Knowledge (XXG)

Oxypnictide

Source 📝

31:(group-V, especially phosphorus and arsenic) and one or more other elements. Although this group of compounds has been recognized since 1995, interest in these compounds increased dramatically after the publication of the superconducting properties of LaOFeP and LaOFeAs which were discovered in 2006 and 2008. In these experiments the oxide was partly replaced by fluoride. 1014:
Ren, Zhi-An; Che, Guang-Can; Dong, Xiao-Li; Yang, Jie; Lu, Wei; Yi, Wei; Shen, Xiao-Li; Li, Zheng-Cai; Sun, Li-Ling; Zhou, Fang; Zhao, Zhong-Xian (2008). "Superconductivity and phase diagram in iron-based arsenic-oxides
80:
Many of the oxypnictides show a layered structure. For example, LaFePO with layers of LaO and FeP. This structure is similar to that of ZrCuSiAs, which is now the parent structure for most of the oxypnictide.
406:
Zimmer, Barbara I.; Jeitschko, Wolfgang; Albering, Jörg H.; Glaum, Robert; Reehuis, Manfred (1995). "The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure".
814:
Prakash, J.; Singh, S. J.; Samal, S. L.; Patnaik, S.; Ganguli, A. K. (2008). "Potassium fluoride doped LaOFeAs multi-band superconductor: Evidence of extremely high upper critical field".
1086:
Hunte, F; Jaroszynski, J; Gurevich, A; Larbalestier, D. C.; Jin, R; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D (2008). "Two-band superconductivity in LaFeAsO
904:
Ren, Z. A.; Yang, J.; Lu, W.; Yi, W.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhao, Z. X. (2008). "Superconductivity at 52 K in iron based F doped layered quaternary compound PrFeAs".
957:
Yang, Jie; Li, Zheng-Cai; Lu, Wei; Yi, Wei; Shen, Xiao-Li; Ren, Zhi-An; Che, Guang-Can; Dong, Xiao-Li; Sun, Li-Ling; et al. (2008). "Superconductivity at 53.5 K in GdFeAsO
857:
Shirage, Parasharam M.; Miyazawa, Kiichi; Kito, Hijiri; Eisaki, Hiroshi; Iyo, Akira (2008). "Superconductivity at 43 K at ambient pressure in the iron-based layered compound La
1566: 362: 1299: 1236: 758:
Ishida, Kenji; Nakai, Yusuke; Hosono, Hideo (2009). "To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report".
386: 1274: 1658: 1396: 477:
Takahashi, H; Igawa, K; Arii, K; Kamihara, Y; Hirano, M; Hosono, H (2008). "Superconductivity at 43 K in an iron-based layered compound LaO
439:
Kamihara, Y; Hiramatsu, H; Hirano, M; Kawamura, R; Yanagi, H; Kamiya, T; Hosono, H (2006). "Iron-Based Layered Superconductor: LaOFeP".
1506: 97:
was achieved when phosphorus was substituted by arsenic. This discovery boosted the search for similar compounds, like the search for
1594: 1315: 108: 1511: 1229: 374: 1294: 1264: 1635: 1487: 1431: 1406: 1537: 1466: 655:
Tegel, Marcus; Bichler, Daniel; Johrendt, Dirk (2008). "Synthesis, crystal structure and superconductivity of LaNiPO".
1482: 1401: 690:
Ren, Z. A.; Yang, J.; Lu, W.; Yi, W.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhao, Z. X. (2008). "Samarium based SmFeAsO
1269: 1589: 1584: 1222: 1155:
Gao, Zhaoshun; Wang, Lei; Qi, Yanpeng; Wang, Dongliang; Zhang, Xianping; Ma, Yanwei (2008). "Preparation of LaFeAsO
1289: 1542: 368: 39: 1689: 1325: 1376: 1668: 1527: 1459: 344: 338: 1579: 1552: 1532: 1454: 98: 1072: 1449: 590:"Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors" 1653: 536:
Day, Charles (2008). "New family of quaternary iron-based compounds superconducts at tens of kelvin".
