Knowledge (XXG)

Obstruction theory

Source 📝

558:-skeleton, then one can also prove that the resulting cocycle would differ from the first by a coboundary. Therefore we have a well-defined element of the cohomology group 134:, given the mapping already defined on its boundary edges. Likewise, then extending the mapping to the 3-skeleton involves extending the mapping to each solid 3-simplex of 729:
In dimension at most 2 (Rado), and 3 (Moise), the notions of topological manifolds and piecewise linear manifolds coincide. In dimension 4 they are not the same.
215:. If the class is not equal to zero, it is called the obstruction to extending the mapping over the n-skeleton, given its homotopy class on the (n-1)-skeleton. 531:
The fact that this cochain came from a partially defined section (as opposed to an arbitrary collection of maps from all the boundaries of all the
207:. When this cohomology class is equal to 0, it turns out that the mapping may be modified within its homotopy class on the (n-1)-skeleton of 883: 865: 844: 822: 907: 539:-simplices) can be used to prove that this cochain is a cocycle. If one started with a different partially defined section 672:, this construction can be used to see if there are obstructions to the existence of a lift (up to homotopy) of a map into 163:
of the mapping already defined on its boundary, (at least one of which will be non-zero). These assignments define an
817: 719: 122:), an extension to the 1-skeleton will be possible whenever the image of the 0-skeleton will belong to the same 902: 912: 32: 723: 259: 55: 54:. Obstruction theory turns out to be an application of cohomology theory to the problem of constructing a 732:
In dimensions at most 6 the notions of piecewise linear manifolds and differentiable manifolds coincide.
130:. Extending from the 1-skeleton to the 2-skeleton means defining the mapping on each solid triangle from 149:, this procedure might be impossible. In that case, one can assign to each n-simplex the homotopy class 805: 785: 765: 715: 47: 753: 749: 459: 409: 25: 711: 394: 79: 75: 524:-skeleton by using the homotopy between (the partially defined section on the boundary of each 917: 879: 861: 840: 793: 698: 662: 633:. Thus it provides a complete invariant of the existence of sections up to homotopy on the 233: 102:
to define obstructions to extensions. For example, with a mapping from a simplicial complex
95: 91: 853: 71: 43: 797: 777: 741: 669: 418: 123: 99: 39: 50:
were defined as obstructions to the existence of certain fields of linear independent
896: 789: 29: 516:
are trivial, which means that our partially defined section can be extended to the
59: 51: 17: 74:
relates to the procedure, inductive with respect to dimension, for extending a
462: 286: 186: 164: 111: 83: 773: 251: 801: 761: 333: 141:
At some point, say extending the mapping from the (n-1)-skeleton of
389:. Because fibrations satisfy the homotopy lifting property, and 658:
as the first of the above cohomology classes that is non-zero.
500:
because it being the zero means that all of these elements of
661:
This can be used to find obstructions to trivializations of
629:
is homotopic (as opposed to equal) to the identity map on
590:-skeleton exists that agrees with the given choice on the 416:. So this partially defined section assigns an element of 211:
so that the mapping may be extended to the n-skeleton of
258:. Furthermore, assume that we have a partially defined 219:
Obstruction to extending a section of a principal bundle
601:
The converse is also true if one allows such things as
598:-skeleton, then this cohomology class must be trivial. 138:, given the mapping already defined on its boundary. 804:
to performing surgery on the normal map to obtain a
