Knowledge

Overlapping gene

Source 📝

475: 718:
differ from prokaryotes in distribution of overlap types: while unidirectional (i.e., same-strand) overlaps are most common in prokaryotes, opposite or antiparallel-strand overlaps are more common in eukaryotes. Among the opposite-strand overlaps, convergent orientation is most common. Most studies of eukaryotic gene overlap have found that overlapping genes are extensively subject to genomic reorganization even in closely related species, and thus the presence of an overlap is not always well-conserved. Overlap with older or less taxonomically restricted genes is also a common feature of genes likely to have originated
153: 398: 257:(HBV), whose DNA genome contains numerous overlapping genes, showed the mean number of synonymous nucleotide substitutions per site in overlapping coding regions was significantly lower than that of non-overlapping regions. The same study showed that it was possible for some of these overlapping regions and their proteins to diverge significantly from the original when there's weak selection against amino acid change. The 499: 781:
may be inappropriate for the detection of overlapping genes as they are reliant on already curated genes while overlapping genes are generally overlooked contain atypical sequence composition. Genome annotation standards are also often biased against feature overlaps, such as genes entirely contained
717:
Compared to prokaryotic genomes, eukaryotic genomes are often poorly annotated and thus identifying genuine overlaps is relatively challenging. However, examples of validated gene overlaps have been documented in a variety of eukaryotic organisms, including mammals such as mice and humans. Eukaryotes
130:
regions of the genome. It is believed that most overlapping genes, or genes whose expressible nucleotide sequences partially overlap with each other, evolved in part due to this mechanism, suggesting that each overlap is composed of one ancestral gene and one novel gene. Subsequently, overprinting is
691:
co-regulated. In prokaryotic genomes, unidirectional overlaps are most common, possibly due to the tendency of adjacent prokaryotic genes to share orientation. Among unidirectional overlaps, long overlaps are more commonly read with a one-nucleotide offset in reading frame (i.e., phase 1) and short
550:
longer than the measured length of its genome. Analysis of the fully sequenced 5386 nucleotide genome showed that the virus possessed extensive overlap between coding regions, revealing that some genes (like genes D and E) were translated from the same DNA sequences but in different reading frames.
730:
The precise functions of overlapping genes seems to vary across the domains of life but several experiments have shown that they are important for virus lifecycles through proper protein expression and stoichiometry as well as playing a role in proper protein folding. A version of
139:
organization of viruses, likely to greatly increase the number of potential expressible genes from a small set of viral genetic information. It is likely that overprinting is responsible for the generation of numerous novel proteins by viruses over the course of their
786:
markedly penalizes overlaps between predicted ORFs. However, rapid advancement of genome-scale protein and RNA measurement tools along with increasingly advanced prediction algorithms have revealed an avalanche of overlapping genes and ORFs within numerous genomes.
465:
than older members, but the older members are also more disordered than other proteins, presumably as a way of alleviating the increased evolutionary constraints posed by overlap. Overlaps are more likely to originate in proteins that already have high disorder.
811:
is also used to identify genomic regions containing overlapping transcripts. It has been utilized to identify 180,000 alternate ORFs within previously annotated coding regions found in humans. Newly discovered ORFs such as these are verified using a variety of
768:
to deliver large human genes such as CFTR81. Therefore, it is suggested that overlapping genes evolved as a means to overcome these physical constraints, increasing genetic diversity by utilizing only the existing sequence rather than increasing genome length.
81:, gene overlap is almost always defined as mRNA transcript overlap. Specifically, a gene overlap in eukaryotes is defined when at least one nucleotide is shared between the boundaries of the primary mRNA transcripts of two or more genes, such that a DNA base 630:
and less restrictive genome sizes. The lower mutation rate of DNA viruses facilitates greater genomic novelty and evolutionary exploration within a structurally constrained genome and may be the primary driver of the evolution of overlapping genes.
602:
geometry. However, other studies dispute this conclusion and argue that the distribution of overlaps in viral genomes is more likely to reflect overprinting as the evolutionary origin of overlapping viral genes. Overprinting is a common source of
571:
was shown to express a novel protein that induces lysis of E. coli by inhibiting biosynthesis of its cell wall, suggesting that de novo protein creation through the process of overprinting can be a significant factor in the evolution of
295:
are encoded by overlapping genes that form a 549 nt coding region, and p19 is shown to be under positive selection while p22 is under purifying selection. Additional examples are mentioned in studies involving overlapping genes of the
1389:
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (April 1981). "Sequence and organization of the human mitochondrial genome".
252:
change is favored. Overlapping genes are reasoned to evolve under strict constraints as a single nucleotide substitution is able to alter the structure and function of the two proteins simultaneously. A study on the
678:
genomes typically find that around one third of bacterial genes are overlapped, though usually only by a few base pairs. Most studies of overlap in bacterial genomes find evidence that overlap serves a function in
244:
Studies on overlapping genes suggest that their evolution can be summarized in two possible models. In one model, the two proteins encoded by their respective overlapping genes evolve under similar
236:
occurs when the shared sequences use different reading frames. This can occur in "phase 1" or "phase 2", depending on whether the reading frames are offset by 1 or 2 nucleotides. Because a
1811:"Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products" 226:
occurs when the shared sequences use the same reading frame. This is also known as "phase 0". Unidirectional genes with phase 0 overlap are not considered distinct genes, but rather as
745:
size limitations. Dramatic viability loss was observed in viruses with genomes engineered to be longer than the wild-type genome. Increasing the single-stranded DNA genome length of
626:
or in separate capsids, are more likely to contain an overlapping sequence than non-segmented viruses. RNA viruses have fewer overlapping genes than DNA viruses which possess lower
46:
partially overlaps with the expressible nucleotide sequence of another gene. In this way, a nucleotide sequence may make a contribution to the function of one or more
1586:
Rogozin IB, Spiridonov AN, Sorokin AV, Wolf YI, Jordan I, Tatusov RL, Koonin EV (May 2002). "Purifying and directional selection in overlapping prokaryotic genes".
583: 622:
contain overlapping coding sequences. Segmented viruses in particular, or viruses with their genome split into separate pieces and packaged either all in the same
179:
end of another gene on the same strand. This arrangement can be symbolized with the notation → → where arrows indicate the reading frame from start to end.
2376:
Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchison CA, Slocombe PM, Smith M (1977). "Nucleotide sequence of bacteriophage ΦX174 DNA".
437:, who identified a candidate gene that may have arisen by this mechanism. Some de novo genes originating in this way may not remain overlapping, but 478:
Overlapping genes in the bacteriophage ΦX174 genome. There are 11 genes in this genome (A, A*, B-H, J, K). Genes B, K, E overlap with genes A, C, D.
474: 275:
The second model suggests that the two proteins and their respective overlap genes evolve under opposite selection pressures: one frame experiences
2618:"Finally, a Role Befitting A star : Strongly Conserved, Unessential Microvirus A* Proteins Ensure the Product Fidelity of Packaging Reactions" 280: 2186: 1301: 4378:"Viral Proteins Originated De Novo by Overprinting Can Be Identified by Codon Usage: Application to the "Gene Nursery" of Deltaretroviruses" 3231:
Cock PJ, Whitworth DE (19 March 2007). "Evolution of Gene Overlaps: Relative Reading Frame Bias in Prokaryotic Two-Component System Genes".
2674: 1332:"Viral Proteins Originated De Novo by Overprinting Can Be Identified by Codon Usage: Application to the "Gene Nursery" of Deltaretroviruses" 4197:"Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus" 272:
compared to the overlap regions that were highly conserved among different HBV strains, which are absolutely essential for the process.
265:
and the pre-S1 region of a surface protein of HBV, for example, had a percentage of conserved amino acids of 30% and 40%, respectively.
4634:
Prensner JR, Enache OM, Luria V, Krug K, Clauser KR, Dempster JM, Karger A, Wang L, Stumbraite K, Wang VM, Botta G (28 January 2021).
3659:"Overlapping genes of Aedes aegypti: evolutionary implications from comparison with orthologs of Anopheles gambiae and other insects" 3382:
Fellner L, Simon S, Scherling C, Witting M, Schober S, Polte C, Schmitt-Kopplin P, Keim DA, Scherer S, Neuhaus K (18 December 2015).
462: 4195:
Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, Salahudeen AA, Dudek AM, Teran CA, Davis TH, Lee CM (March 2021).
2031:
Saha D, Podder S, Panda A, Ghosh TC (May 2016). "Overlapping genes: A significant genomic correlate of prokaryotic growth rates".
4536:"Decision letter: Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins" 4311:"Overlapping genes and the proteins they encode differ significantly in their sequence composition from non-overlapping genes" 85:
at any point of the overlapping region would affect the transcripts of all genes involved. This definition includes 5′ and 3′
308:. This phenomenon of overlapping genes experiencing different selection pressures is suggested to be a consequence of a high 824:. Attempts at proof-by-synthesis are also performed to show beyond doubt the absence of any undiscovered overlapping genes. 1756:"Conserved and non-conserved regions in the Sendai virus genome: Evolution of a gene possessing overlapping reading frames" 389:
of the overlapping genes. Gene overlaps introduce novel evolutionary constraints on the sequences of the overlap regions.
152: 112: 651: 503: 406: 292: 288: 1689:"Positive Selection or Free to Vary? Assessing the Functional Significance of Sequence Change Using Molecular Dynamics" 650:. In some cases overprinted proteins do have well-defined, but novel, three-dimensional structures; one example is the 2204:"Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence" 791:
methods have been essential in discovering numerous overlapping genes and include a combination of techniques such as
556: 77:
transcripts, and is defined when these coding sequences share a nucleotide on either the same or opposite strands. In
61:. The current definition of an overlapping gene varies significantly between eukaryotes, prokaryotes, and viruses. In 3038:"Overlapping Genes Produce Proteins with Unusual Sequence Properties and Offer Insight into De Novo Protein Creation" 1544:
Normark S., Bergstrom S., Edlund T., Grundstrom T., Jaurin B., Lindberg F.P., Olsson O. (1983). "Overlapping genes".
