Knowledge (XXG)

Opaque set

Source 📝

2308:, shown in the figure, produces an example for the unit square. The construction begins with line segments that form an opaque set with an additional property: the segments of negative slope block all lines of non-negative slope, while the segments of positive slope block all lines of non-positive slope. In the figure, the initial segments with this property are four disjoint segments along the diagonals of the square. Then, it repeatedly subdivides these segments while maintaining this property. At each level of the construction, each line segment is split by a small gap near its midpoint into two line segments, with slope of the same sign, that together block all lines of the opposite sign that were blocked by the original line segment. The 33: 1727:. However, these algorithms do not correctly solve the problem for all polygons, because some polygons have shorter solutions with a different structure than the ones they find. In particular, for a long thin rectangle, the minimum Steiner tree of all four vertices is shorter than the triangulation-based solution that these algorithms find. No known algorithm has been guaranteed to find a correct solution to the problem, regardless of its running time. 1575: 2290: 2384:
the problem involving length minimization. They have been repeatedly posed, with multiple colorful formulations: digging a trench of as short a length as possible to find a straight buried telephone cable, trying to find a nearby straight road while lost in a forest, swimming to a straight shoreline while lost at sea, efficiently painting walls to render a glass house opaque, etc.
1719:, and a segment in each remaining triangle from one vertex to the opposite side, of length equal to the height of the triangle. This structure matches the conjectured structure of the optimal solution for a square. Although the optimal triangulation for a solution of this form is not part of the input to these algorithms, it can be found by the algorithms in 2395:, or that block lines through sets in higher-dimensions. In three dimensions, the corresponding question asks for a collection of surfaces of minimum total area that blocks all visibility across a solid. However, for some solids, such as a ball, it is not clear whether such a collection exists, or whether instead the area has an 1944:. The idea is to use a generalization suggested by Shermer of the structure of the incorrect earlier algorithms (a Steiner tree on a subset of the points, together with height segments for a triangulation of the remaining input), with a fast approximation for the Steiner tree part of the approximation. 2383:
in 1959, but these are primarily about the distance sets and topological properties of barriers rather than about minimizing their length. In a postscript to his paper, Bagemihl asked for the minimum length of an interior barrier for the square, and subsequent work has largely focused on versions of
1210:
on the length of an opaque set cannot be improved to have a larger constant factor than 1/2, because there exist examples of convex sets that have opaque sets whose length is close to this lower bound. In particular, for very long thin rectangles, one long side and two short sides form a barrier,
901:
opaque set. However, for interior barriers of non-polygonal convex sets that are not strictly convex, or for barriers that are not required to be connected, other opaque sets may be shorter; for instance, it is always possible to omit the longest line segment of the boundary. In these cases, the
2235:
Although optimal in the worst case for inputs whose coverage region has combinatorial complexity matching this bound, this algorithm can be improved heuristically in practice by a preprocessing phase that merges overlapping pairs of hulls until all remaining hulls are disjoint, in time
1546:
credits its discovery to Maurice Poirier, a Canadian schoolteacher, but it was already described in 1962 and 1964 by Jones. It is known to be optimal among forests with only two components, and has been conjectured to be the best possible more generally, but this remains unproven. The
1889:
of the input shape. The input projects perpendicularly onto an interval of this line, and the barrier connects the two endpoints of this interval by a U-shaped curve stretched tight around the input, like the optimal connected barrier for a circle. The algorithm uses