582:such that if a partially defined section on the 780:. In both cases there are two obstructions for 714:, obstruction theory is concerned with when a 722:, and when a piecewise linear manifold has a 8: 181:. Amazingly, this cochain turns out to be a 70:The older meaning for obstruction theory in 796:, allowing the definition of the secondary 442:-simplex. This is precisely the data of a 670:any map can be turned into a fibration 744:are whether a topological space with 697:It is crucial to the construction of 550:that agreed with the original on the 189:class in the nth cohomology group of 7: 792:: if this vanishes there exists a 788:obstruction to the existence of a 326:can be restricted to the boundary 14: 878:. American Mathematical Society. 24:is a name given to two different 860:, Princeton University Press, 656:first obstruction to a section 496:. This cochain is called the 1: 876:The wild world of 4-manifolds 858:The Topology of Fibre Bundles 823:Wall's finiteness obstruction 86:. It is traditionally called 236:simplicial complex and that 88:Eilenberg obstruction theory 874:Scorpan, Alexandru (2005). 740:The two basic questions of 110:, defined initially on the 934: 772:-dimensional manifolds is 720:piecewise linear structure 835:Husemöller, Dale (1994), 528:) and the constant map. 332:(which is a topological 38:In the original work of 374:defines a map from the 818:Kirby–Siebenmann class 724:differential structure 654:, one can construct a 48:characteristic classes 28:, both of which yield 908:Differential topology 764:, and also whether a 706:In geometric topology 476:, i.e. an element of 193:with coefficients in 167:with coefficients in 145:to the n-skeleton of 98:with coefficients in 26:mathematical theories 806:homotopy equivalence 786:topological K-theory 766:homotopy equivalence 716:topological manifold 839:, Springer Verlag, 798:surgery obstruction 754:homotopy equivalent 694:is not a fibration. 498:obstruction cochain 410:homotopy equivalent 802:algebraic L-theory 712:geometric topology 650:By inducting over 80:simplicial complex 76:continuous mapping 66:In homotopy theory 22:obstruction theory 736:In surgery theory 699:Postnikov systems 663:principal bundles 603:homotopy sections 185:and so defines a 118:(the vertices of 96:cohomology groups 925: 889: 870: 854:Steenrod, Norman 849: 750:Poincaré duality 693: 679: 675: 653: 640: 632: 628: 618: 597: 589: 581: 557: 549: 538: 527: 523: 515: 495: 475: 471: 457: 441: 433: 415: 407: 392: 388: 377: 373: 362: 358: 342: 336: 331: 325: 314: 310: 306: 295: 289: 284: 257: 249: 234:simply connected 231: 206: 180: 162: 92:Samuel Eilenberg 933: 932: 928: 927: 926: 924: 923: 922: 903:Homotopy theory 893: 892: 886: 873: 868: 852: 847: 834: 831: 814: 738: 708: 681: 677: 673: 651: 647: 634: 630: 620: 606: 591: 583: 575: 559: 551: 548: 540: 532: 525: 517: 509: 501: 489: 477: 473: 466: 451: 443: 435: 426: 417: 413: 398: 390: 379: 375: 372: 364: 360: 352: 344: 340: 334: 327: 324: 316: 312: 308: 300: 293: 287: 279: 270: 262: 255: 237: 229: 226: 221: 200: 194: 174: 168: 156: 150: 100:homotopy groups 72:homotopy theory 68: 12: 11: 5: 931: 929: 921: 920: 915: 913:Surgery theory 910: 905: 895: 894: 891: 890: 884: 871: 866: 850: 845: 830: 827: 826: 825: 820: 813: 810: 778:diffeomorphism 742:surgery theory 737: 734: 707: 704: 703: 702: 695: 676:to a map into 666: 659: 646: 643: 571: 544: 505: 485: 447: 422: 368: 348: 320: 275: 266: 225: 222: 220: 217: 198: 172: 154: 124:path-connected 94:. It involves 67: 64: 13: 10: 9: 6: 4: 3: 2: 930: 919: 916: 914: 911: 909: 906: 904: 901: 900: 898: 887: 885:0-8218-3749-4 881: 877: 872: 869: 867:0-691-08055-0 863: 859: 855: 851: 848: 846:0-387-94087-1 842: 838: 837:Fibre Bundles 833: 832: 828: 824: 821: 