3443:"New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation" 3384:"Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting" 634:
Studies of overprinted viral genes suggest that their protein products tend to be accessory proteins which are not
761: 413:
associated with blood cancers. This region contains numerous overlapping genes, several of which likely originated
313: 131:
also believed to be a source of novel proteins, as de novo proteins coded by these novel genes usually lack remote
156:
Tandem out-of-phase overlap of the human mitochondrial genes ATP8 (+1 frame, in red) and ATP6 (+3 frame, in blue)
4691:
Cao X, Khitun A, Luo Y, Na Z, Phoodokmai T, Sappakhaw K, Olatunji E, Uttamapinant C, Slavoff SA (5 March 2020).
1858:
Stamenković GG, Ćirković VS, Šiljić MM, Blagojević JV, Knežević AM, Joksić ID, Stanojević MP (24 October 2016).
563:
of the original A protein but possessing a different function It was concluded that other undiscovered sites of
119:
while still preserving the function of the original gene. Overprinting has been hypothesized as a mechanism for
4582:"Faculty Opinions recommendation of Pervasive functional translation of noncanonical human open reading frames" 753:, believed to be the result of the strict physical constraints imposed by the finite capsid volume. Studies on 684: 567:
could be hidden through the genome due to overlapping genes. An identified de novo gene of another overlapping
507: 379: 738:
has also been created where all gene overlaps were removed proving they were not necessary for replication.
765: 317: 754: 688: 383: 227: 1446:
Fukuda Y, Nakayama Y, Tomita M (December 2003). "On dynamics of overlapping genes in bacterial genomes".
610:
The proportion of viruses with overlapping coding sequences within their genomes varies. Double-stranded
4607: 4553: 4507: 4461: 301: 276: 245: 160:
Genes may overlap in a variety of ways and can be classified by their positions relative to each other.
43: 764:
showed that viral packaging is constrained by genetic cargo size limits, requiring the use of multiple
422: 3826:"Genome Modularization Reveals Overlapped Gene Topology Is Necessary for Efficient Viral Reproduction" 312:
of nucleotide substitution with different effects on the two frames; the substitutions may be majorly
4763: 4704: 4389: 4322: 3980: 3729: 3670: 3562: 3395: 3240: 2566: 2503: 2443: 2385: 2215: 2082: 1985: 1871: 1700: 1637: 1399: 1343: 1226: 1167: 792: 564: 438: 99:
refers to a type of overlap in which all or part of the sequence of one gene is read in an alternate
4309:
Pavesi A, Vianelli A, Chirico N, Bao Y, Blinkova O, Belshaw R, Firth A, Karlin D (19 October 2018).
4490:"Faculty Opinions recommendation of The RAST Server: rapid annotations using subsystems technology" 817: 297: 86: 700:. Robustly validated examples of long overlaps in bacterial genomes are rare; in the well-studied 4595: 4234: 4120: 3880: 3861: 3333:"Large gene overlaps in prokaryotic genomes: result of functional constraints or mispredictions?" 3264: 3151: 2981:"New insights into the evolutionary features of viral overlapping genes by discriminant analysis" 2598: 2535: 2409: 1954: 1791: 1669: 1423: 1104:
Normark S, Bergström S, Edlund T, Grundström T, Jaurin B, Lindberg FP, Olsson O (December 1983).
796: 647: 591: 345: 120: 4636:"Noncanonical open reading frames encode functional proteins essential for cancer cell survival" 429:
by mutations to introduce novel ORFs in alternate reading frames; he described the mechanism as
397: 4799: 4781: 4732: 4673: 4655: 4425: 4407: 4358: 4340: 4291: 4273: 4226: 4177: 4159: 4112: 4104: 4063: 4055: 4016: 3998: 3949: 3941: 3900: 3853: 3845: 3806: 3757: 3698: 3639: 3590: 3526: 3472: 3423: 3364: 3313: 3256: 3210: 3192: 3143: 3102: 3085:
Abroi A (1 December 2015). "A protein domain-based view of the virosphere–host relationship".
3067: 3018: 3000: 2961: 2943: 2902: 2884: 2845: 2827: 2783: 2732: 2655: 2637: 2590: 2582: 2527: 2519: 2469: 2401: 2353: 2297: 2243: 2182: 2159: 2110: 2048: 2013: 1946: 1905: 1887: 1840: 1832: 1783: 1775: 1736: 1718: 1661: 1653: 1603: 1561: 1523: 1463: 1415: 1371: 1297: 1262: 1244: 1195: 1133: 1125: 1086: 1068: 1020: 958: 940: 890: 821: 697: 696:
are more common for convergent genes; however, putative long overlaps have very high rates of
269: 132: 4789: 4771: 4722: 4714: 4663: 4647: 4585: 4539: 4493: 4447: 4415: 4397: 4348: 4330: 4281: 4265: 4216: 4208: 4167: 4151: 4094: 4047: 4006: 3988: 3931: 3892: 3837: 3796: 3788: 3747: 3737: 3688: 3678: 3629: 3621: 3580: 3570: 3516: 3506: 3462: 3454: 3413: 3403: 3354: 3344: 3303: 3295: 3248: 3200: 3182: 3133: 3094: 3057: 3049: 3008: 2992: 2951: 2933: 2892: 2876: 2835: 2819: 2773: 2763: 2722: 2714: 2645: 2629: 2574: 2511: 2459: 2451: 2393: 2343: 2335: 2287: 2279: 2233: 2223: 2149: 2141: 2100: 2090: 2040: 2003: 1993: 1936: 1895: 1879: 1822: 1767: 1726: 1708: 1645: 1595: 1553: 1513: 1505: 1455: 1407: 1361: 1351: 1289: 1252: 1234: 1185: 1175: 1117: 1076: 1058: 1010: 1002: 948: 932: 880: 870: 813: 705: 594:
toward small genome sizes mediated by the physical constraints of packaging the genome in a
568: 539: 531: 442: 356: 104: 3920:"A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast" 4620: 4566: 4520: 4474: 680: 483: 410: 386: 141: 1105: 248:. The proteins and the overlap region are highly conserved when strong selection against 4767: 4693:"Alt-RPL36 downregulates the PI3K-AKT-mTOR signaling pathway by interacting with TMEM24" 4393: 4326: 3984: 3733: 3674: 3566: 3399: 3244: 2570: 2507: 2447: 2389: 2219: 2086: 1989: 1875: 1704: 1641: 1557: 1403: 1347: 1230: 1171: 1121: 328:
Overlapping genes are particularly common in rapidly evolving genomes, such as those of
240:
is three nucleotides long, an offset of three nucleotides is an in-phase, phase 0 frame.
4824: 4794: 4751: 4727: 4692: 4668: 4420: 4377: 4353: 4310: 4286: 4221: 4196: 4172: 3881:"Translational Coupling Controls Expression and Function of the DrrAB Drug Efflux Pump" 3801: 3776: 3752: 3717: 3693: 3658: 3585: 3550: 3521: 3494: 3467: 3442: 3418: 3383: 3359: 3332: 3308: 3283: 3205: 3170: 3062: 3037: 3013: 2956: 2921: 2897: 2840: 2778: 2751: 2727: 2702: 2650: 2464: 2431: 2348: 2323: 2292: 2267: 2154: 2130:"A Simple Method for Estimating the Strength of Natural Selection on Overlapping Genes" 2129: 2105: 2070: 2008: 1973: 1941: 1924: 1900: 1731: 1688: 1366: 1331: 1081: 1046: 953: 920: 885: 856: 800: 788: 778: 701: 635: 363: 305: 127: 108: 51: 17: 4099: 4082: 4011: 3968: 3634: 3609: 3138: 2238: 2203: 1599: 1518: 1493: 1047:"Origin, Evolution and Stability of Overlapping Genes in Viruses: A Systematic Review" 1015: 982: 4818: 4599: 4238: 4051: 3865: 3825: 1257: 1214: 1190: 1155: 758: 732: 639: 627: 547: 535: 515: 450: 309: 216: 100: 74: 70: 4124: 3268: 3155: 1795: 1673: 857:"Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic" 498: 4444:"Supplemental Information 2: NCBI genome database accession information (PDF file)" 2679: 2602: 2539: 2413: 1958: 1427: 741:
The retention and evolution of overlapping genes within viruses may also be due to
659: 595: 454: 337: 207:
ends of the two genes overlap on opposite strands. This can be written as ← →.
193:
ends of the two genes overlap on opposite strands. This can be written as → ←.
