Knowledge (XXG)

Output impedance

Source đź“ť

36: 151: 181:
All devices and connections have non-zero resistance and reactance, and therefore no device can be a perfect source. The output impedance is often used to model the source's response to current flow. Some portion of the device's measured output impedance may not physically exist within the device;
767:
is lower than when there is no current delivered by the cell. The reason for this is that part of the available energy of the cell is used up to drive charges through the cell. This energy is wasted by the so-called "internal resistance" of that cell. This wasted energy shows up as lost voltage.
475:
The actual output impedance for most devices is not the same as the rated output impedance. A power amplifier may have a rated impedance of 8 ohms, but the actual output impedance will vary depending on circuit conditions. The rated output impedance is the impedance into which the amplifier can
201:
Sources are modeled as ideal sources (ideal meaning sources that always keep the desired value) combined with their output impedance. The output impedance is defined as this modeled and/or real impedance in series with an ideal voltage source. Mathematically, current and voltage sources can be
491:. It is impossible to directly measure the internal resistance of a battery, but it can be calculated from current and voltage data measured from a circuit. When a load is applied to a battery, the internal resistance can be calculated from the following equations: 612: 233:
The source resistance of a purely resistive device can be experimentally determined by increasingly loading the device until the voltage across the load (AC or DC) is one half of the open circuit voltage. At this point, the load resistance and
248:
The generalized source impedance for a reactive (inductive or capacitive) source device is more complicated to determine, and is usually measured with specialized instruments, rather than taking many measurements by hand.
400: 331: 502: 497: 814: 182:
some are artifacts that are due to the chemical, thermodynamic, or mechanical properties of the source. This impedance can be imagined as an impedance in series with an ideal
136:
when the load draws current, the source network being the portion of the network that transmits and the load network being the portion of the network that consumes.
732: 703: 674: 645: 754: 245:. (The internal resistance may not be the same for different types of loading or at different frequencies, especially in devices like chemical batteries.) 419:, the input impedance of components is several times (technically, more than 10) the output impedance of the device connected to them. This is called 925: 259: 760:
Internal resistance varies with the age of a battery, but for most commercial batteries the internal resistance is on the order of 1 ohm.
887: 241:
It can more accurately be described by keeping track of the voltage vs current curves for various loads, and calculating the resistance from
113: 57: 154:
Circuit to the left of central set of open circles models the source circuit, while circuit to the right models the connected circuit.
349: 282: 79: 930: 607:{\displaystyle {\begin{aligned}R_{B}&=\left({\frac {Vs}{I}}\right)-R_{L}\\&={\frac {V_{S}-V_{L}}{I}}\end{aligned}}} 855: 195: 50: 44: 221:, the term "output impedance" usually refers to the effect upon a small-amplitude signal, and will vary with the 61: 203: 405:
gives the small source impedance (output impedance) of the power amplifier. This can be calculated from the
771: 93: 488: 873: 825: 487:
is a concept that helps model the electrical consequences of the complex chemical reactions inside a
117: 109: 764: 484: 235: 207: 448: 420: 272:
is usually less than 0.1 Î©, but this is rarely specified. Instead it is "hidden" within the
