Knowledge (XXG)

Oddo–Harkins rule

Source 📝

300: 185: 208: – a type of nuclear fission in which cosmic rays impact larger isotopes and fragment them. Spallation does not require high temperature and pressure of the stellar environment but can occur on Earth. Though the lighter products of spallation are relatively rare, the odd-mass-number isotopes in this class occur in greater relative abundance compared to even-number isotopes, in contravention of the Oddo–Harkins rule. 88: 926:, which is highly abundant in spite of having an unpaired proton. Additionally, even-parity isotopes that have exactly two more neutrons than protons are not particularly abundant despite their even parity. Each of the light elements oxygen, neon, magnesium, silicon, and sulfur, have two isotopes with even isospin (nucleon) parity. As shown in the plot above, the isotope with an 892:
The Oddo–Harkins rule may suggest that elements with odd atomic numbers have a single, unpaired proton and may swiftly capture another in order to achieve an even atomic number and proton parity. Protons are paired in elements with even atomic numbers, with each member of the pair balancing the spin
930:
number of protons and neutrons is one to two orders of magnitude more abundant than the isotope with even parity but two additional neutrons. This may leave open the role of parity in abundance. The structural or subatomic basis of the unusual abundances of equinucleonic isotopes in baryonic matter
200:. The process involves the fusion of alpha particles (helium-4 nuclei) under high temperature and pressure within the stellar environment. Each step in the alpha process adds two protons (and two neutrons), favoring synthesis of even-numbered elements. Carbon itself is a product of a 75: 51:(7). Generally, the relative abundance of an even atomic numbered element is roughly two orders of magnitude greater than the relative abundances of the immediately adjacent odd atomic numbered elements to either side. This pattern was first reported by 151:
The early form of the rule derived from Harkin's 1917 study of meteorites. He reasoned as others at the time, that meteorites are more representative of the cosmological abundance of the elements. Harkins observed that elements with even atomic numbers
307:
The elemental basis of the Oddo–Harkins has direct roots in the isotopic compositions of the elements. While even-atomic-numbered elements are more abundant than odd, the spirit of Oddo–Harkins rule extends to the most abundant
255:
nuclei but was too short for every H ion to be reconstituted into heavier elements. In this case, helium, atomic number 2, remains the even-numbered counterpart to hydrogen. Thus, neutral hydrogen—or hydrogen paired with an
303:
A plot of the stable isotopic compositions of the first 16 elements, which make up 99.9% of ordinary matter in the universe. Isotopes with equal numbers of protons and neutrons are particularly abundant.
885:) are not predicted by the shell model. "That nuclei of this type are unusually abundant indicates that the excess stability must have played a part in the process of the creation of elements", stated 188:
Nucleosynthetic origins of light nuclides. The most abundant nuclides have equal numbers of protons and neutrons (box around isotopic symbol). Products of cosmic-ray spallation are the least abundant.
172:. The nuclear core of helium is the same as an alpha particle. This early work connection geochemistry with nuclear physics and cosmology was greatly expanded by the Norwegian group created by 220:, with an atomic number of 1. This may be because, in its ionized form, a hydrogen atom becomes a single proton, of which it is theorized to have been one of the first major conglomerates of 232:. In this period, when inflation of the universe had brought it from an infinitesimal point to about the size of a modern galaxy, temperatures in the particle soup fell from over a trillion 939:
Depending on the mass of a star, the Oddo–Harkins pattern arises from the burning of progressively more massive elements within a collapsing dying star by fusion processes such as the
850: 817: 784: 541: 508: 475: 883: 574: 924: 751: 718: 677: 644: 611: 442: 409: 376: 343: 164:. In addition, he observed that 90% of the material consisted of only 15 different isotopes, with atomic weights in multiples of four, the approximate weight of 977: 972: 291:, and beryllium has only one stable isotope, causing it to lag in abundance with regard to its neighbors, each of which has two stable isotopes. 168:. Three years earlier, Oddo made a similar observation for elements in the Earth's crust, speculating that elements are condensation products of 1183: 1076: 1066: 32: 1271: 1203: 299: 889:
in her acceptance lecture for the Nobel Prize in Physics in 1963 for discoveries concerning nuclear shell structure.