47: 4590: 4581: 4035: 3121: 1281: 355:
By extension of an existing ORF upstream into a contiguous gene due to loss of an
107:. The alternative open reading frames (ORF) are thought to be created by critical 4402: 4335: 4253: 3742: 3098: 2980: 2095: 1713: 1356: 1293: 4635: 4452: 4443: 4269: 4212: 3936: 3919: 3284:"Origin and Length Distribution of Unidirectional Prokaryotic Overlapping Genes" 2996: 2675:"Scientists Just Found a Mysteriously Hidden 'Gene Within a Gene' in SARS-CoV-2" 2283: 1827: 1810: 833: 804: 750: 709:, only four gene pairs are well validated as having long, overprinted overlaps. 655: 599: 552: 458: 446: 434: 284: 254: 4718: 4651: 2208:
Proceedings of the National Academy of Sciences of the United States of America
2044: 1459: 1160:
Proceedings of the National Academy of Sciences of the United States of America
936: 4709: 3896: 3841: 3408: 3252: 2938: 2768: 1771: 643: 615: 560: 349: 262: 258: 249: 62: 4785: 4659: 4498: 4489: 4411: 4344: 4277: 4163: 4108: 4059: 4002: 3945: 3849: 3683: 3196: 3187: 3004: 2947: 2888: 2831: 2641: 2586: 2523: 2432:"Recognition of small interfering RNA by a viral suppressor of RNA silencing" 1891: 1836: 1779: 1755: 1722: 1657: 1248: 1129: 1072: 944: 692:
overlaps are more commonly read in phase 2. Long overlaps of greater than 60
405:
indicating the likely evolutionary trajectory of the gene-dense pX region in
370:
The use of the same nucleotide sequence to encode multiple genes may provide
4776: 4544: 4535: 4254:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 3575: 3511: 3349: 2864: 2339: 2268:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 1239: 1180: 1006: 782:
within another gene. Furthermore, some bioinformatics pipelines such as the
746: 693: 619: 614:
have fewer than a quarter that contains them while almost three-quarters of
611: 523: 402: 371: 78: 4803: 4736: 4677: 4429: 4362: 4295: 4230: 4181: 4020: 3993: 3953: 3904: 3857: 3810: 3761: 3702: 3643: 3594: 3530: 3476: 3458: 3427: 3368: 3317: 3260: 3214: 3147: 3106: 3071: 3022: 2965: 2906: 2880: 2849: 2787: 2736: 2718: 2659: 2491: 2473: 2357: 2301: 2228: 2163: 2114: 2052: 2017: 1998: 1950: 1909: 1844: 1787: 1740: 1607: 1527: 1467: 1375: 1090: 1024: 962: 894: 510:, a protein encoded by an overprinted gene. The protein specifically binds 4116: 4036:"Packaging of the bacteriophage λ chromosome: Effect of chromosome length" 3792: 3299: 2617: 2594: 2531: 2247: 2179:
Evolution of Living Organisms: Evidence for a New Theory of Transformation
1665: 1565: 1419: 1266: 1199: 1137: 1063: 27:
A gene whose sequence partially overlaps the reading frame of another gene
4752:"Definitive demonstration by synthesis of genome annotation completeness" 4139: 4083:"Effects of genome size on bacteriophage phi X174 DNA packaging in vitro" 4067: 3918:
Jaschke PR, Lieberman EK, Rodriguez J, Sierra A, Endy D (December 2012).
3053: 2823: 2633: 2405: 2145: 1626:"Constrained evolution with respect to gene overlap of hepatitis B virus" 1624:
Mizokami M, Orito E, Ohba Ki, Ikeo K, Lau JY, Gojobori T (January 1997).
735: 675: 573: 333: 82: 4155: 2807: 2455: 1625: 1494:"Properties of overlapping genes are conserved across microbial genomes" 875: 449:. Which member of an overlapping gene pair is younger can be identified 135:
in databases. Overprinted genes are particularly common features of the
3625: 3036:
Rancurel C, Khosravi M, Dunker AK, Romero PR, Karlin D (29 July 2009).
1859: 1649: 1509: 808: 783: 543: 136: 116: 3447:
Philosophical Transactions of the Royal Society B: Biological Sciences
2554: 1883: 2578: 2515: 2397: 1974:"The origin of a novel gene through overprinting in Escherichia coli" 1411: 742: 623: 555:
within the genome replication gene A of ΦX174 was shown to express a
527: 522:
The existence of overlapping genes was first identified in the virus
375: 90: 58: 50:. Overlapping genes are present in and a fundamental feature of both 3122:"Size Selective Recognition of siRNA by an RNA Silencing Suppressor" 4750:
Jaschke PR, Dotson GA, Hung KS, Liu D, Endy D (12 November 2019).
861: 663: 587: 578: 511: 497: 487: 473: 396: 329: 268:
However, these overlap regions are known to be less important for
237: 204: 190: 176: 172: 151: 66: 55: 2555:"Intragenic regulation of the synthesis of ΦX174 gene A proteins" 1687:
Allison JR, Lechner M, Hoeppner MP, Poole AM (12 February 2016).
534:
in 1977. Previous analysis of ΦX174, a small single-stranded DNA
486:, though with varying frequencies. They are especially common in 425:
proposed that one of the genes in the pair could have originated
2324:"Evolution of Viral Proteins Originated De Novo by Overprinting" 39: 1330:
Pavesi A, Magiorkinis G, Karlin DG, Wilke CO (15 August 2013).
3824:
Wright BW, Ruan J, Molloy MP, Jaschke PR (20 November 2020).
362:
By generation of a novel ORF within an existing one due to a
348:(ORF) downstream into a contiguous gene due to the loss of a 3120:
Vargason JM, Szittya G, Burgyán J, Hall TM (December 2003).
3969:"Redundancy, antiredundancy, and the robustness of genomes" 2616:
Roznowski AP, Doore SM, Kemp SZ, Fane BA (6 January 2020).
1860:"Substitution rate and natural selection in parvovirus B19" 3718:"De Novo Origin of Protein-Coding Genes in Murine Rodents" 3610:"Mammalian Overlapping Genes: The Comparative Perspective" 2922:"Gene overlapping and size constraints in the viral world" 2808:"Properties and abundance of overlapping genes in viruses" 2752:"Gene overlapping and size constraints in the viral world" 983:"Comparative study of overlapping genes in the genomes of 126:
from existing sequences, either older genes or previously
2071:"Evolutionary Dynamics of Overlapped Genes in Salmonella" 2069:
Luo Y, Battistuzzi F, Lin K, Gibas C (29 November 2013).
2869:
Proceedings of the Royal Society B: Biological Sciences
2707:
Proceedings of the Royal Society B: Biological Sciences
1215:"Origins of genes: "big bang" or continuous creation?" 1156:"Origins of genes: "big bang" or continuous creation?" 773:
Methods in identifying overlapping genes and ORFs
111:
within an expressible pre-existing gene, which can be
4376:
Pavesi A, Magiorkinis G, Karlin DG (15 August 2013).
3777:"Recent de novo origin of human protein-coding genes" 3716:
Murphy DN, McLysaght A, Carmel L (21 November 2012).
921:"Overlapping genes in natural and engineered genomes" 4034:
Feiss M, Fisher R, Crayton M, Egner C (March 1977).
1754:
Fujii Y, Kiyotani K, Yoshida T, Sakaguchi T (2001).
590:
genomes. Some studies attribute this observation to
586:
virus. Overlapping genes are particularly common in