101: 150: 447:
In video, RF, and other systems, impedances of inputs and outputs are the same. This is called
883: 835: 225:
of the transistor, that is, with the direct current (DC) and voltage applied to the device.
214: 105: 710: 681: 652: 623: 258: 845: 830: 412:
of the loudspeaker (typically 2, 4, or 8 ohms) and the given value of the damping factor.
269: 121: 910: 840: 739: 273: 187: 183: 129: 919: 850: 133: 242: 877: 17: 860: 222: 218: 27:
Measure of the opposition to current flow by an internal electrical load
911:
Calculation of the Damping Factor and the Damping of Impedance Bridging
139:
Because of this the output impedance is sometimes referred to as the
149: 132:. The output impedance is a measure of the source's propensity to 416: 395:{\displaystyle Z_{\mathrm {S} }={\frac {Z_{\mathrm {L} }}{DF}}} 326:{\displaystyle DF={\frac {Z_{\mathrm {L} }}{Z_{\mathrm {S} }}}} 29: 774: 763:
When there is a current through a cell, the measured
742: 713: 684: 655: 626: 500: 476:
deliver its maximum amount of power without failing.
352: 285: 808: 748: 726: 697: 668: 639: 606: 394: 325: 163:is output impedance as seen by the load, and 8: 756:is the total current supplied by the battery 882:(2nd ed.). Merrill. pp. 243–246. 794: 781: 773: 741: 718: 712: 689: 683: 660: 654: 647:is the internal resistance of the battery 631: 625: 588: 575: 568: 552: 526: 509: 501: 499: 375: 374: 368: 358: 357: 351: 314: 313: 302: 301: 295: 284: 172:is input impedance as seen by the source. 80:Learn how and when to remove this message 43:This article includes a list of general 809:{\displaystyle r={\frac {E-V_{L}}{I}}} 734:is the total resistance of the circuit 676:is the battery voltage without a load 7: 104:is the measure of the opposition to 879:Fundamentals of Electronic Devices 705:is the battery voltage with a load 376: 359: 315: 303: 49:it lacks sufficient corresponding 25: 257: 34: 851:Early effect small-signal model 186:, or in parallel with an ideal 926:Audio amplifier specifications 202:converted to each other using 1: 856:Equivalent series resistance 264:The real output impedance (Z 196:Series and parallel circuits 947: 451:or a matched connection. 124:being connected that is 768:Internal resistance is 415:Generally in audio and 64:more precise citations. 810: 750: 728: 699: 670: 641: 608: 396: 327: 173: 94:electrical engineering 931:Electrical parameters 811: 751: 729: 727:{\displaystyle R_{L}} 700: 698:{\displaystyle V_{L}} 671: 669:{\displaystyle V_{S}} 642: 640:{\displaystyle R_{B}} 609: 423:or voltage bridging. 397: 328: 276:parameter, which is: 153: 826:Electrical impedance 772: 740: 711: 682: 653: 624: 498: 350: 283: 485:Internal resistance 236:internal resistance 806: 746: 724: 695: 666: 637: 604: 602: 449:impedance matching 421:impedance bridging 392: 323: 204:ThĂ©venin's theorem 174: 145:internal impedance 102:electrical network 889:978-0-675-08771-1 836:Nominal impedance 804: 749:{\displaystyle I} 598: 539: 440:, (in practice:) 390: 321: 213:In the case of a 130:electrical source 90: 89: 82: 18:Output resistance 16:(Redirected from 938: 900: 898: 896: 874:Tocci, Ronald J. 815: 813: 812: 807: 805: 800: 799: 798: 782: 755: 753: 752: 747: 733: 731: 730: 725: 723: 722: 704: 702: 701: 696: 694: 693: 675: 673: 672: 667: 665: 664: 646: 644: 643: 638: 636: 635: 613: 611: 610: 605: 603: 599: 594: 593: 592: 580: 579: 569: 561: 557: 556: 544: 540: 535: 527: 514: 513: 401: 399: 398: 393: 391: 389: 381: 380: 379: 369: 364: 363: 362: 332: 330: 329: 324: 322: 320: 319: 318: 308: 307: 306: 296: 261: 253:Audio amplifiers 215:nonlinear device 208:Norton's theorem 171: 162: 141:source impedance 112:), both static ( 98:output impedance 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 946: 945: 941: 940: 939: 937: 936: 935: 916: 915: 907: 894: 892: 890: 872: 869: 846:Voltage divider 831:Input impedance 822: 790: 783: 770: 769: 738: 737: 714: 709: 708: 685: 680: 679: 656: 651: 650: 627: 622: 621: 601: 600: 584: 571: 570: 559: 558: 548: 528: 522: 515: 505: 496: 495: 482: 467: 460: 439: 432: 411: 382: 370: 353: 348: 347: 342: 309: 297: 281: 280: 270:power amplifier 267: 255: 231: 179: 170: 164: 161: 155: 134:drop in voltage 116:) and dynamic ( 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 944: 942: 934: 933: 928: 918: 917: 914: 913: 906: 905:External links 903: 902: 901: 888: 876:(1975). "11". 