702:, respectively. When this is not specified, the barrier is assumed to have no constraints on its location. Versions of the problem in which the opaque set must be connected or form a single curve have also been considered. It is not known whether every 1754:
By the general bounds for opaque forest length in terms of perimeter, the perimeter of a convex set approximates its shortest opaque forest to within a factor of two in length. In two papers, Dumitrescu, Jiang, Pach, and Tóth provide several
872:
that are strictly convex, meaning that there are no line segments on the boundary, and for interior barriers, this bound is tight. Every point on the boundary must be contained in the opaque set, because every boundary point has a
1823: 2011:, subdividing the plane into wedges within which the sweep line crosses one of the hulls and wedges within which the sweep line crosses the plane without obstruction. The union of the covered wedges forms a set 1540: 245: 130: 1427:
of the triangle. However, without assuming connectivity, the optimality of the Steiner tree has not been demonstrated. Izumi has proven a small improvement to the perimeter-halving lower bound for the
1715:
Two published algorithms claim to generate the optimal opaque forest for arbitrary polygons, based on the idea that the optimal solution has a special structure: a Steiner tree for one triangle in a
1883: 2355:. However, by using similar fractal constructions, it is also possible to find fractal opaque sets whose distance sets omit infinitely many of the distances in this interval, or that (assuming the 1392:, as for any convex polygon, the shortest connected opaque set is its minimum Steiner tree. In the case of a triangle, this tree can be described explicitly: if the widest angle of the triangle is 255:
of the set, and at least half the perimeter. For the square, a slightly stronger lower bound than half the perimeter is known. Another convex set whose opaque sets are commonly studied is the
1833:
stretched around the polygon from one corner of the bounding box to the opposite corner, together with a line segment connecting a third corner of the bounding box to the diagonal of the box.
247:. It is unproven whether this is the shortest possible opaque set for the square, and for most other shapes this problem similarly remains unsolved. The shortest opaque set for any bounded 1488: 78: 1378: 1211:
with total length that can be made arbitrarily close to half the perimeter. Therefore, among lower bounds that consider only the perimeter of the coverage region, the bound of
765:, the length of its shortest opaque set must be at least half its perimeter and at most its perimeter. For some regions, additional improvements to these bounds can be made. 2279: 1625: 1291: 1250: 1208: 973: 2226: 850: 2353: 817: 3366: 3001: 1565: 1421: 1331: 1942: 1915: 1701: 1669: 1602: 327: 287: 2281:. If this reduces the input to a single hull, the more expensive sweeping and intersecting algorithm need not be run: in this case the hull is the coverage region. 2157: 2066: 2036: 307: 3130: 2316:
that, like all intermediate stages of the construction, is an opaque set for the square. With quickly decreasing gap sizes, the construction produces a set whose
2180: 1770: 1730:
Despite this setback, the shortest single-curve barrier of a convex polygon, which is the traveling salesperson path of its vertices, can be computed exactly in
1104: 3544: 2130: 2110: 2090: 2009: 1989: 1311: 1164: 1144: 1124: 1081: 1061: 1041: 1021: 1001: 932: 870: 791: 747: 723: 692: 660: 629: 609: 577: 557: 521: 501: 481: 461: 441: 421: 398: 378: 3609: 2304:
showed that it is possible for an opaque set to avoid containing any nontrivial curves and still have finite total length. A simplified construction of
1542:. It consists of the minimum Steiner tree of three of the square's vertices, together with a line segment connecting the fourth vertex to the center. 1444: 2331:
of the boundary of a square, or of the four-segment shortest known opaque set for the square, both contain all distances in the interval from 0 to
1003:
by a strictly convex superset, which can be chosen to have perimeter arbitrarily close to the original set. Then, except for the tangent lines to
979:, according to which the length of any curve is proportional to its expected number of intersection points with a random line from an appropriate 3273: 2926: 2408: 1839: 3448: 1949: 1423:(120°) or more, it uses the two shortest edges of the triangle, and otherwise it consists of three line segments from the vertices to the 1493: 198: 83: 2918: 195:
