Knowledge (XXG)

Outgoing longwave radiation

Source 📝

20: 131: 863: 587: 725: 829: 557:), and a warming effect, insofar as they absorb longwave radiation. For low clouds, the reflection of solar radiation is the larger effect; so, these clouds cool the Earth. In contrast, for high thin clouds in cold air, the absorption of longwave radiation is the more significant effect; so these clouds warm the planet. 462:
absorb 100% of the longwave radiation emitted by the surface. So, at those wavelengths, the emissivity of the atmosphere is 1 and the atmosphere emits thermal radiation much like an ideal blackbody would. However, this applies only at wavelengths where the atmosphere fully absorbs longwave radiation.
708:
to space. Even if 100% of surface emissions are absorbed at a given wavelength, the OLR at that wavelength can still be reduced by increased greenhouse gas concentration, since the increased concentration leads to the atmosphere emitting longwave radiation to space from a higher altitude. If the air
669:
the altitude from which the atmosphere emits that that wavelength to space increases (since the altitude at which the atmosphere becomes transparent to that wavelength increases); if the emission altitude is within the troposphere, the temperature of the emitting air will be lower, which will result
565:
The interaction between emitted longwave radiation and the atmosphere is complicated due to the factors that affect absorption. The path of the radiation in the atmosphere also determines radiative absorption: longer paths through the atmosphere result in greater absorption because of the cumulative
466:
Although greenhouse gases in air have a high emissivity at some wavelengths, this does not necessarily correspond to a high rate of thermal radiation being emitted to space. This is because the atmosphere is generally much colder than the surface, and the rate at which longwave radiation is emitted
267:
In recent decades, energy has been measured to be arriving on Earth at a higher rate than it leaves, corresponding to planetary warming. The energy imbalance has been increasing. It can take decades to centuries for oceans to warm and planetary temperature to shift sufficiently to compensate for an
674:
The size of the reduction in OLR will vary by wavelength. Even if OLR does not decrease at certain wavelengths (e.g., because 100% of surface emissions are absorbed and the emission altitude is in the stratosphere), increased greenhouse gas concentration can still lead to significant reductions in
605:
More specifically, the greenhouse effect may be defined quantitatively as the amount of longwave radiation emitted by the surface that does not reach space. On Earth as of 2015, about 398 W/m of longwave radiation was emitted by the surface, while OLR, the amount reaching space, was 239 W/m. Thus,
249:
is a measure of the amount of thermal energy in matter. So, under these circumstances, temperatures tend to increase overall (though temperatures might decrease in some places as the distribution of energy changes). As temperatures increase, the amount of thermal radiation emitted also increases,
441:
The emissivity of Earth's surface has been measured to be in the range 0.65 to 0.99 (based on observations in the 8-13 micron wavelength range) with the lowest values being for barren desert regions. The emissivity is mostly above 0.9, and the global average surface emissivity is estimated to be
83:
of energy transported by outgoing longwave radiation is typically measured in units of watts per metre squared (W⋅m). In the case of global energy flux, the W/m value is obtained by dividing the total energy flow over the surface of the globe (measured in watts) by the surface area of the Earth,
75:
Longwave radiation generally spans wavelengths ranging from 3–100 micrometres (μm). A cutoff of 4 μm is sometimes used to differentiate sunlight from longwave radiation. Less than 1% of sunlight has wavelengths greater than 4 μm. Over 99% of outgoing longwave radiation has wavelengths
450:
The most common gases in air (i.e., nitrogen, oxygen, and argon) have a negligible ability to absorb or emit longwave thermal radiation. Consequently, the ability of air to absorb and emit longwave radiation is determined by the concentration of trace gases like water vapor and carbon dioxide.
736:
Measurements of outgoing longwave radiation at the top of the atmosphere and of longwave radiation back towards the surface are important to understand how much energy is retained in Earth's climate system: for example, how thermal radiation cools and warms the surface, and how this energy is
878:
by outgoing longwave radiation, suppression of radiative cooling (by downwelling longwave radiation cancelling out energy transfer by upwelling longwave radiation), and radiative heating through incoming solar radiation drive the temperature and dynamics of different parts of the atmosphere.
549:
The OLR balance is affected by clouds, dust, and aerosols in the atmosphere. Clouds tend to block penetration of upwelling longwave radiation, causing a lower flux of long-wave radiation penetrating to higher altitudes. Clouds are effective at absorbing and scattering longwave radiation, and
257:
In this fashion, a planet naturally constantly adjusts its temperature so as to keep the energy imbalance small. If there is more solar radiation absorbed than OLR emitted, the planet will heat up. If there is more OLR than absorbed solar radiation the planet will cool. In both cases, the
691:
If the absorptivity of the gas is high and the gas is present in a high enough concentration, the absorption at certain wavelengths becomes saturated. This means there is enough gas present to completely absorb the radiated energy at that wavelength before the upper atmosphere is reached.
253:
Similarly, if energy arrives at a lower rate than it leaves (i.e., ASR < OLR, so than EEI is negative), the amount of energy in Earth's climate decreases, and temperatures tend to decrease overall. As temperatures decrease, OLR decreases, making the imbalance closer to zero.
577:
The net all-wave radiation is dominated by longwave radiation during the night and in the polar regions. While there is no absorbed solar radiation during the night, terrestrial radiation continues to be emitted, primarily as a result of solar energy absorbed during the day.
475:
The atmosphere is relatively transparent to solar radiation, but it is nearly opaque to longwave radiation. The atmosphere typically absorbs most of the longwave radiation emitted by the surface. Absorption of longwave radiation prevents that radiation from reaching space.