3282:Fonseca MM, Harris DJ, Posada D (5 November 2013). 919:Wright BW, Molloy MP, Jaschke PR (5 October 2021). 3544: 3542: 3540: 3495:"Overlapping genes in the human and mouse genomes" 3171:"Overlapping genes: a window on gene evolvability" 2490:Barrell BG, Air GM, Hutchison CA (November 1976). 461:. Younger members of the pair tend to have higher 3551:"Birth and death of gene overlaps in vertebrates" 1972:Delaye L, DeLuna A, Lazcano A, Becerra A (2008). 2863:Chirico N, Vianelli A, Belshaw R (7 July 2010). 2701:Chirico N, Vianelli A, Belshaw R (7 July 2010). 4756:Proceedings of the National Academy of Sciences 4140:"Effect of Genome Size on AAV Vector Packaging" 3973:Proceedings of the National Academy of Sciences 1581: 1579: 1577: 1575: 1539: 1537: 1487: 1485: 1483: 1481: 1479: 1477: 1219:Proceedings of the National Academy of Sciences 855:Nelson, Chase W, et al. (1 October 2020). 2430:Ye K, Malinina L, Patel DJ (3 December 2003). 2371: 2369: 2367: 2317: 2315: 2313: 2311: 2261: 2259: 2257: 1925:"Stability and Evolution of Overlapping Genes" 1441: 1439: 1437: 1288:, Cambridge University Press, pp. 76–90, 3488: 3486: 2322:Sabath N, Wagner A, Karlin D (19 July 2012). 1325: 1323: 1321: 1319: 976: 974: 972: 850: 848: 749:by >1% results in almost complete loss of 8: 3775:Knowles DG, McLysaght A (2 September 2009). 3226: 3224: 1149: 1147: 211:Overlapping genes can also be classified by 3967:Krakauer DC, Plotkin JB (29 January 2002). 2064: 2062: 646:distributions and high levels of intrinsic 530:was the first DNA genome ever sequenced by 3549:Makałowska I, Lin CF, Hernandez K (2007). 3441:McLysaght A, Guerzoni D (31 August 2015). 2492:"Overlapping genes in bacteriophage φX174" 2425: 2423: 981:Y. Fukuda, M. Tomita et T. Washio (1999). 822:catalytically dead Cas9 (dCas9) disruption 642:. Overprinted proteins often have unusual 638:to viral proliferation, but contribute to 4793: 4775: 4726: 4708: 4667: 4589: 4543: 4497: 4451: 4419: 4401: 4352: 4334: 4285: 4220: 4171: 4098: 4010: 3992: 3935: 3800: 3751: 3741: 3692: 3682: 3633: 3584: 3574: 3520: 3510: 3466: 3417: 3407: 3358: 3348: 3331:Pallejà A, Harrington ED, Bork P (2008). 3307: 3204: 3186: 3137: 3061: 3012: 2955: 2937: 2896: 2839: 2777: 2767: 2726: 2649: 2463: 2347: 2291: 2237: 2227: 2153: 2104: 2094: 2007: 1997: 1940: 1899: 1826: 1730: 1712: 1517: 1365: 1355: 1282:"In search of the origins of viral genes" 1256: 1238: 1189: 1179: 1080: 1062: 1014: 952: 884: 874: 559:with an identical coding sequence to the 3879:Pradhan P, Li W, Kaur P (January 2009). 683:, permitting the overlapped genes to be 662:and a novel binding mode in recognizing 4138:Wu Z, Yang H, Colosi P (January 2010). 2806:Schlub TE, Holmes EC (1 January 2020). 844: 4616: 4605: 4562: 4551: 4516: 4505: 4470: 4459: 4081:Aoyama A, Hayashi M (September 1985). 340:. They may originate in three ways: 3169:Huvet M, Stumpf MP (1 January 2014). 2801: 2799: 2797: 2485: 2483: 1619: 1617: 1280:Gibbs A, Keese PK (19 October 1995), 1213:Keese PK, Gibbs A (15 October 1992). 1154:Keese PK, Gibbs A (15 October 1992). 7: 3608:Veeramachaneni V (1 February 2004). 3493:C. Sanna, W. Li et L. Zhang (2008). 1809:Guyader S, Ducray DG (1 July 2002). 1040: 1038: 1036: 1034: 914: 912: 910: 908: 906: 904: 576:of viruses. Another example is the 445:, contributing to the prevalence of 378:size and due to the opportunity for 2920:Brandes N, Linial M (21 May 2016). 2750:Brandes N, Linial M (21 May 2016). 2128:Wei X, Zhang J (31 December 2014). 1558:10.1146/annurev.ge.17.120183.002435 1122:10.1146/annurev.ge.17.120183.002435 546:produced during infection required 457:distribution, or by less optimized 4252:Willis S, Masel J (19 July 2018). 2266:Willis S, Masel J (19 July 2018). 1942:10.1111/j.0014-3820.2000.tb00075.x 1286:Molecular Basis of Virus Evolution 175:end of one gene overlaps with the 25: 316:for one frame while mostly being 4580:Bazzini A, Wu Q (6 March 2020). 2553:LINNEY E, HAYASHI M (May 1974). 514:produced as part of the plant's 433:. It was later substantiated by 215:, which describe their relative 4534:Ben-Tal N, ed. (23 June 2017). 4087:Journal of Biological Chemistry 3657:Behura SK, Severson DW (2013). 2673:Dockrill P (11 November 2020). 2328:Molecular Biology and Evolution 722:in a given eukaryotic lineage. 482:Overlapping genes occur in all 3233:Journal of Molecular Evolution 2865:"Why genes overlap in viruses" 2703:"Why genes overlap in viruses" 1630:Journal of Molecular Evolution 1492:Johnson Z, Chisholm S (2004). 374:advantage due to reduction in 103:from another gene at the same 1: 4591:10.3410/f.737484924.793572056 4100:10.1016/s0021-9258(17)39144-5 3139:10.1016/S0092-8674(03)00984-X 1600:10.1016/S0168-9525(02)02649-5 777:Standardized methods such as 674:Estimates of gene overlap in 463:intrinsic structural disorder 4403:10.1371/journal.pcbi.1003162 4336:10.1371/journal.pone.0202513 4052:10.1016/0042-6822(77)90425-1 3885:Journal of Molecular Biology 3743:10.1371/journal.pone.0048650 3288:G3: Genes, Genomes, Genetics 3099:10.1016/j.biochi.2015.08.008 2134:Genome Biology and Evolution 2096:10.1371/journal.pone.0081016 1714:10.1371/journal.pone.0147619 1357:10.1371/journal.pcbi.1003162 1294:10.1017/cbo9780511661686.008 652:RNA silencing suppressor p19 504:RNA silencing suppressor p19 453:either by a more restricted 407:human T-lymphotropic virus 1 344:By extension of an existing 4270:10.1534/genetics.118.301249 4213:10.1016/j.ymthe.2021.03.023 3937:10.1016/j.virol.2012.09.020 2997:10.1016/j.virol.2020.03.007 2284:10.1534/genetics.118.301249 1828:10.1099/0022-1317-83-7-1799 1815:Journal of General Virology 620:single-stranded DNA genomes 538:that infected the bacteria 4841: 4719:10.1038/s41467-020-20841-6 4652:10.1038/s41587-020-00806-2 4382:PLOS Computational Biology 2045:10.1016/j.gene.2016.02.002 1460:10.1016/j.gene.2003.09.021 1336:PLOS Computational Biology 937:10.1038/s41576-021-00417-w 4710:10.1101/2020.03.04.977314 4488:Ahmed N (27 March 2009). 4453:10.7717/peerj.6447/supp-2 3897:10.1016/j.jmb.2008.11.027 3842:10.1021/acssynbio.0c00323 3409:10.1186/s12862-015-0558-z 3253:10.1007/s00239-006-0180-1 2939:10.1186/s13062-016-0128-3 2769:10.1186/s13062-016-0128-3 1923:Krakauer DC (June 2000). 1546:Annual Review of Genetics 1110:Annual Review of Genetics 658:, which has both a novel 279:while the other is under 4499:10.3410/f.1157743.618965 3684:10.1186/1471-2148-13-124 3663:BMC Evolutionary Biology 3555:BMC Evolutionary Biology 3388:BMC Evolutionary Biology 3188:10.1186/1471-2164-15-721 1978:BMC Evolutionary Biology 1045:Pavesi A (26 May 2021). 755:adeno-associated viruses 518:defense against viruses. 508:tomato bushy stunt virus 109:nucleotide substitutions 69:overlap must be between 4777:10.1073/pnas.1905990116 4545:10.7554/elife.27860.082 3576:10.1186/1471-2148-7-193 3512:10.1186/1471-2164-9-169 3350:10.1186/1471-2164-9-335 1772:10.1023/a:1008130318633 1240:10.1073/pnas.89.20.9489 1181:10.1073/pnas.89.20.9489 925:Nature Reviews Genetics 228:alternative start sites 18:Overprinting (genetics) 4615:Cite journal requires 4561:Cite journal requires 4515:Cite journal requires 4469:Cite journal requires 3994:10.1073/pnas.032668599 3459:10.1098/rstb.2014.0332 2979:Pavesi A (July 2020). 2881:10.1098/rspb.2010.1052 2719:10.1098/rspb.2010.1052 2229:10.1073/pnas.81.8.2421 1999:10.1186/1471-2148-8-31 598:, particularly one of 553:alternative start site 519: 479: 470:Taxonomic distribution 418: 157: 124:emergence of new genes 4697:Nature Communications 3830:ACS Synthetic Biology 3793:10.1101/gr.095026.109 3300:10.1534/g3.113.005652 2340:10.1093/molbev/mss179 2202:Ohno S (April 1984). 