42:
known as iron pnictides or ferropnictides since the oxygen is not essential but the iron seems to be.
1609: 1172: 1113: 1038: 980: 923: 878: 823: 777: 717: 664: 611: 545: 494: 341: – Association of molecules in which a fraction of electronic charge is transferred between them 297: 281: 65: 1640: 1391: 1351: 1188: 1137: 1103: 1054: 1028: 996: 970: 939: 913: 839: 793: 767: 733: 707: 601: 518: 112: 1416: 1245: 1129: 637: 510: 456: 94: 35: 676: 1625: 1599: 1371: 1346: 1279: 1180: 1121: 1046: 988: 931: 886: 831: 785: 725: 672: 627: 619: 553: 502: 448: 416: 116: 1648: 324:
Because of the brittleness of the oxypnictides, superconducting wires are formed using the
1381: 380: 1184: 1176: 1117: 1042: 992: 984: 927: 882: 827: 781: 721: 668: 615: 549: 498: 104:
The superconductivity of the oxypnictides seems to depend on the iron-pnictogen layers.
93:
iron oxypnictide was discovered in 2006, based on phosphorus. A drastic increase in the
1386: 1330: 1320: 1284: 632: 623: 589: 325: 90: 69: 1683: 1192: 1141: 1000: 843: 797: 420: 356: 57: 46: 1058: 943: 737: 1421: 1411: 1366: 1361: 1050: 835: 350: 277: 61: 575: 522: 1356: 1208: 890: 1259: 53: 935: 729: 293: 28: 1133: 789: 641: 514: 460: 377: – Technique used to attain a high quality factor in resonant cavities 1574: 1125: 506: 557: 452: 371: – Accelerator-based neutron source in Oak Ridge, Tennessee, USA 24: 1214: 1630: 1604: 1108: 1033: 975: 918: 772: 712: 606: 1663: 1218: 16:
Class of materials containing oxygen and a group-V element
1073:"High-temp superconductors pave way for 'supermagnets'" 101:-based superconductors after their discovery in 1986. 1618: 1565: 1520: 1496: 1475: 1439: 1430: 1339: 1308: 1252: 111:(up to 55 K) of composition ReOTmPn, where Re is a 1019:(Re = rare-earth metal) without fluorine doping". 383: – Thin layer of liquid in a superfluid state 347: – Predicted phase in quark matter in quarks 1211:Has diagram of LaO & FeAs layers in LaOFeAs 1230: 363:National Superconducting Cyclotron Laboratory 359: – Proposed spacecraft propulsion method 353: – Physical phenomenon due to impurities 52:The different subclasses of oxypnictides are 8: 45:Oxypnictides have been patented as magnetic 365: – Building in Michigan, United States 1436: 1237: 1223: 1215: 809: 807: 472: 470: 434: 432: 430: 296:-based material tested at 6 K predicts an 1107: 1032: 974: 917: 771: 711: 631: 605: 677:10.1016/j.solidstatesciences.2007.08.016 588:Ozawa, T. C.; Kauzlarich, S. M. (2008). 121: 398: 387:Timeline of low-temperature technology 34:These and related compounds (e.g. the 1165:Superconductor Science and Technology 1163:wires by the powder-in-tube method". 963:Superconductor Science and Technology 578:European Patent Application EP1868215 23:are a class of materials composed of 7: 753: 751: 749: 747: 276:Tests in magnetic fields up to 45 14: 292:may be around 64 T. A different 119:and Pn is from group V e.g. As. 109:high-temperature superconductors 1094:at very high magnetic fields". 