678:
When OLR decreases, this leads to an energy imbalance, with energy received being greater than energy lost, causing a warming effect. Therefore, an increase in the concentrations of greenhouse gases causes energy to accumulate in Earth's climate system, contributing to
699:
argued that this means an increase in the concentration of this gas will have no additional effect on the planet's energy budget. This argument neglects the fact that outgoing longwave radiation is determined not only by the amount of surface radiation that is
2241:
Kyle, H. L.; Arking, A.; Hickey, J. R.; Ardanuy, P. E.; Jacobowitz, H.; Stowe, L. L.; Campbell, G. G.; Vonder Haar, T.; House, F. B.; Maschhoff, R.; Smith, G. L. (May 1993). "The Nimbus Earth Radiation Budget (ERB) Experiment: 1975 to 1992".
157:
says that energy cannot appear or disappear. Thus, any energy that enters a system but does not leave must be retained within the system. So, the amount of energy retained on Earth (in Earth's climate system) is governed by an equation:
737:
distributed to affect the development of clouds. Observing this radiative flux from a surface also provides a practical way of assessing surface temperatures on both local and global scales. This energy distribution is what drives
503:. The atmospheric window is a region of the electromagnetic wavelength spectrum between 8 and 11 μm where the atmosphere does not absorb longwave radiation (except for the ozone band between 9.6 and 9.8 μm). 479:
At wavelengths where the atmosphere absorbs surface radiation, some portion of the radiation that was absorbed is replaced by a lesser amount of thermal radiation emitted by the atmosphere at a higher altitude.
239: 569:
OLR is affected by Earth's surface skin temperature (i.e, the temperature of the top layer of the surface), skin surface emissivity, atmospheric temperature, water vapor profile, and cloud cover.
352: 590:
Outgoing radiation and greenhouse effect as a function of frequency. The greenhouse effect is visible as the area of the upper red area, and the greenhouse effect associated with CO
1191:
Loeb, Norman G.; Johnson, Gregory C.; Thorsen, Tyler J.; Lyman, John M.; et al. (15 June 2021). "Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate".
754: 533:
The absorption of longwave radiation by gases depends on the specific absorption bands of the gases in the atmosphere. The specific absorption bands are determined by their
924:
There are online interactive tools that allow one to see the spectrum of outgoing longwave radiation that is predicted to reach space under various atmospheric conditions.
423: 2118:
Hanel, Rudolf A.; Conrath, Barney J. (10 October 1970). "Thermal Emission Spectra of the Earth and Atmosphere from the Nimbus 4 Michelson Interferometer Experiment".
399: 776: 1787:
Wenhui Wang; Shunlin Liang; Augustine, J.A. (May 2009). "Estimating High Spatial Resolution Clear-Sky Land Surface Upwelling Longwave Radiation From MODIS Data".
666:
the fraction of surface emissions that are absorbed is increased, decreasing OLR (unless 100% of surface emissions at that wavelength are already being absorbed);
977:
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
375: 300: 716:, i.e., erroneous reasoning that results from focusing on energy exchange at the surface, instead of focusing on the top-of-atmosphere (TOA) energy balance. 245:
When energy is arriving at a higher rate than it leaves (i.e., ASR > OLR, so that EEI is positive), the amount of energy in Earth's climate increases.
2214:
Jacobowitz, Herbert; Soule, Harold V.; Kyle, H. Lee; House, Frederick B. (30 June 1984). "The Earth Radiation Budget (ERB) Experiment: An overview".
2403: 483:
When absorbed, the energy transmitted by this radiation is transferred to the substance that absorbed it. However, overall, greenhouse gases in the
514:
in the atmosphere are responsible for a majority of the absorption of longwave radiation in the atmosphere. The most important of these gases are
455: 2169:
Hanel, Rudolf A.; Conrath, Barney J.; Kunde, Virgil G.; Prabhakara, C. (20 October 1970). "The Infrared Interferometer Experiment on Nimbus 3".
1100: 566:
absorption by many layers of gas. Lastly, the temperature and altitude of the absorbing gas also affect its absorption of longwave radiation.
2036: 1631: 1565: 1527: 1361: 1230: 1031: 2418: 709:
at that higher altitude is colder (as is true throughout the troposphere), then thermal emissions to space will be reduced, decreasing OLR.
903: 780: 1865:
Schmidt, Gavin A.; Ruedy, Reto A.; Miller, Ron L.; Lacis, Andy A. (2010-10-16). "Attribution of the present-day total greenhouse effect".
467:
scales as the fourth power of temperature. Thus, the higher the altitude at which longwave radiation is emitted, the lower its intensity.
1651: 138:
measurements (2005–2019). A rate of +1.0 W/m summed over the planet's surface equates to a continuous heat uptake of about 500 
1843: 178:(ASR). Energy leaves as outgoing longwave radiation (OLR). Thus, the rate of change in the energy in Earth's climate system is given by 797: 749:
Outgoing long-wave radiation (OLR) has been monitored and reported since 1970 by a progression of satellite missions and instruments.
598:
The reduction of the outgoing longwave radiation (OLR), relative to longwave radiation emitted by the surface, is at the heart of the
1006: 938: 772: 258:
temperature change works to shift the energy imbalance towards zero. When the energy imbalance is zero, a planet is said to be in
188: 1307: 19: 429:. The emissivity is a value between zero and one which indicates how much less radiation is emitted compared to what a perfect 1405:
Wei, Peng-Sheng; Hsieh, Yin-Chih; Chiu, Hsuan-Han; Yen, Da-Lun; Lee, Chieh; Tsai, Yi-Cheng; Ting, Te-Chuan (6 October 2018).
833: 402: 2408: 553:
Clouds have both cooling and warming effects. They have a cooling effect insofar as they reflect sunlight (as measured by
1692: 768:
Improved measurements were obtained starting with the Earth Radiation Balance (ERB) instruments on Nimbus-6 and Nimbus-7.
966:
Matthews, J.B.R.; Möller, V.; van Diemenn, R.; Fuglesvedt, J.R.; et al. (2021-08-09). "Annex VII: Glossary". In
179: 988: 967: 738: 487:
emit more thermal radiation than they absorb, so longwave radiative heat transfer has a net cooling effect on air.