868: 865: 864: 863: 858: 853: 848: 843: 841:Damping factor 838: 833: 828: 821: 818: 803: 797: 793: 789: 786: 780: 777: 758: 757: 745: 735: 721: 717: 706: 692: 688: 677: 663: 659: 648: 634: 630: 615: 614: 597: 591: 587: 583: 578: 574: 567: 564: 562: 560: 555: 551: 547: 543: 538: 534: 531: 525: 521: 518: 516: 512: 508: 504: 503: 481: 478: 465: 458: 454:In this case, 437: 430: 426:In this case, 409: 403: 402: 388: 385: 378: 373: 367: 361: 356: 340: 334: 333: 317: 312: 305: 300: 294: 291: 288: 274:damping factor 265: 254: 251: 230: 227: 188:current source 184:voltage source 178: 175: 168: 159: 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 943: 932: 929: 927: 924: 923: 921: 912: 909: 908: 904: 891: 885: 881: 880: 875: 871: 870: 866: 862: 859: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 823: 819: 817: 801: 795: 791: 787: 784: 778: 775: 766: 761: 743: 736: 719: 715: 707: 690: 686: 678: 661: 657: 649: 632: 628: 620: 619: 618: 595: 589: 585: 581: 576: 572: 565: 563: 553: 549: 545: 541: 536: 532: 529: 523: 519: 517: 510: 506: 494: 493: 492: 490: 486: 479: 477: 473: 471: 464: 457: 452: 450: 445: 443: 436: 429: 424: 422: 418: 413: 408: 386: 383: 371: 365: 354: 346: 345: 344: 339: 310: 298: 292: 289: 286: 279: 278: 277: 275: 271: 262: 260: 252: 250: 246: 244: 239: 237: 228: 226: 224: 220: 216: 211: 209: 205: 199: 197: 193: 189: 185: 176: 167: 158: 152: 148: 146: 142: 137: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 95: 84: 81: 73: 63: 59: 53: 52: 46: 41: 32: 31: 19: 893:. Retrieved 878: 762: 759: 616: 483: 474: 472:= 1/1 = 1 . 469: 462: 455: 453: 446: 441: 434: 427: 425: 414: 406: 404: 337: 336:Solving for 335: 263: 256: 247: 240: 238:are equal. 232: 217:, such as a 212: 200: 191: 180: 165: 156: 144: 140: 138: 125: 122:load network 120:), into the 97: 91: 76: 67: 48: 229:Measurement 177:Description 62:introducing 920:Categories 895:27 October 867:References 861:Power gain 223:bias point 219:transistor 114:resistance 70:April 2023 45:references 788:− 582:− 546:− 480:Batteries 433:>> 243:Ohm's law 118:reactance 110:impedance 820:See also 444:> 10 126:internal 489:battery 268:) of a 128:to the 106:current 58:improve 886:  765:e.m.f. 617:where 108:flow ( 100:of an 96:, the 47:, but 897:2011 884:ISBN 417:hifi 206:and 198:). 194:: 192:see 143:or 92:In 922:: 816:. 470:DF 468:, 461:= 442:DF 343:, 210:. 147:. 899:. 802:I 796:L 792:V 785:E 779:= 776:r 744:I 720:L 716:R 691:L 687:V 662:S 658:V 633:B 629:R 596:I 590:L 586:V 577:S 573:V 566:= 554:L 550:R 542:) 537:I 533:s 530:V 524:( 520:= 511:B 507:R 466:L 463:Z 459:S 456:Z 438:S 435:Z 431:L 428:Z 410:L 407:Z 387:F 384:D 377:L 372:Z 366:= 360:S 355:Z 341:S 338:Z 316:S 311:Z 304:L 299:Z 293:= 290:F 287:D 266:S 190:( 169:L 166:Z 160:S 157:Z 83:) 77:( 72:) 68:( 54:. 20:)

Index

Output resistance
references
inline citations
improve
introducing
Learn how and when to remove this message
electrical engineering
electrical network
current
impedance
resistance
reactance
load network
electrical source
drop in voltage

voltage source
current source
Series and parallel circuits
Thévenin's theorem
Norton's theorem
nonlinear device
transistor
bias point
internal resistance
Ohm's law

power amplifier
damping factor
hifi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