576:Magnetic semiconductor material 409:Journal of Alloys and Compounds 375:Superconducting radio frequency 1185:10.1088/0953-2048/21/10/105024 906:Materials Research Innovations 700:Materials Research Innovations 1: 1075:. planetanalog. May 29, 2008. 993:10.1088/0953-2048/21/8/082001 624:10.1088/1468-6996/9/3/033003 421:10.1016/0925-8388(95)01672-4 328:process (using iron tubes). 1706: 1567:Technological applications 1051:10.1209/0295-5075/83/17002 891:10.1103/PhysRevB.78.172503 836:10.1209/0295-5075/84/57003 40:iron-based superconductors 1309:Characteristic parameters 369:Spallation Neutron Source 107:Some found in 2008 to be 1326:London penetration depth 936:10.1179/143307508X333686 730:10.1179/143307508X333686 594:Sci. Technol. Adv. Mater 1619:List of superconductors 1497:By critical temperature 345:Color superconductivity 339:Charge-transfer complex 790:10.1143/JPSJ.78.062001 38:) form a new group of 1265:Bean's critical state 1440:By magnetic response 657:Solid State Sciences 298:upper critical field 282:upper critical field 95:critical temperature 1392:persistent currents 1377:Little–Parks effect 1177:2008SuScT..21j5024G 1126:10.1038/nature07058 1118:2008Natur.453..903H 1043:2008EL.....8317002R 985:2008SuScT..21h2001Y 928:2008MatRI..12..105R 883:2008PhRvB..78q2503S 828:2008EL.....8457003P 782:2009JPSJ...78f2001I 722:2008MatRI..12..105R 669:2008SSSci..10..193T 616:2008STAdM...9c3003O 550:2008PhT....61e..11D 507:10.1038/nature06972 499:2008Natur.453..376T 447:(31): 10012–10013. 124: 1352:Andreev reflection 1347:Abrikosov vortices 122: 36:122 iron arsenides 1677: 1676: 1595:quantum computing 1561: 1560: 1417:superdiamagnetism 1246:Superconductivity 1102:(7197): 903–905. 871:Physical Review B 760:J. Phys. Soc. Jpn 558:10.1063/1.2930719 493:(7193): 376–378. 453:10.1021/ja063355c 274: 273: 85:Superconductivity 1697: 1626:bilayer graphene 1600:Rutherford cable 1512:room temperature 1507:high temperature 1437: 1397:proximity effect 1372:Josephson effect 1316:coherence length 1239: 1232: 1225: 1216: 1197: 1196: 1152: 1146: 1145: 1111: 1083: 1077: 1076: 1069: 1063: 1062: 1036: 1011: 1005: 1004: 978: 954: 948: 947: 921: 901: 895: 894: 854: 848: 847: 811: 802: 801: 775: 755: 742: 741: 715: 687: 681: 680: 652: 646: 645: 635: 609: 585: 579: 568: 562: 561: 533: 527: 526: 474: 465: 464: 441:J. Am. Chem. Soc 436: 425: 424: 403: 125: 117:transition metal 1705: 1704: 1700: 1699: 1698: 1696: 1695: 1694: 1690:Superconductors 1680: 1679: 1678: 1673: 1644: 1614: 1557: 1516: 1503:low temperature 1492: 1471: 1426: 1382:Meissner effect 1335: 1331:Silsbee current 1304: 1270:Ginzburg–Landau 1248: 1243: 1205: 1200: 1162: 1158: 1154: 1153: 1149: 1093: 1089: 1085: 1084: 1080: 1071: 1070: 1066: 1018: 1013: 1012: 1008: 960: 956: 955: 951: 903: 902: 898: 868: 864: 860: 856: 855: 851: 813: 812: 805: 757: 756: 745: 697: 693: 689: 688: 684: 654: 653: 649: 587: 586: 582: 569: 565: 535: 534: 530: 484: 480: 476: 475: 468: 438: 437: 428: 405: 404: 400: 396: 391: 381:Superfluid film 334: 322: 315: 311: 307: 303: 291: 287: 267: 256: 245: 241: 230: 226: 215: 211: 207: 196: 192: 181: 177: 165: 161: 149: 145: 136: 91:superconducting 87: 78: 49:in early 2006. 