108: 1917: 316: 40: 2263: 1744: 1709: 1607: 1582: 1173: 1148: 975: 303: 99:
Emitting outgoing longwave radiation is the only way Earth loses energy to space, i.e., the only way the planet
1335: 862: 762: 68:) is the longwave radiation emitted to space from the top of Earth's atmosphere. It may also be referred to as 23:
Spectral intensity of sunlight (average at top of atmosphere) and thermal radiation emitted by Earth's surface.
147: 119: 458:, the emissivity of matter is always equal to its absorptivity, at a given wavelength. At some wavelengths, 1729: 918: 154: 2075:
Price, A. G.; Petzold, D. E. (February 1984). "Surface Emissivities in a Boreal Forest during Snowmelt".
933: 260: 130: 2448: 2443: 2290: 2251: 2178: 2127: 1959: 1874: 1796: 1721: 1662: 1594: 1420: 1200: 1160: 1112: 837: 732:
spectrum of Earth's infrared emissions (400-1600 cm) measured by IRIS on Nimbus 4 in year 1970.
378: 1734: 943: 534: 115: 103:
itself. Radiative heating from absorbed sunlight, and radiative cooling to space via OLR power the
55: 1466: 2308: 2151: 2100: 1975: 1898: 1820: 1073: 1047: 902:
equations that describe radiation in the atmosphere. Usually the solution is done numerically by
899: 775:
scanners and the non scanner on NOAA-9, NOAA-10 and Earth Radiation Budget Satellite; also, the
279:
is emitted by nearly all matter, in proportion to the fourth power of its absolute temperature.
2053: 1492: 408: 2143: 2092: 2032: 1890: 1812: 1680: 1627: 1561: 1523: 1448: 1027: 1002: 875: 599: 276: 100: 43: 2373: 1994: 1839: 712:
False conclusions about the implications of absorption being "saturated" are examples of the
384: 2298: 2259: 2223: 2194: 2186: 2135: 2084: 1967: 1882: 1804: 1739: 1670: 1602: 1553: 1438: 1428: 1256: 1208: 1168: 1120: 992: 812:
Data on surface longwave radiation and OLR is available from a number of sources including:
586: 538: 175: 118:(energy gained) determines whether the Earth is experiencing global heating or cooling (see 2422: 2412: 2056:. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt MD USA 1696: 895: 500: 28: 250:
leading to more outgoing longwave radiation (OLR), and a smaller energy imbalance (EEI).
2428: 2294: 2255: 2182: 2131: 1963: 1878: 1800: 1725: 1666: 1598: 1424: 1204: 1164: 1116: 796:. A most notable ground-based network for monitoring surface long-wave radiation is the 1443: 1406: 801: 758: 724: 680: 631: 627: 519: 511: 459: 360: 285: 80: 2437: 1647: 832:
Simulated wavenumber spectrum of the Earth's outgoing longwave radiation (OLR) using
647: 1999:
Global Climate Feedbacks: Proceedings of the Brookhaven National Laboratory Workshop
1916:"Chapter 7: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity". 1902: 1759: 886:
measured from a particular direction by an instrument, atmospheric properties (like
2312: 2155: 1979: 1824: 554: 1433: 1281: 792:
Longwave radiation at the surface (both outward and inward) is mainly measured by
46:
emitted by Earth's surface, atmosphere, and clouds. It may also be referred to as
1362:"ASTER global emissivity database: 100 times more detailed than its predecessor" 1249:
Contributions to Climate Research Using the AIRS Science Team Version-5 Products
971: 887: 874:
Many applications call for calculation of long-wave radiation quantities. Local
793: 655: 541:
that correspond to particular wavelengths of radiation that the gas can absorb.
515: 484: 246: 104: 1407:"Absorption coefficient of carbon dioxide across atmospheric troposphere layer" 1808: 1689: 997: 910: 866:
Simulated wavelength spectrum of Earth's OLR under clear-sky conditions using
848: 729: 426: 2398: 2096: 1894: 1816: 819:
NASA Clouds and the Earth's Radiant Energy System (CERES) project (2000-2022)
2227: 2199: 2190: 1261: 909:
Another common approach is to estimate values using surface temperature and
704:, but also by the altitude (and temperature) at which longwave radiation is 430: 307: 72:. Outgoing longwave radiation plays an important role in planetary cooling. 2326: 2147: 1946: 1452: 1557: 828: 662:
O) and is increased, this has a number of effects. At a given wavelength
2303: 2278: 1886: 1675: 1212: 914: 891: 883: 594:
is directly visible as the large dip near the center of the OLR spectrum.
139: 51: 264:. Planets natural tend to a state of approximate radiative equilibrium. 146:
Outgoing longwave radiation (OLR) constitutes a critical component of
2104: 1411: 974:; Pirani, Anna; Connors, Sarah L.; Péan, Clotilde; et al. (eds.). 867: 639: 523: 135: 2409:
Office of Satellite Data Processing and Distribution, Radiation Budget
1125: 2139: 1971: 537:
and energy levels. Each type of greenhouse gas has a unique group of
2088: 1583:"Thermal Equilibrium of the Atmosphere with a Convective Adjustment" 1383: 800:, which provides crucial well-calibrated measurements for studying 861: 827: 723: 585: 527: 129: 18: 1336:"Stefan–Boltzmann law & Kirchhoff's law of thermal radiation" 984: 1247:
Susskind, Joel; Molnar, Gyula; Iredell, Lena (21 August 2011).
779:
instruments aboard Aqua, Terra, Suomi-NPP and NOAA-20, and the
2348: 1842:. NASA Goddard Institute for Space Studies - Science Briefs. 783:
instrument on the Meteosat Second Generation (MSG) satellite.