1064:10.3390/genes12060809 1007:10.1093/nar/27.8.1847 989:Mycoplasma pneumoniae 985:Mycoplasma genitalium 565:polypeptide synthesis 542:, suggested that the 501: 477: 417:through overprinting. 400: 320:for the other frame. 302:potato leafroll virus 234:Out-of-phase overlaps 155: 4640:Nature Biotechnology 3054:10.1128/JVI.00595-09 2634:10.1128/jvi.01593-19 816:techniques, such as 793:bottom-up proteomics 393:Origins of new genes 142:evolutionary history 87:untranslated regions 4768:2019PNAS..11624206J 4762:(48): 24206–24213. 4394:2013PLSCB...9E3162P 4327:2018PLoSO..1302513P 4156:10.1038/mt.2009.255 4093:(20): 11033–11038. 3985:2002PNAS...99.1405K 3734:2012PLoSO...748650M 3675:2013BMCEE..13..124B 3567:2007BMCEE...7..193M 3400:2015BMCEE..15..283F 3245:2007JMolE..64..457C 3048:(20): 10719–10736. 3042:Journal of Virology 2875:(1701): 3809–3817. 2713:(1701): 3809–3817. 2622:Journal of Virology 2571:1974Natur.249..345L 2508:1976Natur.264...34B 2456:10.1038/nature02213 2448:2003Natur.426..874Y 2390:1977Natur.265..687S 2220:1984PNAS...81.2421O 2087:2013PLoSO...881016L 1990:2008BMCEE...8...31D 1876:2016NatSR...635759S 1705:2016PLoSO..1147619A 1642:1997JMolE..44S..83M 1404:1981Natur.290..457A 1348:2013PLSCB...9E3162P 1231:1992PNAS...89.9489K 1172:1992PNAS...89.9489K 1106:"Overlapping Genes" 876:10.7554/eLife.59633 281:purifying selection 246:selection pressures 115:to express a novel 44:nucleotide sequence 3626:10.1101/gr.1590904 3453:(1678): 20140332. 2824:10.1093/ve/veaa009 2181:. Academic Press. 2177:Grassé PP (1977). 2146:10.1093/gbe/evu294 1864:Scientific Reports 1650:10.1007/pl00000061 1588:Trends in Genetics 1510:10.1101/gr.2433104 797:ribosome profiling 607:genes in viruses. 592:selective pressure 520: 480: 423:Pierre-Paul Grassé 419: 346:open reading frame 277:positive selection 158: 89:(UTRs) along with 42:whose expressible 4201:Molecular Therapy 4144:Molecular Therapy 3836:(11): 3079–3090. 3787:(10): 1752–1759. 2565:(5455): 345–348. 2442:(6968): 874–878. 2334:(12): 3767–3780. 2188:978-1-4832-7409-6 1884:10.1038/srep35759 1398:(5806): 457–465. 1303:978-0-521-45533-6 1225:(20): 9489–9493. 995:Nucleic Acids Res 779:genome annotation 685:transcriptionally 618:and viruses with 557:truncated protein 451:bioinformatically 255:hepatitis B virus 230:of the same gene. 16:(Redirected from 4832: 4808: 4807: 4797: 4779: 4747: 4741: 4740: 4730: 4712: 4688: 4682: 4681: 4671: 4631: 4625: 4624: 4618: 4613: 4611: 4603: 4593: 4577: 4571: 4570: 4564: 4559: 4557: 4549: 4547: 4531: 4525: 4524: 4518: 4513: 4511: 4503: 4501: 4485: 4479: 4478: 4472: 4467: 4465: 4457: 4455: 4440: 4434: 4433: 4423: 4405: 4373: 4367: 4366: 4356: 4338: 4321:(10): e0202513. 4306: 4300: 4299: 4289: 4249: 4243: 4242: 4224: 4192: 4186: 4185: 4175: 4135: 4129: 4128: 4102: 4078: 4072: 4071: 4031: 4025: 4024: 4014: 3996: 3979:(3): 1405–1409. 3964: 3958: 3957: 3939: 3915: 3909: 3908: 3876: 3870: 3869: 3821: 3815: 3814: 3804: 3772: 3766: 3765: 3755: 3745: 3713: 3707: 3706: 3696: 3686: 3654: 3648: 3647: 3637: 3605: 3599: 3598: 3588: 3578: 3546: 3535: 3534: 3524: 3514: 3490: 3481: 3480: 3470: 3438: 3432: 3431: 3421: 3411: 3379: 3373: 3372: 3362: 3352: 3328: 3322: 3321: 3311: 3279: 3273: 3272: 3228: 3219: 3218: 3208: 3190: 3166: 3160: 3159: 3141: 3117: 3111: 3110: 3082: 3076: 3075: 3065: 3033: 3027: 3026: 3016: 2976: 2970: 2969: 2959: 2941: 2917: 2911: 2910: 2900: 2860: 2854: 2853: 2843: 2803: 2792: 2791: 2781: 2771: 2747: 2741: 2740: 2730: 2698: 2692: 2691: 2689: 2687: 2670: 2664: 2663: 2653: 2613: 2607: 2606: 2579:10.1038/249345a0 2550: 2544: 2543: 2516:10.1038/264034a0 2487: 2478: 2477: 2467: 2427: 2418: 2417: 2398:10.1038/265687a0 2384:(5596): 687–95. 2373: 2362: 2361: 2351: 2319: 2306: 2305: 2295: 2263: 2252: 2251: 2241: 2231: 2199: 2193: 2192: 2174: 2168: 2167: 2157: 2125: 2119: 2118: 2108: 2098: 2066: 2057: 2056: 2028: 2022: 2021: 2011: 2001: 1969: 1963: 1962: 1944: 1920: 1914: 1913: 1903: 1855: 1849: 1848: 1830: 1821:(7): 1799–1807. 1806: 1800: 1799: 1751: 1745: 1744: 1734: 1716: 1684: 1678: 1677: 1621: 1612: 1611: 1583: 1570: 1569: 1541: 1532: 1531: 1521: 1489: 1472: 1471: 1443: 1432: 1431: 1412:10.1038/290457a0 1386: 1380: 1379: 1369: 1359: 1327: 1314: 1313: 1312: 1310: 1277: 1271: 1270: 1260: 1242: 1210: 1204: 1203: 1193: 1183: 1151: 1142: 1141: 1101: 1095: 1094: 1084: 1066: 1042: 1029: 1028: 1018: 1001:(8): 1847–1853. 978: 967: 966: 956: 916: 899: 898: 888: 878: 852: 814:reverse genetics 706:Escherichia coli 548:coding sequences 540:Escherichia coli 532:Frederick Sanger 443:gene duplication 439:subfunctionalize 357:initiation codon 224:In-phase overlap 71:coding sequences 32:overlapping gene 21: 4840: 4839: 4835: 4834: 4833: 4831: 4830: 4829: 4815: 4814: 4811: 4749: 4748: 4744: 4690: 4689: 4685: 4633: 4632: 4628: 4614: 4604: 4579: 4578: 4574: 4560: 4550: 4533: 4532: 4528: 4514: 4504: 4487: 4486: 4482: 4468: 4458: 4442: 4441: 4437: 4388:(8): e1003162. 4375: 4374: 4370: 4308: 4307: 4303: 4251: 4250: 4246: 4194: 4193: 4189: 4137: 4136: 4132: 4080: 4079: 4075: 4033: 4032: 4028: 3966: 3965: 3961: 3917: 3916: 3912: 3878: 3877: 3873: 3823: 3822: 3818: 3781:Genome Research 3774: 3773: 3769: 3715: 3714: 3710: 3656: 3655: 3651: 3614:Genome Research 3607: 3606: 3602: 3548: 3547: 3538: 3492: 3491: 3484: 3440: 3439: 3435: 3381: 3380: 3376: 3330: 3329: 3325: 3281: 3280: 3276: 3230: 3229: 3222: 3168: 3167: 3163: 3119: 3118: 3114: 3084: 3083: 3079: 3035: 3034: 3030: 2978: 2977: 2973: 2919: 2918: 2914: 2862: 2861: 2857: 2812:Virus Evolution 2805: 2804: 2795: 2749: 2748: 2744: 2700: 2699: 2695: 2685: 2683: 2672: 2671: 2667: 2615: 2614: 2610: 2552: 2551: 2547: 2502:(5581): 34–41. 2489: 2488: 2481: 2429: 2428: 2421: 2375: 2374: 2365: 2321: 2320: 2309: 2265: 2264: 2255: 2201: 2200: 2196: 2189: 2176: 2175: 2171: 2127: 2126: 2122: 2068: 2067: 2060: 2030: 2029: 2025: 1971: 1970: 1966: 1922: 1921: 1917: 1857: 1856: 1852: 1808: 1807: 1803: 1753: 1752: 1748: 1699:(2): e0147619. 1686: 1685: 1681: 1636:(S1): S83–S90. 1623: 1622: 1615: 1585: 1584: 1573: 1543: 1542: 1535: 1504:(11): 2268–72. 1491: 1490: 1475: 1445: 1444: 1435: 1388: 1387: 1383: 1342:(8): e1003162. 1329: 1328: 1317: 1308: 1306: 1304: 1279: 1278: 1274: 1212: 1211: 1207: 1166:(20): 9489–93. 1153: 1152: 1145: 1103: 1102: 1098: 1044: 1043: 1032: 980: 979: 970: 918: 917: 902: 854: 853: 846: 842: 830: 775: 728: 715: 689:translationally 681:gene regulation 672: 496: 484:domains of life 472: 411:deltaretrovirus 395: 380:transcriptional 326: 287:, the proteins 150: 28: 23: 22: 15: 12: 11: 5: 4838: 4836: 4828: 4827: 4817: 4816: 4810: 4809: 4742: 4683: 4646:(6): 697–704. 4626: 4617:|journal= 4572: 4563:|journal= 4526: 4517:|journal= 4480: 4471:|journal= 4435: 4368: 4301: 4264:(1): 303–313. 4244: 4207:(1): 223–237. 4187: 4130: 4073: 4046:(1): 281–293. 4026: 3959: 3930:(2): 278–284. 3910: 3891:(3): 831–842. 3871: 3816: 3767: 3728:(11): e48650. 3708: 3649: 3620:(2): 280–286. 3600: 3536: 3482: 3433: 3374: 3323: 3274: 3239:(4): 457–462. 3220: 3161: 3132:(7): 799–811. 3112: 3077: 3028: 2971: 2926:Biology Direct 2912: 2855: 2818:(1): veaa009. 2793: 2756:Biology Direct 2742: 2693: 2665: 2608: 2545: 2479: 2419: 2363: 2307: 2278:(1): 303–313. 2253: 2194: 2187: 2169: 2140:(1): 381–390. 