1276: 143:
to form atoms. The number of protons in the nucleus, called atomic number, uniquely identifies a chemical element.
28: 184: 64: 940: 288: 197: 60: 680: 312:
as well. Isotopes containing an equal number of protons and neutrons are the most abundant. These include
56: 822: 789: 756: 513: 480: 447: 855: 546: 284: 205: 160:. The first seven elements, making up almost 99% of the material in a meteorite, were all even-numbered 68: 896: 723: 690: 649: 616: 583: 414: 381: 348: 315: 1148: 948: 886: 204:
from helium, a process that skips Li, Be, and B. These nuclides (including helium-3) are produced by
201: 960: 684: 985: – Branch of chemistry dealing with radioactivity, transmutation and other nuclear processes 683:
of either protons or neutrons (2, 8, 20, 28, 50, 82, and 126) and are therefore predicted by the
173: 1223: 1179: 1114: 1072: 982: 216:
This postulate, however, does not apply to the universe's most abundant and simplest element:
1215: 1156: 1106: 1047: 1016: 893:
of the other, thus enhancing nucleon stability. A challenge to this explanation is posed by
225: 92: 24: 1241: 165: 112: 59:
in 1917. The Oddo–Harkins rule is true for all elements beginning with carbon produced by
99:
axis is logarithmic); the Oddo–Harkins rule is visible for most of the metallic elements.
1152: 240: 136: 74: 1265: 577: 193: 52: 36: 1094: 283:). This is because most of the universe's lithium, beryllium, and boron are made by 87: 952: 931:
is one of the simplest and most profound unsolved mysteries of the atomic nucleus.
265: 1136: 120: 1227: 1118: 1110: 1020: 275:, which, despite an even atomic number (4), is rarer than adjacent elements ( 956: 944: 272: 244: 1160: 257: 229: 217: 140: 132: 124: 108: 48: 1051: 309: 276: 252: 128: 116: 1219: 261: 248: 233: 221: 169: 40: 1035: 1004: 687:
to be unusually abundant. The high abundances of the remaining six (
192:
The Oddo–Harkins rule for elements from C to Fe is explained by the
1071:(Rev. and updated ed.). Univ. of Chicago Press. p. 602. 1036:"The Evolution of the Elements and the Stability of Complex Atoms" 280: 104: 73: 44: 78:
Estimated abundances of the chemical elements in the solar system
63:
but not true for the lightest elements below carbon produced by
1176:
Introduction to planetary science: the geological perspective
1137:"An Unlikely Connection: Geochemistry and Nuclear Structure" 268:
portions of matter following the conclusion of inflation.
1068:
Cosmos an illustrated history of astronomy and cosmology
156:) were about 70 times more abundant than those with odd 1091:
This secondary reference only calls it Harkins rule.
899: 858: 825: 792: 759: 726: 693: 652: 619: 586: 549: 516: 483: 450: 417: 384: 351: 318: 1130: 1128: 951:. The newly formed elements are ejected slowly as 918: 877: 844: 811: 778: 745: 712: 671: 638: 605: 568: 535: 502: 469: 436: 403: 370: 337: 1202:Rosman, K. J. R.; Taylor, P. D. P. (1998-11-01). 264:—constituted the vast majority of the remaining 1208:Journal of Physical and Chemical Reference Data 1093:Suess, Hans E.; Urey, Harold C. (1956-01-01). 