2419:
Meteorological Satellite Center, Japan Meteorological Agency
1652:"The attribution of the present-day total greenhouse effect" 1308:"Oceans Are Absorbing Almost All of the Globe's Excess Heat" 550:
therefore reduce the amount of outgoing longwave radiation.
234:{\displaystyle \mathrm {EEI} =\mathrm {ASR} -\mathrm {OLR} } 2264:
10.1175/1520-0477(1993)074<0815:TNERBE>2.0.CO;2
1745:
10.1175/1520-0477(1997)078<0197:eagmeb>2.0.co;2
1608:
10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2
1231:"Earth Matters: Earth's Radiation Budget is Out of Balance" 1174:
10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
134:
The growth in Earth's energy imbalance from satellite and
1186: 1184: 114:
The balance between OLR (energy lost) and incoming solar
16:
Energy transfer mechanism which enables planetary cooling
2022: 2020: 2018: 2016: 1026:(2. ed.). Madison, Wisc.: Sundog Publ. p. 68. 1995:"Observational determination of the greenhouse effect" 1947:"Observational determination of the greenhouse effect" 781:
Geostationary Earth Radiation Budget instrument (GERB)
675:
OLR at other wavelengths where absorption is weaker.
411: 387: 363: 319: 288: 191: 1486: 1484: 1147:Kiehl, J. T.; Trenberth, Kevin E. (February 1997). 755:
infrared interferometer spectrometer and radiometer
1945: 1789:IEEE Transactions on Geoscience and Remote Sensing 417: 393: 369: 346: 294: 233: 54:portion of the spectrum, but is distinct from the 1661:, vol. 115, no. D20, pp. D20106, 1502:. American Institute of Physics. pp. 33–38. 961: 959: 765:were designed to span wavelengths of 5 to 25 μm. 58:(SW) near-infrared radiation found in sunlight. 2244:Bulletin of the American Meteorological Society 1919:Climate Change 2021: The Physical Science Basis 1714:Bulletin of the American Meteorological Society 1153:Bulletin of the American Meteorological Society 816:NASA GEWEX Surface Radiation Budget (1983-2007) 2404:NASA Earth Observatory Outgoing Heat Radiation 2368: 2366: 1493:"Infrared radiation and planetary temperature" 913:, then compare to satellite top-of-atmosphere 761:and deployed on Nimbus-3 and Nimbus-4. These 1840:"Taking the Measure of the Greenhouse Effect" 1224: 1222: 1099:Singh, Martin S.; O'Neill, Morgan E. (2022). 898:. Calculations of these quantities solve the 8: 2429:Planetary Energy Balance, Physical Geography 2216:Journal of Geophysical Research: Atmospheres 1650:; R. Ruedy; R.L. Miller; A.A. Lacis (2010), 1330: 1328: 777:Clouds and the Earth's Radiant Energy System 347:{\displaystyle M=\epsilon \,\sigma \,T^{4}} 2374:"MODTRAN Infrared Light in the Atmosphere" 2279:"Global dimming and brightening: A review" 2054:"IRIS/Nimbus-4 Level 1 Radiance Data V001" 1710:"Earth's Annual Global Mean Energy Budget" 1708:Kiehl, J. T.; Trenberth, Kevin E. (1997). 1522:(2nd ed.). Elsevier. pp. 53–62. 1364:. NASA Earth Observatory. 17 November 2014 1149:"Earth's Annual Global Mean Energy Budget" 618:of surface emissions, not reaching space. 2302: 2198: 1743: 1733: 1674: 1606: 1442: 1432: 1260: 1172: 1124: 996: 798:Baseline Surface Radiation Network (BSRN) 670:in a reduction in OLR at that wavelength. 410: 386: 362: 338: 333: 329: 318: 287: 220: 206: 192: 190: 1276: 1274: 1272: 1048:"What is the Surface Area of the Earth?" 282:In particular, the emitted energy flux, 142:(~0.3% of the incident solar radiation). 2052:Hansel, Rudolf A.; et al. (1994). 1024:A first course in atmospheric radiation 955: 174:Energy arrives in the form of absorbed 1384:"Joint Emissivity Database Initiative" 1242: 1240: 1101:"Thermodynamics of the climate system" 2327:"NASA GEWEX Surface Radiation Budget" 1782: 1780: 1622:Wallace, J. M.; Hobbs, P. V. (2006). 1581:Manabe, S.; Strickler, R. F. (1964). 1543: 1541: 1539: 1513: 1511: 1509: 1491:Pierrehumbert, R. T. (January 2011). 757:(IRIS) instruments developed for the 622:Effect of increasing greenhouse gases 495:Assuming no cloud cover, most of the 7: 1467:"Greenhouse Gas Absorption Spectrum" 904:atmospheric radiative transfer codes 456:Kirchhoff's law of thermal radiation 1760:"Clouds & Radiation Fact Sheet" 499:that reach space do so through the 76:between 4 μm and 100 μm. 2425: (archived September 27, 2007) 2027:Pierrehumbert, Raymond T. (2010). 