:1 848:( 843:1 836:f 829:F 809:) 806:0 803:( 798:1 791:f 784:E 756:F 753:= 750:) 747:1 744:( 739:1 732:f 711:E 708:= 705:) 702:0 699:( 694:1 687:f 666:] 663:1 660:, 657:0 654:[ 634:X 614:f 590:F 570:E 550:X 533:4 529:X 525:X 521:X 517:1 511:4 503:5 501:T 494:X 490:X 482:X 478:X 470:X 447:X 443:X 438:1 436:T 430:4 428:T 420:V 416:U 412:F 408:E 393:F 389:E 385:F 381:V 377:E 373:U 366:F 362:E 348:X 331:6 329:T 319:5 317:T 303:4 301:T 289:X 280:4 274:X 227:6 224:T 207:5 204:T 189:4 186:T 169:T 154:3 151:T 136:2 118:2 115:T 100:2 97:T 82:1 79:T 64:0 61:T 34:. 20:)

Index

Normal topological space
normal (geometry)
Separation axioms
topological spaces
Kolmogorov
T0
T1
T2
T2½
completely T2
T3
T
T4
T5
T6
History
topology
mathematics
topological space
closed sets
open neighborhoods
Hausdorff space
separation axioms
topological space
disjoint
closed sets
neighbourhoods
separated by neighbourhoods

T1 space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