1005:"Die Molekularstruktur der radioaktiven Atome" 43:, with atomic number 6, is more abundant than 959:and eventually join the rest of the galaxy's 8: 1204:"Isotopic Compositions of the Elements 1997" 35:than the elements with immediately adjacent 580:containing whole multiples of He-4 nuclei ( 1174:Faure, Gunter; Mensing, Teresa M. (2007). 111:are formed in stars or supernovae through 978:List of elements by stability of isotopes 900: 898: 859: 857: 826: 824: 793: 791: 760: 758: 727: 725: 694: 692: 653: 651: 620: 618: 587: 585: 550: 548: 517: 515: 484: 482: 451: 449: 418: 416: 385: 383: 352: 350: 319: 317: 1040:Journal of the American Chemical Society 298: 183: 135:together. Protons and neutrons form the 86: 995: 16:Relative abundance of chemical elements 973:Abundance of elements in Earth's crust 613:is the exception). Two of the eight ( 7: 1197: 1195: 845:{\displaystyle {\ce {^{28}_{14}Si}}} 812:{\displaystyle {\ce {^{24}_{12}Mg}}} 779:{\displaystyle {\ce {^{20}_{10}Ne}}} 536:{\displaystyle {\ce {^{28}_{14}Si}}} 503:{\displaystyle {\ce {^{24}_{12}Mg}}} 470:{\displaystyle {\ce {^{20}_{10}Ne}}} 1009:Zeitschrift für Anorganische Chemie 878:{\displaystyle {\ce {^{32}_{16}S}}} 569:{\displaystyle {\ce {^{32}_{16}S}}} 180:Relation to stellar nucleosynthesis 919:{\displaystyle {\ce {^{14}_{7}N}}} 746:{\displaystyle {\ce {^{14}_{7}N}}} 713:{\displaystyle {\ce {^{12}_{6}C}}} 672:{\displaystyle {\ce {^{16}_{8}O}}} 639:{\displaystyle {\ce {^{4}_{2}He}}} 606:{\displaystyle {\ce {^{14}_{7}N}}} 437:{\displaystyle {\ce {^{16}_{8}O}}} 404:{\displaystyle {\ce {^{14}_{7}N}}} 371:{\displaystyle {\ce {^{12}_{6}C}}} 338:{\displaystyle {\ce {^{4}_{2}He}}} 14: 1242:"The Nobel Prize in Physics 1963" 271:Another exception to the rule is 224:during the initial second of the 127:reach levels high enough to fuse 1: 1095:"Abundances of the Elements" 1034:Harkins, William D. (1917). 236:to several million kelvins. 226:Universe's inflation period 1293: 1099:Reviews of Modern Physics 955:or in the explosion of a 914: 873: 840: 807: 774: 741: 708: 667: 634: 601: 576:. Seven of the eight are 564: 531: 498: 465: 432: 399: 366: 333: 91:Abundance of elements in 1272:Eponymous chemical rules 1111:10.1103/RevModPhys.28.53 1021:10.1002/zaac.19140870118 907: 901: 866: 860: 833: 827: 800: 794: 767: 761: 734: 728: 701: 695: 660: 654: 627: 621: 594: 588: 557: 551: 524: 518: 491: 485: 458: 452: 425: 419: 392: 386: 359: 353: 326: 320: 239:This period allowed the 65:big bang nucleosynthesis 1178:. Dordrecht: Springer. 1003:Oddo, Giuseppe (1914). 289:stellar nucleosynthesis 198:stellar nucleosynthesis 61:stellar nucleosynthesis 1141:Physics in Perspective 935:Relationship to fusion 920: 879: 846: 813: 780: 747: 714: 673: 640: 607: 570: 537: 504: 471: 438: 405: 372: 339: 304: 243:of single protons and 212:Exceptions to the rule 189: 100: 95:per million Si atoms ( 79: 57:William Draper Harkins 1161:10.1007/s000160050051 1135:Kragh, Helge (2000). 921: 880: 847: 814: 781: 748: 715: 674: 641: 608: 571: 538: 505: 472: 439: 406: 373: 340: 302: 285:cosmic ray spallation 206:cosmic ray spallation 187: 90: 77: 69:cosmic ray spallation 1065:North, John (2008). 