1993:Raval, A.; Ramanathan, V. (1990). 1944:Raval, A.; Ramanathan, V. (1989). 1846:from the original on 21 April 2021 1251:. SPIE Optics and Photonics 2011. 840:for a body at surface temperature 302:(measured in W/m) is given by the 227: 224: 221: 213: 210: 207: 199: 196: 193: 14: 939:Satellite temperature measurement 906:adapted to the specific problem. 773:Earth Radiation Budget Experiment 582:Relationship to greenhouse effect 1386:. NASA Jet Propulsion Laboratory 1229:Joseph Atkinson (22 June 2021). 753:Earliest observations were with 2399:NOAA Climate Diagnostics Center 2283:Journal of Geophysical Research 2171:Journal of Geophysical Research 2029:Principles of Planetary Climate 1867:Journal of Geophysical Research 2031:. Cambridge University Press. 1626:(2 ed.). Academic Press. 1286:CIMSS: University of Wisconsin 824:OLR calculation and simulation 1: 2277:Wild, Martin (27 June 2009). 1434:10.1016/j.heliyon.2018.e00785 1253:NASA Technical Reports Server 70:emitted terrestrial radiation 1838:Gavin Schmidt (2010-10-01). 1518:Hartmann, Dennis L. (2016). 1306:Wallace, Tim (12 Sep 2016). 1193:Geophysical Research Letters 626:When the concentration of a 2415: (archived May 5, 2008) 1520:Global Physical Climatology 1282:"Earth's Radiation Balance" 771:These were followed by the 62:Outgoing longwave radiation 50:. This radiation is in the 2465: 2077:Arctic and Alpine Research 989:Cambridge University Press 739:atmospheric thermodynamics 1809:10.1109/TGRS.2008.2005206 1764:earthobservatory.nasa.gov 1548:Oke, T. R. (2002-09-11). 1233:. NASA Earth Observatory. 998:10.1017/9781009157896.022 763:Michelson interferometers 418:{\displaystyle \epsilon } 403:Stefan–Boltzmann constant 1022:Petty, Grant W. (2006). 968:Masson-Delmotte, Valérie 180:Earth's energy imbalance 126:Planetary energy balance 107:that drives atmospheric 2376:. University of Chicago 2228:10.1029/JD089iD04p05021 2191:10.1029/jc075i030p05831 1550:Boundary Layer Climates 1469:. Iowa State University 1080:. University of Calgary 394:{\displaystyle \sigma } 1074:"Earth's Heat Balance" 991:. pp. 2215–2256. 919:brightness temperature 871: 859: 733: 714:surface budget fallacy 687:Surface budget fallacy 595: 471:Atmospheric absorption 419: 395: 371: 348: 296: 235: 155:conservation of energy 143: 24: 1558:10.4324/9780203407219 934:Effective temperature 865: 831: 727: 589: 420: 396: 372: 349: 297: 261:radiative equilibrium 236: 148:Earth's energy budget 133: 120:Earth's energy budget 96:10 sq mi). 48:terrestrial radiation 22: 2304:10.1029/2008JD011470 1887:10.1029/2010jd014287 1676:10.1029/2010JD014287 1213:10.1029/2021GL093047 838:black-body radiation 788:Surface LW radiation 409: 385: 379:absolute temperature 361: 317: 304:Stefan–Boltzmann law 286: 189: 2295:2009JGRD..114.0D16W 2256:1993BAMS...74..815K 2183:1970JGR....75.5831C 2132:1970Natur.228..143H 1964:1989Natur.342..758R 1879:2010JGRD..11520106S 1801:2009ITGRS..47.1559W 1726:1997BAMS...78..197K 1695:4 June 2012 at the 1667:2010JGRD..11520106S 1624:Atmospheric Science 1599:1964JAtS...21..361M 1425:2018Heliy...400785W 1205:2021GeoRL..4893047L 1165:1997BAMS...78..197K 1117:2022PhT....75g..30S 944:Shortwave radiation 535:molecular structure 116:shortwave radiation 1686:on 22 October 2011 1312:The New York Times 1054:. 11 February 2017 900:radiative transfer 896:inversely inferred 872: 860: 836:. In addition the 734: 596: 501:atmospheric window 491:Atmospheric window 415: 391: 367: 344: 292: 268:energy imbalance. 231: 144: 33:longwave radiation 25: 2222:(D4): 5021–5038. 2177:(30): 5831–5857. 2126:(5267): 143–145. 2038:978-0-521-86556-2 1958:(6251): 758–761. 1633:978-0-12-732951-2 1567:978-0-203-40721-9 1529:978-0-12-328531-7 1126:10.1063/PT.3.5038 1033:978-0-9729033-1-8 876:radiative cooling 804:and brightening. 608:greenhouse effect 600:greenhouse effect 497:surface emissions 370:{\displaystyle T} 295:{\displaystyle M} 277:Thermal radiation 153:The principle of 44:thermal radiation 2456: 2386: 2385: 2383: 2381: 2370: 2361: 2360: 2358: 2356: 2349:"What is CERES?" 