819: 816: 815: 811: 809: 807: 803: 799: 795: 791: 790:vector bundle 787: 783: 779: 775: 771: 767: 763: 760:-dimensional 759: 755: 751: 748:-dimensional 747: 743: 735: 733: 730: 727: 725: 721: 717: 713: 705: 700: 696: 692: 688: 684: 671: 667: 664: 660: 657: 649: 648: 644: 642: 638: 627: 623: 617: 613: 609: 605:, i.e. a map 604: 599: 595: 587: 579: 574: 570: 566: 562: 555: 547: 543: 536: 529: 521: 513: 508: 504: 499: 493: 488: 484: 480: 469: 464: 461: 455: 450: 446: 439: 432: 430: 425: 421: 411: 405: 401: 396: 386: 382: 371: 367: 356: 351: 347: 338: 330: 323: 319: 304: 297: 291: 283: 278: 274: 269: 265: 261: 253: 248: 244: 240: 235: 228:Suppose that 223: 218: 216: 214: 210: 204: 197: 192: 188: 184: 178: 171: 166: 160: 153: 148: 144: 139: 137: 133: 129: 126:component of 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 78:defined on a 77: 73: 65: 63: 61: 57: 56:cross-section 53: 49: 45: 41: 36: 34: 31: 30:cohomological 27: 23: 19: 875: 857: 836: 784:, a primary 781: 769: 757: 745: 739: 731: 728: 709: 690: 686: 682: 655: 645:Applications 636: 625: 621: 615: 611: 607: 602: 600: 593: 585: 577: 572: 568: 564: 560: 553: 545: 541: 534: 530: 519: 511: 506: 502: 497: 491: 486: 482: 478: 467: 453: 448: 444: 437: 428: 423: 419: 403: 399: 395:contractible 384: 380: 369: 365: 354: 349: 345: 328: 321: 317: 302: 298: 281: 276: 272: 267: 263: 246: 242: 238: 227: 224:Construction 212: 208: 202: 195: 190: 182: 176: 169: 158: 151: 146: 142: 140: 135: 131: 127: 119: 115: 107: 106:to another, 103: 87: 69: 37: 21: 15: 641:-skeleton. 378:-sphere to 343:sends each 339:). Because 254:with fiber 18:mathematics 897:Categories 829:References 794:normal map 619:such that 596:− 1) 556:− 1) 465:of degree 460:simplicial 299:For every 187:cohomology 112:0-skeleton 84:CW complex 33:invariants 774:homotopic 434:to every 307:-simplex 290:-skeleton 252:fibration 165:n-cochain 918:Theories 856:(1951), 812:See also 762:manifold 685: : 680:even if 668:Because 610: : 458:-valued 359:back to 271: : 241: : 90:, after 463:cochain 337:-sphere 285:on the 260:section 183:cocycle 52:vectors 44:Whitney 40:Stiefel 882:  864:  843:  782:n>9 756:to an 718:has a 60:bundle 776:to a 250:is a 232:is a 82:, or 58:of a 880:ISBN 862:ISBN 841:ISBN 639:+ 1) 588:+ 1) 537:+ 1) 522:+ 1) 481:(B; 440:+ 1) 305:+ 1) 42:and 800:in 768:of 752:is 710:In 472:on 470:+ 1 412:to 408:is 393:is 311:in 292:of 199:n-1 173:n-1 155:n-1 114:of 16:In 899:: 808:. 726:. 689:→ 624:∘ 614:→ 580:)) 567:; 494:)) 397:; 363:, 361:∂Δ 355:∂Δ 329:∂Δ 315:, 296:. 280:→ 245:→ 62:. 46:, 35:. 20:, 888:. 770:n 758:n 746:n 701:. 691:B 687:E 683:p 678:E 674:B 665:. 652:n 637:n 635:( 631:B 626:σ 622:p 616:E 612:B 608:σ 594:n 592:( 586:n 584:( 578:F 576:( 573:n 569:π 565:B 563:( 561:H 554:n 552:( 546:n 542:σ 535:n 533:( 526:Δ 520:n 518:( 514:) 512:F 510:( 507:n 503:π 492:F 490:( 487:n 483:π 479:C 474:B 468:n 456:) 454:F 452:( 449:n 445:π 438:n 436:( 431:) 429:F 427:( 424:n 420:π 414:F 406:) 404:Δ 402:( 400:p 391:Δ 387:) 385:Δ 383:( 381:p 376:n 370:n 366:σ 357:) 353:( 350:n 346:σ 341:p 335:n 322:n 318:σ 313:B 309:Δ 303:n 301:( 294:B 288:n 282:E 277:n 273:B 268:n 264:σ 256:F 247:B 243:E 239:p 230:B 213:X 209:X 205:) 203:Y 201:( 196:π 191:X 179:) 177:Y 175:( 170:π 161:) 159:Y 157:( 152:π 147:X 143:X 136:X 132:X 128:Y 120:X 116:X 108:Y 104:X

Index

mathematics
mathematical theories
cohomological
invariants
Stiefel
Whitney
characteristic classes
vectors
cross-section
bundle
homotopy theory
continuous mapping
simplicial complex
CW complex
Samuel Eilenberg
cohomology groups
homotopy groups
0-skeleton
path-connected
n-cochain
cohomology
simply connected
fibration
section
n-skeleton
n-sphere
contractible
homotopy equivalent
πn(F)
simplicial

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.