949:triple-alpha process 897: 887:Maria Goeppert Mayer 856: 823: 790: 757: 724: 691: 650: 617: 584: 547: 514: 481: 448: 415: 382: 349: 316: 202:triple-alpha process 139:, which accumulates 1153:2000PhP.....2..381K 1052:10.1021/ja02250a002 961:interstellar medium 941:proton–proton chain 685:nuclear shell model 916: 875: 842: 809: 776: 743: 710: 669: 636: 603: 566: 533: 500: 467: 434: 401: 368: 335: 305: 295:Isotopic abundance 260:, the only stable 190: 174:Victor Goldschmidt 101: 80: 29:even atomic number 1277:Nuclear chemistry 1185:978-1-4020-5544-7 1078:978-0-226-59441-5 983:Nuclear chemistry 906: 905: 904: 865: 864: 863: 832: 831: 830: 799: 798: 797: 766: 765: 764: 733: 732: 731: 700: 699: 698: 659: 658: 657: 626: 625: 624: 593: 592: 591: 556: 555: 554: 523: 522: 521: 490: 489: 488: 457: 456: 455: 424: 423: 422: 391: 390: 389: 358: 357: 356: 325: 324: 323: 21:Oddo–Harkins rule 1284: 1256: 1255: 1253: 1252: 1238: 1232: 1231: 1220:10.1063/1.556031 1214:(6): 1275–1287. 1199: 1190: 1189: 1171: 1165: 1164: 1132: 1123: 1122: 1089: 1083: 1082: 1062: 1056: 1055: 1031: 1025: 1024: 1000: 925: 923: 922: 917: 915: 902: 884: 882: 881: 876: 874: 861: 851: 849: 848: 843: 841: 828: 818: 816: 815: 810: 808: 795: 785: 783: 782: 777: 775: 762: 752: 750: 749: 744: 742: 729: 719: 717: 716: 711: 709: 696: 678: 676: 675: 670: 668: 655: 645: 643: 642: 637: 635: 622: 612: 610: 609: 604: 602: 589: 575: 573: 572: 567: 565: 552: 542: 540: 539: 534: 532: 519: 509: 507: 506: 501: 499: 486: 476: 474: 473: 468: 466: 453: 443: 441: 440: 435: 433: 420: 410: 408: 407: 402: 400: 387: 377: 375: 374: 369: 367: 354: 344: 342: 341: 336: 334: 321: 228:, following the 1292: 1291: 1287: 1286: 1285: 1283: 1282: 1281: 1262: 1261: 1260: 1259: 1250: 1248: 1240: 1239: 1235: 1201: 1200: 1193: 1186: 1173: 1172: 1168: 1134: 1133: 1126: 1092: 1090: 1086: 1079: 1064: 1063: 1059: 1033: 1032: 1028: 1002: 1001: 997: 992: 969: 937: 895: 894: 854: 853: 821: 820: 788: 787: 755: 754: 722: 721: 689: 688: 648: 647: 615: 614: 582: 581: 545: 544: 512: 511: 479: 478: 446: 445: 413: 412: 380: 379: 347: 346: 314: 313: 297: 287:, not ordinary 247:nuclei to form 214: 182: 166:alpha particles 149: 113:nucleosynthesis 85: 39:. For example, 17: 12: 11: 5: 1290: 1288: 1280: 1279: 1274: 1264: 1263: 1258: 1257: 1246:NobelPrize.org 1233: 1191: 1184: 1166: 1124: 1084: 1077: 1057: 1046:(5): 856–879. 1026: 994: 993: 991: 988: 987: 986: 980: 975: 968: 965: 936: 933: 913: 910: 872: 869: 839: 836: 806: 803: 773: 770: 740: 737: 707: 704: 666: 663: 633: 630: 600: 597: 578:alpha nuclides 563: 560: 530: 527: 497: 494: 464: 461: 431: 428: 398: 395: 365: 362: 332: 329: 296: 293: 213: 210: 181: 178: 148: 145: 137:atomic nucleus 84: 81: 37:atomic numbers 23:holds that an 15: 13: 10: 9: 6: 4: 3: 2: 1289: 1278: 1275: 1273: 1270: 1269: 1267: 1247: 1243: 1237: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1196: 1192: 1187: 1181: 1177: 1170: 1167: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1131: 1129: 1125: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1088: 1085: 1080: 1074: 1070: 1069: 1061: 1058: 1053: 1049: 1045: 1041: 1037: 1030: 1027: 1022: 1018: 1014: 1011:(in German). 