2345: 2339: 2338: 2336: 2334: 2323: 2317: 2316: 2306: 2274: 2268: 2267: 2238: 2232: 2231: 2211: 2205: 2204: 2202: 2200:2060/19700022421 2166: 2160: 2159: 2140:10.1038/228143a0 2115: 2109: 2108: 2072: 2066: 2065: 2063: 2061: 2049: 2043: 2042: 2024: 2011: 2010: 2008: 2006: 1990: 1984: 1983: 1972:10.1038/342758a0 1949: 1941: 1935: 1934: 1932: 1930: 1924: 1913: 1907: 1906: 1862: 1856: 1855: 1853: 1851: 1835: 1829: 1828: 1795:(5): 1559–1570. 1784: 1775: 1774: 1772: 1771: 1756: 1750: 1749: 1747: 1737: 1705: 1699: 1687: 1685: 1679:, archived from 1678: 1659:J. Geophys. Res. 1656: 1644: 1638: 1637: 1619: 1613: 1612: 1610: 1578: 1572: 1571: 1545: 1534: 1533: 1515: 1504: 1503: 1497: 1488: 1479: 1478: 1476: 1474: 1463: 1457: 1456: 1446: 1436: 1402: 1396: 1395: 1393: 1391: 1380: 1374: 1373: 1371: 1369: 1358: 1352: 1351: 1349: 1347: 1332: 1323: 1322: 1320: 1318: 1303: 1297: 1296: 1294: 1292: 1278: 1267: 1266: 1264: 1262:2060/20110015241 1244: 1235: 1234: 1226: 1217: 1216: 1188: 1179: 1178: 1176: 1144: 1138: 1137: 1135: 1133: 1128: 1096: 1090: 1089: 1087: 1085: 1078:Energy Education 1070: 1064: 1063: 1061: 1059: 1044: 1038: 1037: 1019: 1013: 1012: 1000: 982: 963: 695:It is sometimes 539:absorption bands 512:Greenhouse gases 460:greenhouse gases 424: 422: 421: 416: 400: 398: 397: 392: 376: 374: 373: 368: 353: 351: 350: 345: 343: 342: 301: 299: 298: 293: 240: 238: 237: 232: 230: 216: 202: 95: 91: 87: 2464: 2463: 2459: 2458: 2457: 2455: 2454: 2453: 2434: 2433: 2423:Wayback Machine 2413:Wayback Machine 2395: 2390: 2389: 2379: 2377: 2372: 2371: 2364: 2354: 2352: 2347: 2346: 2342: 2332: 2330: 2325: 2324: 2320: 2289:(D10): D00D16. 2276: 2275: 2271: 2240: 2239: 2235: 2213: 2212: 2208: 2168: 2167: 2163: 2117: 2116: 2112: 2089:10.2307/1551171 2074: 2073: 2069: 2059: 2057: 2051: 2050: 2046: 2039: 2026: 2025: 2014: 2004: 2002: 1992: 1991: 1987: 1943: 1942: 1938: 1928: 1926: 1922: 1915: 1914: 1910: 1873:(D20): D20106. 1864: 1863: 1859: 1849: 1847: 1837: 1836: 1832: 1786: 1785: 1778: 1769: 1767: 1758: 1757: 1753: 1707: 1706: 1702: 1697:Wayback Machine 1683: 1654: 1646: 1645: 1641: 1634: 1621: 1620: 1616: 1580: 1579: 1575: 1568: 1547: 1546: 1537: 1530: 1517: 1516: 1507: 1495: 1490: 1489: 1482: 1472: 1470: 1465: 1464: 1460: 1404: 1403: 1399: 1389: 1387: 1382: 1381: 1377: 1367: 1365: 1360: 1359: 1355: 1345: 1343: 1340:tec-science.com 1334: 1333: 1326: 1316: 1314: 1305: 1304: 1300: 1290: 1288: 1280: 1279: 1270: 1246: 1245: 1238: 1228: 1227: 1220: 1190: 1189: 1182: 1146: 1145: 1141: 1131: 1129: 1098: 1097: 1093: 1083: 1081: 1072: 1071: 1067: 1057: 1055: 1046: 1045: 1041: 1034: 1021: 1020: 1016: 1009: 980: 965: 964: 957: 952: 930: 857: 846: 826: 810: 790: 747: 722: 689: 661: 653: 645: 637: 624: 614:, or 159/398 = 593: 584: 575: 563: 547: 509: 493: 473: 448: 439: 407: 406: 383: 382: 359: 358: 334: 315: 314: 284: 283: 274: 187: 186: 176:solar radiation 128: 93: 92:10 km; 2.0 89: 85: 41:electromagnetic 29:climate science 17: 12: 11: 5: 2462: 2460: 2452: 2451: 2446: 2436: 2435: 2432: 2431: 2426: 2416: 2406: 2401: 2394: 2393:External links 2391: 2388: 2387: 2362: 2340: 2318: 2269: 2250:(5): 815–830. 2233: 2206: 2161: 2110: 2067: 2044: 2037: 2012: 1985: 1936: 1908: 1857: 1830: 1776: 1751: 1735:10.1.1.168.831 1720:(2): 197–208. 1700: 1639: 1632: 1614: 1593:(4): 361–385. 1573: 1566: 1535: 1528: 1505: 1480: 1458: 1419:(10): e00785. 1397: 1375: 1353: 1324: 1298: 1268: 1236: 1218: 1180: 1159:(2): 197–208. 1139: 1091: 1065: 1052:Universe Today 1039: 1032: 1014: 1007: 954: 953: 951: 948: 947: 946: 941: 936: 929: 926: 855: 844: 825: 822: 821: 820: 817: 809: 806: 802:global dimming 789: 786: 785: 784: 769: 766: 759:Nimbus program 746: 743: 721: 718: 688: 685: 681:global warming 672: 671: 667: 659: 651: 643: 635: 632:carbon dioxide 628:greenhouse gas 623: 620: 610:was 398−239 = 591: 583: 580: 574: 571: 562: 559: 546: 543: 520:carbon dioxide 508: 505: 492: 489: 472: 469: 447: 444: 438: 435: 414: 390: 366: 355: 354: 341: 337: 332: 328: 325: 322: 291: 273: 270: 243: 242: 229: 226: 223: 219: 215: 212: 209: 205: 201: 198: 195: 172: 171: 127: 124: 88:10 m (5.1 15: 13: 10: 9: 6: 4: 3: 2: 2461: 2450: 2447: 2445: 2442: 2441: 2439: 2430: 2427: 2424: 2420: 2417: 2414: 2410: 2407: 2405: 2402: 2400: 2397: 2396: 2392: 2375: 2369: 2367: 2363: 2350: 2344: 2341: 2328: 2322: 2319: 2314: 2310: 2305: 2300: 2296: 2292: 2288: 2284: 2280: 