17: 12: 11: 5: 1703: 1701: 1693: 1692: 1682: 1681: 1675: 1674: 1672: 1671: 1666: 1661: 1656: 1651: 1646: 1642: 1638: 1633: 1628: 1622: 1620: 1616: 1615: 1613: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1580:electromagnets 1577: 1571: 1569: 1563: 1562: 1559: 1558: 1556: 1555: 1550: 1545: 1540: 1535: 1530: 1524: 1522: 1521:By composition 1518: 1517: 1515: 1514: 1509: 1504: 1500: 1498: 1494: 1493: 1491: 1490: 1488:unconventional 1485: 1479: 1477: 1476:By explanation 1473: 1472: 1470: 1469: 1464: 1463: 1462: 1457: 1452: 1443: 1441: 1434: 1432:Classification 1428: 1427: 1425: 1424: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1364: 1359: 1354: 1349: 1343: 1341: 1337: 1336: 1334: 1333: 1328: 1323: 1321:critical field 1318: 1312: 1310: 1306: 1305: 1303: 1302: 1297: 1292: 1290:Mattis–Bardeen 1287: 1282: 1277: 1275:Kohn–Luttinger 1272: 1267: 1262: 1256: 1254: 1250: 1249: 1244: 1242: 1241: 1234: 1227: 1219: 1213: 1212: 1204: 1203:External links 1201: 1199: 1198: 1171:(10): 105024. 1160: 1156: 1147: 1091: 1087: 1078: 1064: 1016: 1006: 958: 949: 896: 877:(17): 172503. 866: 862: 858: 849: 803: 743: 695: 691: 682: 663:(2): 193–197. 647: 580: 563: 528: 482: 478: 466: 426: 415:(2): 238–242. 397: 395: 392: 390: 389: 384: 378: 372: 366: 360: 354: 348: 342: 335: 333: 330: 326:powder-in-tube 321: 318: 313: 309: 305: 301: 300:of 122 T in La 289: 285: 272: 271: 268: 265: 261: 260: 257: 254: 250: 249: 246: 243: 239: 235: 234: 231: 228: 224: 220: 219: 216: 213: 209: 205: 201: 200: 197: 194: 190: 186: 185: 182: 179: 175: 171: 170: 167: 163: 159: 155: 154: 151: 147: 143: 139: 138: 134: 129: 86: 83: 77: 74: 70:oxybismuthides 66:oxyantimonides 47:semiconductors 19:In chemistry, 15: 13: 10: 9: 6: 4: 3: 2: 1702: 1691: 1688: 1687: 1685: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1623: 1621: 1617: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1572: 1570: 1568: 1564: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1538:heavy fermion 1536: 1534: 1531: 1529: 1526: 1525: 1523: 1519: 1513: 1510: 1508: 1505: 1502: 1501: 1499: 1495: 1489: 1486: 1484: 1481: 1480: 1478: 1474: 1468: 1467:ferromagnetic 1465: 1461: 1458: 1456: 1453: 1451: 1448: 1447: 1445: 1444: 1442: 1438: 1435: 1433: 1429: 1423: 1420: 1418: 1415: 1413: 1412:supercurrents 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1344: 1342: 1338: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1313: 1311: 1307: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1257: 1255: 1251: 1247: 1240: 1235: 1233: 1228: 1226: 1221: 1220: 1217: 1210: 1209:Hosono at JST 1207: 1206: 1202: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1151: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1110: 1105: 1101: 1097: 1082: 1079: 1074: 1068: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1035: 1030: 1026: 1022: 1010: 1007: 1002: 998: 994: 990: 986: 982: 977: 972: 969:(8): 082001. 