2120: 2081:(11): e81016. 2058: 2039:(2): 143–147. 2023: 1964: 1935:(3): 731–739. 1915: 1850: 1801: 1746: 1679: 1613: 1594:(5): 228–232. 1571: 1533: 1473: 1433: 1381: 1315: 1302: 1272: 1205: 1143: 1116:(1): 499–525. 1096: 1030: 968: 931:(3): 154–168. 900: 843: 841: 838: 837: 836: 829: 826: 809:RNA sequencing 801:DNA sequencing 774: 771: 727: 724: 714: 711: 702:model organism 671: 668: 628:mutation rates 495: 492: 471: 468: 394: 391: 368: 367: 364:point mutation 360: 353: 325: 322: 314:non-synonymous 306:parvovirus B19 261:domain of the 242: 241: 231: 217:reading frames 209: 208: 194: 180: 165:Unidirectional 149: 148:Classification 146: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4837: 4826: 4823: 4822: 4820: 4813: 4805: 4801: 4796: 4791: 4787: 4783: 4778: 4773: 4769: 4765: 4761: 4757: 4753: 4746: 4743: 4738: 4734: 4729: 4724: 4720: 4716: 4711: 4706: 4702: 4698: 4694: 4687: 4684: 4679: 4675: 4670: 4665: 4661: 4657: 4653: 4649: 4645: 4641: 4637: 4630: 4627: 4622: 4609: 4601: 4597: 4592: 4587: 4583: 4576: 4573: 4568: 4555: 4546: 4541: 4537: 4530: 4527: 4522: 4509: 4500: 4495: 4491: 4484: 4481: 4476: 4463: 4454: 4449: 4445: 4439: 4436: 4431: 4427: 4422: 4417: 4413: 4409: 4404: 4399: 4395: 4391: 4387: 4383: 4379: 4372: 4369: 4364: 4360: 4355: 4350: 4346: 4342: 4337: 4332: 4328: 4324: 4320: 4316: 4312: 4305: 4302: 4297: 4293: 4288: 4283: 4279: 4275: 4271: 4267: 4263: 4259: 4255: 4248: 4245: 4240: 4236: 4232: 4228: 4223: 4218: 4214: 4210: 4206: 4202: 4198: 4191: 4188: 4183: 4179: 4174: 4169: 4165: 4161: 4157: 4153: 4149: 4145: 4141: 4134: 4131: 4126: 4122: 4118: 4114: 4110: 4106: 4101: 4096: 4092: 4088: 4084: 4077: 4074: 4069: 4065: 4061: 4057: 4053: 4049: 4045: 4041: 4037: 4030: 4027: 4022: 4018: 4013: 4008: 4004: 4000: 3995: 3990: 3986: 3982: 3978: 3974: 3970: 3963: 3960: 3955: 3951: 3947: 3943: 3938: 3933: 3929: 3925: 3921: 3914: 3911: 3906: 3902: 3898: 3894: 3890: 3886: 3882: 3875: 3872: 3867: 3863: 3859: 3855: 3851: 3847: 3843: 3839: 3835: 3831: 3827: 3820: 3817: 3812: 3808: 3803: 3798: 3794: 3790: 3786: 3782: 3778: 3771: 3768: 3763: 3759: 3754: 3749: 3744: 3739: 3735: 3731: 3727: 3723: 3719: 3712: 3709: 3704: 3700: 3695: 3690: 3685: 3680: 3676: 3672: 3668: 3664: 3660: 3653: 3650: 3645: 3641: 3636: 3631: 3627: 3623: 3619: 3615: 3611: 3604: 3601: 3596: 3592: 3587: 3582: 3577: 3572: 3568: 3564: 3560: 3556: 3552: 3545: 3543: 3541: 3537: 3532: 3528: 3523: 3518: 3513: 3508: 3504: 3500: 3496: 3489: 3487: 3483: 3478: 3474: 3469: 3464: 3460: 3456: 3452: 3448: 3444: 3437: 3434: 3429: 3425: 3420: 3415: 3410: 3405: 3401: 3397: 3393: 3389: 3385: 3378: 3375: 3370: 3366: 3361: 3356: 3351: 3346: 3342: 3338: 3334: 3327: 3324: 3319: 3315: 3310: 3305: 3301: 3297: 3293: 3289: 3285: 3278: 3275: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3238: 3234: 3227: 3225: 3221: 3216: 3212: 3207: 3202: 3198: 3194: 3189: 3184: 3180: 3176: 3172: 3165: 3162: 3157: 3153: 3149: 3145: 3140: 3135: 3131: 3127: 3123: 3116: 3113: 3108: 3104: 3100: 3096: 3092: 3088: 3081: 3078: 3073: 3069: 3064: 3059: 3055: 3051: 3047: 3043: 3039: 3032: 3029: 3024: 3020: 3015: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2982: 2975: 2972: 2967: 2963: 2958: 2953: 2949: 2945: 2940: 2935: 2931: 2927: 2923: 2916: 2913: 2908: 2904: 2899: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2859: 2856: 2851: 2847: 2842: 2837: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2802: 2800: 2798: 2794: 2789: 2785: 2780: 2775: 2770: 2765: 2761: 2757: 2753: 2746: 2743: 2738: 2734: 2729: 2724: 2720: 2716: 2712: 2708: 2704: 2697: 2694: 2682: 2681: 2676: 2669: 2666: 2661: 2657: 2652: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2612: 2609: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2564: 2560: 2556: 2549: 2546: 2541: 2537: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2486: 2484: 2480: 2475: 2471: 2466: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2426: 2424: 2420: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2372: 2370: 2368: 2364: 2359: 2355: 2350: 2345: 2341: 2337: 2333: 2329: 2325: 2318: 2316: 2314: 2312: 2308: 2303: 2299: 2294: 2289: 2285: 2281: 2277: 2273: 2269: 2262: 2260: 2258: 2254: 2249: 2245: 2240: 2235: 2230: 2225: 2221: 2217: 2214:(8): 2421–5. 2213: 2209: 2205: 2198: 2195: 2190: 2184: 2180: 2173: 2170: 2165: 2161: 2156: 2151: 2147: 2143: 2139: 2135: 2131: 2124: 2121: 2116: 2112: 2107: 2102: 2097: 2092: 2088: 2084: 2080: 2076: 2072: 2065: 2063: 2059: 2054: 2050: 2046: 2042: 2038: 2034: 2027: 2024: 2019: 2015: 2010: 2005: 2000: 1995: 1991: 1987: 1983: 1979: 1975: 1968: 1965: 1960: 1956: 1952: 1948: 1943: 1938: 1934: 1930: 1926: 1919: 1916: 1911: 1907: 1902: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1861: 1854: 1851: 1846: 1842: 1838: 1834: 1829: 1824: 1820: 1816: 1812: 1805: 1802: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1750: 1747: 1742: 1738: 1733: 1728: 1724: 1720: 1715: 1710: 1706: 1702: 1698: 1694: 1690: 1683: 1680: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1618: 1614: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1580: 1578: 1576: 1572: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1538: 1534: 1529: 1525: 1520: 1515: 1511: 1507: 1503: 1499: 1495: 1488: 1486: 1484: 1482: 1480: 1478: 1474: 1469: 1465: 1461: 1457: 1453: 1449: 1442: 1440: 1438: 1434: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1385: 1382: 1377: 1373: 1368: 1363: 1358: 1353: 1349: 1345: 1341: 1337: 1333: 1326: 1324: 1322: 1320: 1316: 1305: 1299: 1295: 1291: 1287: 1283: 1276: 1273: 1268: 1264: 1259: 1254: 1250: 1246: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1206: 1201: 1197: 1192: 1187: 1182: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1148: 1144: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1100: 1097: 1092: 1088: 1083: 1078: 1074: 1070: 1065: 1060: 1056: 1052: 1048: 1041: 1039: 1037: 1035: 1031: 1026: 1022: 1017: 1012: 1008: 1004: 1000: 996: 992: 990: 986: 977: 975: 973: 969: 964: 960: 955: 950: 946: 942: 938: 934: 930: 926: 922: 915: 913: 911: 909: 907: 905: 901: 896: 892: 887: 882: 877: 872: 868: 864: 863: 858: 851: 849: 845: 839: 835: 832: 831: 827: 825: 823: 819: 815: 810: 806: 802: 798: 794: 790: 789:Proteogenomic 785: 784:RAST pipeline 780: 772: 770: 767: 763: 760: 759:gene delivery 756: 752: 748: 744: 739: 737: 734: 733:bacteriophage 725: 723: 721: 712: 710: 708: 707: 703: 699: 698:misannotation 695: 690: 686: 682: 677: 669: 667: 665: 661: 657: 656:Tombusviruses 653: 649: 645: 641: 640:pathogenicity 637: 632: 629: 625: 621: 617: 613: 608: 606: 601: 597: 593: 589: 585: 581: 580: 575: 574:pathogenicity 570: 566: 562: 558: 554: 549: 545: 541: 537: 536:bacteriophage 533: 529: 525: 517: 516:RNA silencing 513: 509: 505: 500: 493: 491: 489: 485: 476: 469: 467: 464: 460: 456: 452: 448: 444: 440: 436: 432: 428: 424: 416: 412: 408: 404: 399: 392: 390: 388: 387:co-regulation 385: 384:translational 381: 377: 373: 365: 361: 358: 354: 351: 347: 343: 342: 341: 339: 335: 331: 323: 321: 319: 315: 311: 307: 303: 299: 294: 290: 286: 285:tombusviruses 282: 278: 273: 271: 267: 264: 260: 256: 251: 247: 239: 235: 232: 229: 225: 222: 221: 220: 218: 214: 206: 203:overlap: the 202: 198: 195: 192: 189:overlap: the 188: 184: 181: 178: 174: 171:overlap: the 170: 166: 163: 162: 161: 154: 147: 145: 143: 138: 134: 129: 125: 123: 118: 114: 110: 106: 102: 101:reading frame 98: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 57: 53: 49: 48:gene products 45: 41: 37: 33: 19: 4812: 4759: 4755: 4745: 4700: 4696: 4686: 4643: 4639: 4629: 4608:cite journal 4575: 4554:cite journal 4529: 4508:cite journal 4483: 4462:cite journal 4438: 4385: 4381: 4371: 4318: 4314: 4304: 4261: 4257: 4247: 4204: 4200: 4190: 4150:(1): 80–86. 