2273: 2270: 2265: 2261: 2257: 2253: 2249: 2245: 2237: 2234: 2229: 2225: 2221: 2217: 2210: 2207: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2165: 2162: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2114: 2111: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2071: 2068: 2055: 2048: 2045: 2040: 2034: 2030: 2023: 2021: 2019: 2017: 2013: 2000: 1996: 1989: 1986: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1948: 1940: 1937: 1921: 1920: 1912: 1909: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1861: 1858: 1845: 1841: 1834: 1831: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1790: 1783: 1781: 1777: 1765: 1761: 1755: 1752: 1746: 1741: 1736: 1731: 1727: 1723: 1719: 1715: 1711: 1704: 1701: 1698: 1694: 1691: 1682: 1677: 1672: 1668: 1664: 1660: 1653: 1649: 1648:Schmidt, G.A. 1643: 1640: 1635: 1629: 1625: 1618: 1615: 1609: 1604: 1600: 1596: 1592: 1588: 1587:J. Atmos. Sci 1584: 1577: 1574: 1569: 1563: 1559: 1555: 1551: 1544: 1542: 1540: 1536: 1531: 1525: 1521: 1514: 1512: 1510: 1506: 1501: 1500:Physics Today 1494: 1487: 1485: 1481: 1468: 1462: 1459: 1454: 1450: 1445: 1440: 1435: 1430: 1426: 1422: 1418: 1414: 1413: 1408: 1401: 1398: 1385: 1379: 1376: 1363: 1357: 1354: 1342:. 25 May 2019 1341: 1337: 1331: 1329: 1325: 1313: 1309: 1302: 1299: 1287: 1283: 1277: 1275: 1273: 1269: 1263: 1258: 1254: 1250: 1243: 1241: 1237: 1232: 1225: 1223: 1219: 1214: 1210: 1206: 1202: 1198: 1194: 1187: 1185: 1181: 1175: 1170: 1166: 1162: 1158: 1154: 1150: 1143: 1140: 1127: 1122: 1118: 1114: 1110: 1106: 1105:Physics Today 1102: 1095: 1092: 1079: 1075: 1069: 1066: 1053: 1049: 1043: 1040: 1035: 1029: 1025: 1018: 1015: 1010: 1008:9781009157896 1004: 999: 994: 990: 986: 979: 978: 973: 969: 962: 960: 956: 949: 945: 942: 940: 937: 935: 932: 931: 927: 925: 922: 920: 916: 912: 907: 905: 901: 897: 893: 889: 885: 882:By using the 880: 877: 869: 864: 854: 850: 843: 839: 835: 830: 823: 818: 815: 814: 813: 807: 805: 803: 799: 795: 787: 782: 778: 774: 770: 767: 764: 760: 756: 752: 751: 750: 744: 742: 740: 731: 726: 719: 717: 715: 710: 707: 703: 698: 693: 686: 684: 682: 676: 668: 665: 664: 663: 657: 649: 648:nitrous oxide 641: 633: 629: 621: 619: 617: 613: 609: 603: 601: 588: 581: 579: 573:Day and night 572: 570: 567: 560: 558: 556: 551: 544: 542: 540: 536: 531: 529: 525: 521: 517: 513: 506: 504: 502: 498: 490: 488: 486: 481: 477: 470: 468: 464: 461: 457: 454:According to 452: 445: 443: 442:around 0.95. 436: 434: 432: 428: 412: 404: 388: 380: 364: 339: 335: 330: 326: 323: 320: 313: 312: 311: 309: 305: 289: 280: 278: 271: 269: 265: 263: 262: 255: 251: 248: 217: 203: 185: 184: 183: 181: 177: 169: 166: 163: 161: 160: 159: 156: 151: 149: 141: 137: 132: 125: 123: 121: 117: 112: 110: 106: 102: 97: 82: 77: 73: 71: 67: 63: 59: 57: 53: 49: 45: 42: 38: 34: 30: 21: 2378:. Retrieved 2353:. Retrieved 2343: 2331:. Retrieved 2321: 2286: 2282: 2272: 2247: 2243: 2236: 2219: 2215: 2209: 2174: 2170: 2164: 2123: 2119: 2113: 2080: 2076: 2070: 2058:. Retrieved 2047: 2028: 2003:. Retrieved 1998: 1988: 1955: 1951: 1939: 1927:. Retrieved 1925:. IPCC. 2021 1918: 1911: 1870: 1866: 1860: 1848:. Retrieved 1833: 1792: 1788: 1768:. Retrieved 1766:. 1999-03-01 1763: 1754: 1717: 1713: 1703: 1681:the original 1658: 1642: 1623: 1617: 1590: 1586: 1576: 1549: 1519: 1499: 1471:. Retrieved 1461: 1416: 1410: 1400: 1388:. Retrieved 1378: 1366:. Retrieved 1356: 1344:. Retrieved 1339: 1315:. Retrieved 1311: 1301: 1289:. Retrieved 1285: 1252: 1248: 1196: 1192: 1156: 1152: 1142: 1130:. Retrieved 1111:(7): 30–37. 1108: 1104: 1094: 1082:. Retrieved 1077: 1068: 1056:. Retrieved 1051: 1042: 1023: 1017: 976: 972:Zhai, Panmao 923: 908: 881: 873: 852: 851:temperature 841: 811: 794:pyrgeometers 791: 748: 735: 720:Measurements 713: 711: 705: 701: 696: 694: 690: 677: 673: 625: 615: 611: 607: 604: 597: 576: 568: 564: 555:cloud albedo 552: 548: 532: 510: 496: 494: 482: 478: 474: 465: 453: 449: 440: 433:would emit. 356: 281: 275: 266: 259: 256: 252: 244: 173: 168: 165: 162: 152: 145: 113: 98: 78: 74: 69: 65: 61: 60: 47: 36: 32: 26: 2449:Temperature 2444:Climatology 888:temperature 697:incorrectly 656:water vapor 516:water vapor 485:troposphere 247:Temperature 105:heat engine 2438:Categories 2060:14 October 1850:13 January 1770:2023-05-04 1688:, D20106. 