968: 964: 953: 950: 945: 941: 937: 933: 929: 925: 920: 915: 911: 907: 900: 897: 892: 888: 884: 880: 876: 872: 853: 850: 845: 841: 837: 833: 829: 825: 821: 817: 810: 808: 804: 799: 795: 791: 787: 783: 779: 774: 769: 766:(6): 062001. 765: 761: 754: 752: 750: 748: 744: 739: 735: 731: 727: 723: 719: 714: 709: 705: 701: 686: 683: 678: 674: 670: 666: 662: 658: 651: 648: 643: 639: 634: 629: 625: 621: 617: 613: 608: 603: 600:(3): 033003. 599: 595: 591: 584: 581: 577: 573: 567: 564: 559: 555: 551: 547: 543: 539: 538:Physics Today 532: 529: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 473: 471: 467: 462: 458: 454: 450: 446: 442: 435: 433: 431: 427: 422: 418: 414: 410: 402: 399: 393: 388: 385: 382: 379: 376: 373: 370: 367: 364: 361: 358: 357:Magnetic sail 355: 352: 349: 346: 343: 340: 337: 336: 331: 329: 327: 320:Practical use 319: 317: 299: 295: 283: 279: 269: 263: 262: 258: 252: 251: 247: 237: 236: 232: 222: 221: 217: 203: 202: 198: 188: 187: 183: 173: 172: 168: 157: 156: 152: 141: 140: 133: 130: 127: 126: 123:oxypnictides 120: 118: 114: 110: 105: 102: 100: 96: 92: 84: 82: 75: 73: 71: 67: 63: 59: 58:oxyphosphides 55: 50: 48: 43: 41: 37: 32: 30: 26: 22: 1548:oxypnictides 1547: 1483:conventional 1422:superstripes 1367:flux pumping 1362:flux pinning 1357:Cooper pairs 1168: 1164: 1150: 1099: 1095: 1081: 1067: 1027:(1): 17002. 1024: 1020: 1009: 966: 962: 952: 909: 905: 899: 874: 870: 852: 822:(5): 57003. 819: 815: 763: 759: 703: 699: 685: 660: 656: 650: 597: 593: 583: 571: 566: 544:(5): 11–12. 541: 537: 531: 490: 486: 444: 440: 412: 408: 401: 351:Kondo effect 323: 280:suggest the 275: 131: 106: 103: 88: 79: 62:oxyarsenides 51: 44: 33: 21:oxypnictides 20: 18: 1407:SU(2) color 1387:Homes's law 54:oxynitrides 1543:iron-based 1402:reentrance 912:(3): 105. 706:(3): 105. 570:H. Hosono 394:References 284:of LaFeAsO 115:, Tm is a 113:rare earth 89:The first 1340:Phenomena 1193:122471407 1142:115211939 1109:0804.0485 1034:0804.2582 1001:121990600 976:0804.3727 919:0803.4283 844:119254951 798:119295430 773:0906.2045 713:0803.4283 607:0808.1158 294:lanthanum 128:Material 76:Structure 29:pnictogen 1684:Category 1575:cryotron 1533:cuprates 1528:covalent 1285:Matthias 1253:Theories 1134:18509332 1059:96240327 944:55488705 738:55488705 642:27877997 515:18432191 461:16881620 332:See also 1669:more... 1553:organic 1173:Bibcode 1114:Bibcode 1039:Bibcode 1015:ReFeAsO 981:Bibcode 924:Bibcode 879:Bibcode 824:Bibcode 778:Bibcode 718:Bibcode 665:Bibcode 633:5099654 612:Bibcode 574:(2006) 546:Bibcode 495:Bibcode 485:FeAs". 