4147: 4143: 4133: 4090: 4086: 4076: 4043: 4039: 4029: 3976: 3972: 3962: 3927: 3923: 3913: 3888: 3884: 3874: 3833: 3829: 3819: 3784: 3780: 3770: 3725: 3721: 3711: 3666: 3662: 3652: 3617: 3613: 3603: 3558: 3554: 3505:(169): 169. 3502: 3499:BMC Genomics 3498: 3450: 3446: 3436: 3391: 3387: 3377: 3340: 3337:BMC Genomics 3336: 3326: 3294:(1): 19–27. 3291: 3287: 3277: 3236: 3232: 3178: 3175:BMC Genomics 3174: 3164: 3129: 3125: 3115: 3090: 3086: 3080: 3045: 3041: 3031: 2988: 2984: 2974: 2929: 2925: 2915: 2872: 2868: 2858: 2815: 2811: 2759: 2755: 2745: 2710: 2706: 2696: 2684:. Retrieved 2680:ScienceAlert 2678: 2668: 2625: 2621: 2611: 2562: 2558: 2548: 2499: 2495: 2439: 2435: 2381: 2377: 2331: 2327: 2275: 2271: 2211: 2207: 2197: 2178: 2172: 2137: 2133: 2123: 2078: 2074: 2036: 2032: 2026: 1981: 1977: 1967: 1932: 1928: 1918: 1870:(1): 35759. 1867: 1863: 1853: 1818: 1814: 1804: 1766:(1): 47–52. 1763: 1759: 1749: 1696: 1692: 1682: 1633: 1629: 1591: 1587: 1549: 1545: 1501: 1497: 1451: 1447: 1395: 1391: 1384: 1339: 1335: 1307:, retrieved 1285: 1275: 1222: 1218: 1208: 1163: 1159: 1113: 1109: 1099: 1054: 1050: 998: 994: 988: 984: 928: 924: 866: 860: 805:perturbation 776: 740: 729: 719: 716: 704: 673: 660:protein fold 633: 616:retroviridae 609: 604: 596:viral capsid 582:gene in the 577: 521: 481: 455:phylogenetic 447:orphan genes 431:overprinting 430: 426: 420: 414: 372:evolutionary 369: 338:mitochondria 327: 304:, and human 298:Sendai virus 274: 266: 243: 233: 223: 212: 210: 200: 196: 186: 182: 168: 164: 159: 121: 97:Overprinting 96: 95: 35: 31: 29: 3093:: 231–243. 2686:11 November 1760:Virus Genes 1552:: 499–525. 1454:: 181–187. 834:Nested gene 818:CRISPR-Cas9 751:infectivity 670:Prokaryotes 612:RNA viruses 600:icosahedral 459:codon usage 435:Susumu Ohno 409:(HTLV1), a 270:replication 63:prokaryotes 4703:(1): 508. 3669:(1): 124. 3561:(1): 193. 3394:(1): 283. 3343:(1): 335. 3181:(1): 721. 1498:Genome Res 1309:3 December 1057:(6): 809. 840:References 713:Eukaryotes 694:base pairs 644:amino acid 584:SARS-CoV 2 569:gene locus 561:C-terminus 441:following 350:stop codon 318:synonymous 263:polymerase 250:amino acid 183:Convergent 128:non-coding 79:eukaryotes 4786:0027-8424 4660:1087-0156 4600:215850701 4412:1553-7358 4345:1932-6203 4278:1943-2631 4239:232761334 4164:1525-0016 4109:0021-9258 4060:0042-6822 4003:0027-8424 3946:0042-6822 3866:222300240 3850:2161-5063 3197:1471-2164 3087:Biochimie 3005:0042-6822 2991:: 51–66. 2948:1745-6150 2932:(1): 26. 2889:0962-8452 2832:2057-1577 2762:(1): 26. 2642:0022-538X 2587:0028-0836 2524:1476-4687 1984:(1): 31. 1929:Evolution 1892:2045-2322 1837:0022-1317 1780:0920-8569 1723:1932-6203 1658:0022-2844 1249:0027-8424 1130:0066-4197 1073:2073-4425 945:1471-0064 676:bacterial 654:found in 636:essential 490:genomes. 421:In 1977, 403:cladogram 324:Evolution 197:Divergent 4819:Category 4804:31719208 4737:33479206 4678:33510483 4430:23966842 4363:30339683 4315:PLOS ONE 4296:30026186 4258:Genetics 4231:33794364 4182:19904234 4125:32443408 4040:Virology 4021:11818563 3954:23079106 3924:Virology 3905:19063901 3858:33044064 3811:19726446 3762:23185269 3722:PLOS ONE 3703:23777277 3644:14762064 3595:17939861 3531:18410680 3477:26323763 3428:26677845 3369:18627618 3318:24192837 3269:21612308 3261:17479344 3215:25159814 3156:12993441 3148:14697199 3107:26296474 3072:19640978 3023:32452417 2985:Virology 2966:27209091 2907:20610432 2850:32071766 2788:27209091 2737:20610432 2660:31666371 2474:14661029 2358:22821011 2302:30026186 2272:Genetics 2164:25552532 2115:24312259 2075:PLOS ONE 2053:26853049 2018:18226237 1951:10937248 1910:27775080 1845:12075102 1796:12869504 1788:11210938 1741:26871901 1693:PLOS ONE 1674:22644652 1608:12047938 1528:15520290 1468:14659892 1376:23966842 1091:34073395 1025:10101192 963:34611352 895:33001029 828:See also 726:Function 648:disorder 544:proteins 526:, whose 334:bacteria 133:homologs 83:mutation 73:but not 52:cellular 4795:6883844 4764:Bibcode 4728:7820019 4705:bioRxiv 4669:8195866 4421:3744397 4390:Bibcode 4354:6195259 4323:Bibcode 4287:6116962 4222:8753290 4173:2839202 4117:3161888 3981:Bibcode 3802:2765279 3753:3504067 3730:Bibcode 3694:3689595 3671:Bibcode 3586:2151771 3563:Bibcode 3522:2335118 3468:4571571 3419:4683798 3396:Bibcode 3360:2478687 3309:3887535 3241:Bibcode 3206:4161906 3063:2753099 3014:7157939 2957:4875738 2898:2992710 2841:7017920 2779:4875738 2728:2992710 2651:6955274 2603:4175651 2595:4601823 2567:Bibcode 2540:4264796 2532:1004533 2504:Bibcode 2465:4694583 2444:Bibcode 2414:4206886 2386:Bibcode 2349:3494269 2293:6116962 2248:6585807 2216:Bibcode 2155:4316641 2106:3843671 2083:Bibcode 2009:2268670 1986:Bibcode 1959:8818055 1901:5075947 1872:Bibcode 1732:4752228 1701:Bibcode 1666:9071016 1638:Bibcode 1566:6198955 1428:4355527 1420:7219534 1400:Bibcode 1367:3744397 1344:Bibcode 1267:1329098 1227:Bibcode 1200:1329098 1168:Bibcode 1138:6198955 1082:8227390 954:8490965 886:7655111 766:vectors 762:vectors 720:de novo 605:de novo 494:Viruses 427:de novo 415:de novo 330:viruses 201:tail-on 137:genomic 122:de novo 117:protein 113:induced 91:introns 67:viruses 59:genomes 38:) is a 4802:  4792:  4784:  4735:  4725:  4707:  4676:  4666:  4658:  4598:  4428:  4418:  4410:  4361:  4351:  4343:  4294:  4284:  4276:  4237:  4229:  4219:  4180:  4170:  4162:  4123:  4115:  4107:  4068:841861 4066:  4058:  4019:  4012:122203 4009:  4001:  3952:  3944:  3903:  3864:  3856:  3848:  3809:  3799:  3760:  3750:  3701:  3691:  3642:  3635:327103 3632:  3593:  3583:  3529:  3519:  3475:  3465:  3426:  3416:  3367:  3357:  3316:  3306:  3267:  3259:  3213:  3203:  3195:  3154:  3146:  3105:  3070:  3060:  3021:  3011:  3003:  2964:  2954:  2946:  2905:  2895:  2887:  2848:  2838:  2830:  2786:  2776:  2735:  2725:  2658:  2648:  2640:  2601:  2593:  2585:  2559:Nature 2538:  2530:  2522:  2496:Nature 2472:  2462:  2436:Nature 2412:  2406:870828 2404:  2378:Nature 2356:  2346:  2300:  2290:  2246:  2239:345072 2236:  2185:  2162:  2152:  2113:  2103:  2051:  2016:  2006:  1957:  1949:  1908:  1898:  1890:  1843:  1835:  1794:  1786:  1778:  1739:  1729:  1721:  1672:  1664:  1656:  1606:  1564:  1526:  1519:525685 1516:  1466:  1426:  1418:  1392:Nature 1374:  1364:  1300:  1265:  1255:  1247:  1198:  1188:  1136:  1128:  1089:  1079:  1071:  1023:  1016:148392 1013:  961:  951:  943:  893:  883:  803:, and 743:capsid 664:siRNAs 624:capsid 528:genome 512:siRNAs 376:genome 336:, and 259:spacer 213:phases 187:end-on 169:tandem 4825:Genes 4596:S2CID 4235:S2CID 4121:S2CID 3862:S2CID 3265:S2CID 3152:S2CID 2628:(2). 