1010: 1006: 999: 996: 989: 984: 981: 979: 976: 974: 971: 970: 966: 964: 962: 958: 954: 950: 946: 942: 934: 932: 929: 911: 908: 890: 888: 870: 867: 837: 834: 804: 801: 771: 768: 738: 735: 705: 702: 686: 682: 681:magic numbers 664: 661: 631: 628: 598: 595: 579: 561: 558: 528: 525: 495: 492: 462: 459: 429: 426: 396: 393: 363: 360: 330: 327: 311: 301: 294: 292: 290: 286: 282: 278: 274: 269: 267: 266:unannihilated 263: 259: 254: 250: 246: 242: 237: 235: 231: 227: 223: 219: 211: 209: 207: 203: 199: 195: 194:alpha process 186: 179: 177: 175: 171: 167: 163: 159: 155: 146: 144: 142: 138: 134: 130: 126: 122: 118: 114: 110: 106: 98: 94: 93:Earth's crust 89: 82: 76: 72: 70: 66: 62: 58: 54: 53:Giuseppe Oddo 50: 46: 42: 38: 34: 33:more abundant 30: 26: 22: 1249:. Retrieved 1245: 1236: 1211: 1207: 1175: 1169: 1144: 1140: 1102: 1098: 1087: 1067: 1060: 1043: 1039: 1029: 1012: 1008: 998: 953:stellar wind 938: 927: 891: 306: 270: 238: 215: 191: 161: 157: 153: 150: 107:bigger than 102: 96: 55:in 1914 and 20: 18: 1015:: 253–268. 121:temperature 83:Definitions 1266:Categories 1251:2024-02-01 1147:(4): 381. 990:References 947:, and the 679:) contain 1228:0047-2689 1119:0034-6861 1105:: 53–74. 957:supernova 945:CNO cycle 273:beryllium 245:deuterium 141:electrons 967:See also 310:isotopes 258:electron 230:Big Bang 218:hydrogen 147:The rule 133:neutrons 125:pressure 109:hydrogen 49:nitrogen 47:(5) and 27:with an 1149:Bibcode 852:, and 277:lithium 253:lithium 234:kelvins 129:protons 117:gravity 115:, when 25:element 1226:  1182:  1117:  1075:  943:, the 543:, and 262:lepton 249:helium 241:fusion 222:quarks 170:helium 41:carbon 928:equal 281:boron 105:atoms 45:boron 1224:ISSN 1180:ISBN 1115:ISSN 1073:ISBN 646:and 279:and 251:and 131:and 123:and 103:All 67:and 19:The 1216:doi 1157:doi 1107:doi 1048:doi 1017:doi 196:of 31:is 1268:: 1244:. 1222:. 1212:27 1210:. 1206:. 1194:^ 1155:. 1143:. 1139:. 1127:^ 1113:. 1103:28 1101:. 1097:. 1044:39 1042:. 1038:. 1013:87 1007:. 963:. 912:14 871:32 868:16 838:28 835:14 829:Si 819:, 805:24 802:12 796:Mg 786:, 772:20 769:10 763:Ne 753:, 739:14 720:, 706:12 665:16 623:He 599:14 562:32 559:16 529:28 526:14 520:Si 510:, 496:24 493:12 487:Mg 477:, 463:20 460:10 454:Ne 444:, 430:16 411:, 397:14 378:, 364:12 345:, 322:He 176:. 119:, 71:. 1254:. 1230:. 1218:: 1188:. 1163:. 1159:: 1151:: 1145:2 1121:. 1109:: 1081:. 1054:. 1050:: 1023:. 1019:: 909:7 903:N 862:S 736:7 730:N 703:6 697:C 662:8 656:O 632:4 629:2 596:7 590:N 553:S 427:8 421:O 394:7 388:N 361:6 355:C 331:4 328:2 162:Z 158:Z 154:Z 152:( 97:y

Index

element
even atomic number
more abundant
atomic numbers
carbon
boron
nitrogen
Giuseppe Oddo
William Draper Harkins
stellar nucleosynthesis
big bang nucleosynthesis
cosmic ray spallation


Earth's crust
atoms
hydrogen
nucleosynthesis
gravity
temperature
pressure
protons
neutrons
atomic nucleus
electrons
alpha particles
helium
Victor Goldschmidt

alpha process

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.