264:SmFeAsO 253:GdFeAsO 238:PrFeAsO 223:NdFeAsO 189:SmFeAsO 174:CeFeAsO 99:cuprate 1446:Types 1280:London 1191:  1140:  1132:  1096:Nature 1057:  999:  942:  842:  796:  736:  640:  630:  572:et al. 523:498756 521:  513:  487:Nature 459:  278:teslas 68:, and 25:oxygen 1659:TBCCO 1631:BSCCO 1610:wires 1605:SQUID 1189:S2CID 1138:S2CID 1104:arXiv 1055:S2CID 1029:arXiv 997:S2CID 971:arXiv 940:S2CID 914:arXiv 865:FeAsO 840:S2CID 794:S2CID 768:arXiv 734:S2CID 708:arXiv 602:arXiv 519:S2CID 308:FeAsO 266:~0.85 259:53.5 218:43.1 212:FeAsO 169:28.5 166:FeAs 150:FeAs 1664:YBCO 1654:NbTi 1649:NbSn 1636:LBCO 1130:PMID 1092:0.11 1088:0.89 638:PMID 511:PMID 457:PMID 290:0.11 286:0.89 255:0.85 244:0.11 240:0.89 229:0.11 225:0.89 180:0.16 176:0.84 148:0.11 144:0.89 137:(K) 27:, a 1641:MgB 1590:NMR 1585:MRI 1460:1.5 1300:WHH 1295:RVB 1260:BCS 1181:doi 1161:0.1 1157:0.9 1122:doi 1100:453 1047:doi 1021:EPL 1017:1−δ 989:doi 961:". 959:1−δ 932:doi 887:doi 869:". 859:1‑x 832:doi 816:EPL 786:doi 726:doi 698:". 692:1−x 673:doi 628:PMC 620:doi 554:doi 503:doi 491:453 479:1−x 449:doi 445:128 417:doi 413:229 314:0.2 310:0.8 306:0.2 302:0.8 270:55 248:52 233:52 214:0.6 210:0.5 206:0.5 199:43 195:0.1 191:0.9 184:41 164:0.2 160:0.9 158:LaO 153:26 142:LaO 1686:: 1455:II 1187:. 1179:. 1169:21 1167:. 1136:. 1128:. 1120:. 1112:. 1098:. 1053:. 1045:. 1037:. 1025:83 1023:. 995:. 987:. 979:. 967:21 965:. 938:. 930:. 922:. 910:12 908:. 885:. 875:78 873:. 838:. 830:. 820:84 818:. 806:^ 792:. 784:. 776:. 764:78 762:. 746:^ 732:. 724:. 716:. 704:12 702:. 671:. 661:10 659:. 636:. 626:. 618:. 610:. 596:. 592:. 552:. 542:61 540:. 517:. 509:. 501:. 489:. 469:^ 455:. 443:. 429:^ 411:. 316:. 204:La 72:. 64:, 60:, 56:, 1643:2 1450:I 1238:e 1231:t 1224:v 1195:. 1183:: 1175:: 1159:F 1144:. 1124:: 1116:: 1106:: 1090:F 1061:. 1049:: 1041:: 1031:: 1003:. 991:: 983:: 973:: 946:. 934:: 926:: 916:: 893:. 889:: 881:: 867:y 863:x 861:Y 846:. 834:: 826:: 800:. 788:: 780:: 770:: 740:. 728:: 720:: 710:: 696:x 694:F 679:. 675:: 667:: 644:. 622:: 614:: 604:: 598:9 560:. 556:: 548:: 525:. 505:: 497:: 483:x 481:F 463:. 451:: 423:. 419:: 312:F 304:K 288:F 242:F 227:F 208:Y 193:F 178:F 162:F 146:F 135:c 132:T

Index

oxygen
pnictogen
122 iron arsenides
iron-based superconductors
semiconductors
oxynitrides
oxyphosphides
oxyarsenides
oxyantimonides
oxybismuthides
superconducting
critical temperature
cuprate
high-temperature superconductors
rare earth
transition metal
teslas
upper critical field
lanthanum
upper critical field
powder-in-tube
Charge-transfer complex
Color superconductivity
Kondo effect
Magnetic sail
National Superconducting Cyclotron Laboratory
Spallation Neutron Source
Superconducting radio frequency
Superfluid film
Timeline of low-temperature technology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.