2599:S2CID 2536:S2CID 2410:S2CID 1955:S2CID 1792:S2CID 1670:S2CID 1424:S2CID 1258:50157 1191:50157 1051:Genes 862:eLife 747:ΦX174 736:ΦX174 588:viral 579:ORF3d 524:ΦX174 506:from 488:viral 283:. In 238:codon 105:locus 56:viral 4800:PMID 4782:ISSN 4733:PMID 4674:PMID 4656:ISSN 4621:help 4567:help 4521:help 4475:help 4426:PMID 4408:ISSN 4359:PMID 4341:ISSN 4292:PMID 4274:ISSN 4227:PMID 4178:PMID 4160:ISSN 4113:PMID 4105:ISSN 4064:PMID 4056:ISSN 4017:PMID 3999:ISSN 3950:PMID 3942:ISSN 3901:PMID 3854:PMID 3846:ISSN 3807:PMID 3758:PMID 3699:PMID 3640:PMID 3591:PMID 3527:PMID 3473:PMID 3424:PMID 3365:PMID 3314:PMID 3257:PMID 3211:PMID 3193:ISSN 3144:PMID 3126:Cell 3103:PMID 3068:PMID 3019:PMID 3001:ISSN 2962:PMID 2944:ISSN 2903:PMID 2885:ISSN 2846:PMID 2828:ISSN 2784:PMID 2733:PMID 2688:2020 2656:PMID 2638:ISSN 2591:PMID 2583:ISSN 2528:PMID 2520:ISSN 2470:PMID 2402:PMID 2354:PMID 2298:PMID 2244:PMID 2183:ISBN 2160:PMID 2111:PMID 2049:PMID 2033:Gene 2014:PMID 1947:PMID 1906:PMID 1888:ISSN 1841:PMID 1833:ISSN 1784:PMID 1776:ISSN 1737:PMID 1719:ISSN 1662:PMID 1654:ISSN 1604:PMID 1562:PMID 1524:PMID 1464:PMID 1448:Gene 1416:PMID 1372:PMID 1311:2021 1298:ISBN 1263:PMID 1245:ISSN 1196:PMID 1134:PMID 1126:ISSN 1087:PMID 1069:ISSN 1021:PMID 987:and 959:PMID 941:ISSN 891:PMID 820:and 687:and 502:The 382:and 310:rate 291:and 75:mRNA 65:and 54:and 40:gene 34:(or 4790:PMC 4772:doi 4760:116 4723:PMC 4715:doi 4664:PMC 4648:doi 4586:doi 4540:doi 4494:doi 4448:doi 4416:PMC 4398:doi 4349:PMC 4331:doi 4282:PMC 4266:doi 4262:210 4217:PMC 4209:doi 4168:PMC 4152:doi 4095:doi 4091:260 4048:doi 4007:PMC 3989:doi 3932:doi 3928:434 3893:doi 3889:385 3838:doi 3797:PMC 3789:doi 3748:PMC 3738:doi 3689:PMC 3679:doi 3630:PMC 3622:doi 3581:PMC 3571:doi 3517:PMC 3507:doi 3463:PMC 3455:doi 3451:370 3414:PMC 3404:doi 3355:PMC 3345:doi 3304:PMC 3296:doi 3249:doi 3201:PMC 3183:doi 3134:doi 3130:115 3095:doi 3091:119 3058:PMC 3050:doi 3009:PMC 2993:doi 2989:546 2952:PMC 2934:doi 2893:PMC 2877:doi 2873:277 2836:PMC 2820:doi 2774:PMC 2764:doi 2723:PMC 2715:doi 2711:277 2646:PMC 2630:doi 2575:doi 2563:249 2512:doi 2500:264 2460:PMC 2452:doi 2440:426 2394:doi 2382:265 2344:PMC 2336:doi 2288:PMC 2280:doi 2276:210 2234:PMC 2224:doi 2150:PMC 2142:doi 2101:PMC 2091:doi 2041:doi 2037:582 2004:PMC 1994:doi 1937:doi 1896:PMC 1880:doi 1823:doi 1768:doi 1727:PMC 1709:doi 1646:doi 1596:doi 1554:doi 1514:PMC 1506:doi 1456:doi 1452:323 1408:doi 1396:290 1362:PMC 1352:doi 1290:doi 1253:PMC 1235:doi 1186:PMC 1176:doi 1118:doi 1077:PMC 1059:doi 1011:PMC 1003:doi 949:PMC 933:doi 881:PMC 871:doi 757:as 551:An 293:p22 289:p19 199:or 185:or 167:or 36:OLG 30:An 4821:: 4798:. 4788:. 4780:. 4770:. 4758:. 4754:. 4731:. 4721:. 4713:. 4701:12 4699:. 4695:. 4672:. 4662:. 4654:. 4644:39 4642:. 4638:. 4612:: 4610:}} 4606:{{ 4594:. 4584:. 4558:: 4556:}} 4552:{{ 4538:. 4512:: 4510:}} 4506:{{ 4492:. 4466:: 4464:}} 4460:{{ 4446:. 4424:. 4414:. 4406:. 4396:. 4384:. 4380:. 4357:. 4347:. 4339:. 4329:. 4319:13 4317:. 4313:. 4290:. 4280:. 4272:. 4260:. 4256:. 4233:. 4225:. 4215:. 4205:30 4203:. 4199:. 4176:. 4166:. 4158:. 4148:18 4146:. 4142:. 4119:. 4111:. 4103:. 4089:. 4085:. 4062:. 4054:. 4044:77 4042:. 4038:. 4015:. 4005:. 3997:. 3987:. 3977:99 3975:. 3971:. 3948:. 3940:. 3926:. 3922:. 3899:. 3887:. 3883:. 3860:. 3852:. 3844:. 3832:. 3828:. 3805:. 3795:. 3785:19 3783:. 3779:. 3756:. 3746:. 3736:. 3724:. 3720:. 3697:. 3687:. 3677:. 3667:13 3665:. 3661:. 3638:. 3628:. 3618:14 3616:. 3612:. 3589:. 3579:. 3569:. 3557:. 3553:. 3539:^ 3525:. 3515:. 3501:. 3497:. 3485:^ 3471:. 3461:. 3449:. 3445:. 3422:. 3412:. 3402:. 3392:15 3390:. 3386:. 3363:. 3353:. 3339:. 3335:. 3312:. 3302:. 3290:. 3286:. 3263:. 3255:. 3247:. 3237:64 3235:. 3223:^ 3209:. 3199:. 3191:. 3179:15 3177:. 3173:. 3150:. 3142:. 3128:. 3124:. 3101:. 3089:. 3066:. 3056:. 3046:83 3044:. 3040:. 3017:. 3007:. 2999:. 2987:. 2983:. 2960:. 2950:. 2942:. 2930:11 2928:. 2924:. 2901:. 2891:. 2883:. 2871:. 2867:. 2844:. 2834:. 2826:. 2814:. 2810:. 2796:^ 2782:. 2772:. 2760:11 2758:. 2754:. 2731:. 2721:. 2709:. 2705:. 2677:. 2654:. 2644:. 2636:. 2626:94 2624:. 2620:. 2597:. 2589:. 2581:. 2573:. 2561:. 2557:. 2534:. 2526:. 2518:. 2510:. 2498:. 2494:. 2482:^ 2468:. 2458:. 2450:. 2438:. 2434:. 2422:^ 2408:. 2400:. 2392:. 2380:. 2366:^ 2352:. 2342:. 2332:29 2330:. 2326:. 2310:^ 2296:. 2286:. 2274:. 2270:. 2256:^ 2242:. 2232:. 2222:. 2212:81 2210:. 2206:. 2158:. 2148:. 2136:. 2132:. 2109:. 2099:. 2089:. 2077:. 2073:. 2061:^ 2047:. 2035:. 2012:. 2002:. 1992:. 1980:. 1976:. 1953:. 1945:. 1933:54 1931:. 1927:. 1904:. 1894:. 1886:. 1878:. 1866:. 1862:. 1839:. 1831:. 1819:83 1817:. 1813:. 1790:. 1782:. 1774:. 1764:22 1762:. 1758:. 1735:. 1725:. 1717:. 1707:. 1697:11 1695:. 1691:. 1668:. 1660:. 1652:. 1644:. 1634:44 1632:. 1628:. 1616:^ 1602:. 1592:18 1590:. 1574:^ 1560:. 1550:17 1548:. 1536:^ 1522:. 1512:. 1502:14 1500:. 1496:. 1476:^ 1462:. 1450:. 1436:^ 1422:. 1414:. 1406:. 1394:. 1370:. 1360:. 1350:. 1338:. 1334:. 1318:^ 1296:, 1284:, 1261:. 1251:. 1243:. 1233:. 1223:89 1221:. 1217:. 1194:. 1184:. 1174:. 1164:89 1162:. 1158:. 1146:^ 1132:. 1124:. 1114:17 1112:. 1108:. 1085:. 1075:. 1067:. 1055:12 1053:. 1049:. 1033:^ 1019:. 1009:. 999:27 997:. 993:. 971:^ 957:. 947:. 939:. 929:23 927:. 923:. 903:^ 889:. 879:. 869:. 865:. 859:. 847:^ 807:. 799:, 795:, 666:. 401:A 332:, 300:, 219:: 205:5' 191:3' 177:5' 173:3' 144:. 93:. 4806:. 4774:: 4766:: 4739:. 4717:: 4680:. 4650:: 4623:) 4619:( 4602:. 4588:: 4569:) 4565:( 4548:. 4542:: 4523:) 4519:( 4502:. 4496:: 4477:) 4473:( 4456:. 4450:: 4432:. 4400:: 4392:: 4386:9 4365:. 4333:: 4325:: 4298:. 4268:: 4241:. 4211:: 4184:. 4154:: 4127:. 4097:: 4070:. 4050:: 4023:. 3991:: 3983:: 3956:. 3934:: 3907:. 3895:: 3868:. 3840:: 3834:9 3813:. 3791:: 3764:. 3740:: 3732:: 3726:7 3705:. 3681:: 3673:: 3646:. 3624:: 3597:. 3573:: 3565:: 3559:7 3533:. 3509:: 3503:9 3479:. 3457:: 3430:. 3406:: 3398:: 3371:. 3347:: 3341:9 3320:. 3298:: 3292:4 3271:. 3251:: 3243:: 3217:. 3185:: 3158:. 3136:: 3109:. 3097:: 3074:. 3052:: 3025:. 2995:: 2968:. 2936:: 2909:. 2879:: 2852:. 2822:: 2816:6 2790:. 2766:: 2739:. 2717:: 2690:. 2662:. 2632:: 2605:. 2577:: 2569:: 2542:. 2514:: 2506:: 2476:. 2454:: 2446:: 2416:. 2396:: 2388:: 2360:. 2338:: 2304:. 2282:: 2250:. 2226:: 2218:: 2191:. 2166:. 2144:: 2138:7 2117:. 2093:: 2085:: 2079:8 2055:. 2043:: 2020:. 1996:: 1988:: 1982:8 1961:. 1939:: 1912:. 1882:: 1874:: 1868:6 1847:. 1825:: 1798:. 1770:: 1743:. 1711:: 1703:: 1676:. 1648:: 1640:: 1610:. 1598:: 1568:. 1556:: 1530:. 1508:: 1470:. 1458:: 1430:. 1410:: 1402:: 1378:. 1354:: 1346:: 1340:9 1292:: 1269:. 1237:: 1229:: 1202:. 1178:: 1170:: 1140:. 1120:: 1093:. 1061:: 1027:. 1005:: 991:" 965:. 935:: 897:. 873:: 867:9 366:. 359:; 352:; 20:)

Index

Overprinting (genetics)
gene
nucleotide sequence
gene products
cellular
viral
genomes
prokaryotes
viruses
coding sequences
mRNA
eukaryotes
mutation
untranslated regions
introns
reading frame
locus
nucleotide substitutions
induced
protein
de novo emergence of new genes
non-coding
homologs
genomic
evolutionary history

3'
5'
3'
5'

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.