1390:10 October 1368:10 October 950:References 911:emissivity 849:tropopause 730:wavenumber 446:Atmosphere 427:emissivity 2097:0004-0851 2083:(1): 45. 1895:0148-0227 1817:0196-2892 1730:CiteSeerX 1690:Web page 894:) can be 858:is shown. 630:(such as 431:blackbody 413:ϵ 389:σ 331:σ 327:ϵ 308:blackbody 218:− 140:terawatts 56:shortwave 2148:16058447 2005:24 April 1929:24 April 1903:28195537 1844:Archived 1693:Archived 1453:30302408 1291:25 April 928:See also 915:radiance 892:humidity 884:radiance 728:Example 702:absorbed 654:O), and 310:matter: 306:for non- 272:Emission 109:dynamics 52:infrared 2421:at the 2411:at the 2380:12 July 2355:13 July 2333:13 July 2313:5118399 2291:Bibcode 2252:Bibcode 2179:Bibcode 2156:4267086 2128:Bibcode 2105:1551171 1980:4326910 1960:Bibcode 1875:Bibcode 1825:3822497 1797:Bibcode 1722:Bibcode 1663:Bibcode 1595:Bibcode 1473:13 July 1444:6174548 1421:Bibcode 1412:Heliyon 1346:12 July 1317:12 July 1201:Bibcode 1161:Bibcode 1132:12 July 1113:Bibcode 1084:12 July 868:MODTRAN 847:and at 706:emitted 640:methane 612:159 W/m 561:Details 524:methane 437:Surface 425:is the 401:is the 377:is the 182:(EEI): 136:in situ 2351:. NASA 2329:. NASA 2311:  2154:  2146:  2120:Nature 2103:  2095:  2035:  2001:: 5–16 1978:  1952:Nature 1901:  1893:  1823:  1815:  1732:  1630:  1564:  1526:  1451:  1441:  1199:(13). 1058:1 June 1030:  1005:  545:Clouds 526:, and 405:, and 357:where 2309:S2CID 2152:S2CID 2101:JSTOR 1976:S2CID 1923:(PDF) 1899:S2CID 1821:S2CID 1684:(PDF) 1655:(PDF) 1496:(PDF) 981:(PDF) 528:ozone 507:Gases 101:cools 39:) is 2382:2023 2357:2023 2335:2023 2144:PMID 2093:ISSN 2062:2022 2033:ISBN 2007:2023 1931:2023 1891:ISSN 1852:2022 1813:ISSN 1628:ISBN 1562:ISBN 1524:ISBN 1475:2023 1449:PMID 1392:2022 1370:2022 1348:2023 1319:2023 1293:2023 1134:2023 1086:2023 1060:2023 1028:ISBN 1003:ISBN 985:IPCC 834:ARTS 808:Data 606:the 81:flux 79:The 2299:doi 2287:114 2260:doi 2224:doi 2195:hdl 2187:doi 2136:doi 2124:228 2085:doi 1968:doi 1956:342 1883:doi 1871:115 1805:doi 1740:doi 1671:doi 1603:doi 1554:doi 1439:PMC 1429:doi 1257:hdl 1209:doi 1169:doi 1121:doi 993:doi 917:or 890:or 856:min 745:OLR 646:), 642:(CH 638:), 634:(CO 616:40% 122:). 84:5.1 66:OLR 37:LWR 27:In 2440:: 2365:^ 2307:. 2297:. 2285:. 2281:. 2258:. 2248:74 2246:. 2220:89 2218:. 2193:. 2185:. 2175:75 2173:. 2150:. 2142:. 2134:. 2122:. 2099:. 2091:. 2081:16 2079:. 2015:^ 1997:. 1974:. 1966:. 1954:. 1950:. 1897:. 1889:. 1881:. 1869:. 1819:. 1811:. 1803:. 1793:47 1791:. 1779:^ 1762:. 1738:. 1728:. 1718:78 1716:. 1712:. 1669:, 1657:, 1601:. 1591:21 1589:. 1585:. 1560:. 1552:. 1538:^ 1508:^ 1498:. 1483:^ 1447:. 1437:. 1427:. 1415:. 1409:. 1338:. 1327:^ 1310:. 1284:. 1271:^ 1255:. 1239:^ 1221:^ 1207:. 1197:48 1195:. 1183:^ 1167:. 1157:78 1155:. 1151:. 1119:. 1109:75 1107:. 1103:. 1076:. 1050:. 1001:. 987:/ 983:. 970:; 958:^ 921:. 741:. 683:. 658:(H 650:(N 602:. 530:. 522:, 518:, 381:, 167:− 164:= 150:. 111:. 31:, 2384:. 2359:. 2337:. 2315:. 2301:: 2293:: 2266:. 2262:: 2254:: 2230:. 2226:: 2203:. 2197:: 2189:: 2181:: 2158:. 2138:: 2130:: 2107:. 2087:: 2064:. 2041:. 2009:. 1982:. 1970:: 1962:: 1933:. 1905:. 1885:: 1877:: 1854:. 1827:. 1807:: 1799:: 1773:. 1748:. 1742:: 1724:: 1673:: 1665:: 1636:. 1611:. 1605:: 1597:: 1570:. 1556:: 1532:. 1477:. 1455:. 1431:: 1423:: 1417:4 1394:. 1372:. 1350:. 1321:. 1295:. 1265:. 1259:: 1215:. 1211:: 1203:: 1177:. 1171:: 1163:: 1136:. 1123:: 1115:: 1088:. 1062:. 1036:. 1011:. 995:: 870:. 853:T 845:s 842:T 660:2 652:2 644:4 636:2 592:2 365:T 340:4 336:T 324:= 321:M 290:M 241:. 228:R 225:L 222:O 214:R 211:S 208:A 204:= 200:I 197:E 194:E 170:. 94:× 90:× 86:× 64:( 35:(

Index


climate science
electromagnetic
thermal radiation
infrared
shortwave
flux
cools
heat engine
dynamics
shortwave radiation
Earth's energy budget

in situ
terawatts
Earth's energy budget
conservation of energy
solar radiation
Earth's energy imbalance
Temperature
radiative equilibrium
Thermal radiation
Stefan–Boltzmann law
blackbody
absolute temperature
Stefan–Boltzmann constant
emissivity
blackbody
Kirchhoff's law of thermal radiation
greenhouse gases

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.