can be blocked by its four boundary edges, with length 4, but a shorter opaque forest blocks visibility across the square with length
3689: 3572: 3005: 2796: 3052: 674:
without changing its opaque sets. Some variants of the problem restrict the opaque set to lie entirely inside or entirely outside
2744: 1948:
Additionally, because the shortest connected interior barrier of a convex polygon is given by the minimum Steiner tree, it has a
3409: 3370: 3290: 1703:, rediscovered by John Day in a followup to Stewart's column. The unknown length of the optimal solution has been called the 2478: 2874: 3225: 3081: 1642: 1166:. By the Crofton formula, the lengths of the boundary and barrier have the same proportion as these expected numbers. 894: 2840:
When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
3737: 3265: 2843: 1293:
in this way involves considering a sequence of shapes rather than just a single shape, because for any convex set
1457: 47: 1454:, the perimeter is 4, the perimeter minus the longest edge is 3, and the length of the minimum Steiner tree is 980: 3446:
Dumitrescu, Adrian; Jiang, Minghui; Tóth, Csaba D. (2015), "Computing opaque interior barriers à la Shermer",
3128:
Eggleston, H. G. (1982), "The maximal inradius of the convex cover of a plane connected set of given length",
2182:
wedges. It follows that the combinatorial complexity of the coverage region, and the time to construct it, is
877:
through it that cannot be blocked by any other points. The same reasoning shows that for interior barriers of
749:
can be approximated arbitrarily closely in length by an opaque forest, and it has been conjectured that every
1683:
in 1974. By 1980, E. Makai had already provided a better three-component solution, with length approximately
1571:, improving similar previous bounds that constrained the barrier to be placed only near to the given square. 3169: 1825:
The general idea of the algorithm is to construct a "bow and arrow" like barrier from the minimum-perimeter
1743: 1336: 1836:
For opaque sets consisting of a single arc, they provide an algorithm whose approximation ratio is at most
348:, or to compute the subset of the plane whose visibility is blocked by a given system of line segments in 2441:(1916), "Sur un ensemble fermé, punctiforme, qui rencontre toute droite passant par un certain domaine", 1547:
perimeter-halving lower bound of 2 for the square, already proven by Jones, can be improved slightly, to
2959: 1716: 584: 169: 32: 639:
can be used, and agrees with the standard length in the cases of line segments and rectifiable curves.
340:
were later shown to be incorrect. Nevertheless, it is possible to find an opaque set with a guaranteed
3407:
Shermer, Thomas (1991), "A counterexample to the algorithms for determining opaque minimal forests",
3095: 2540: 2356: 1918: 1917:. This method combines the single-arc barrier with special treatment for shapes that are close to an 1671:, optimal for a single curve or connected barrier but not for an opaque forest with multiple curves. 1428: 886: 289:. Without the assumption of connectivity, the shortest opaque set for the circle has length at least 2239: 1607: 1255: 1214: 1172: 937: 3742: 3645: 3230: 3086: 2438: 2413: 2392: 2372: 2317: 2185: 1760: 1735: 1724: 1637: 1126:
intersects its opaque set, so the expected number of intersections with the opaque set is at least
794: 341: 181: 3288:
Akman, Varol (1987), "An algorithm for determining an opaque minimal forest of a convex polygon",
822: 3706: 3670: 3589: 3539: 3315: 3239: 3187: 3111: 3022: 2855: 2813: 2709: 2683: 2615: 2589: 2530: 2469: 2380: 2376: 2334: 635:, their length can be measured in the standard way. For more general point sets, one-dimensional 185: 799: 725:
has a shortest opaque set, or whether instead the lengths of its opaque sets might approach an
631:
itself, and many possible opaque forests. For opaque forests, or more generally for systems of
3335: 3269: 3257: 2922: 2321: 1891: 882: 852:. Therefore, the shortest possible length of an opaque set is at most the perimeter. For sets 636: 137: 2986: 1550: 1395: 1316: 3698: 3654: 3618: 3581: 3465: 3457: 3418: 3379: 3299: 3208: 3139: 3103: 3056: 3014: 2963: 2883: 2872:
Izumi, Taisuke (2016), "Improving the lower bound on opaque sets for equilateral triangle",
2847: 2805: 2753: 2693: 2648: 2636: 2599: 2487: 1927: 1900: 1686: 1680: 1648: 1581: 1578:
Opaque forests for a unit circle. Left: the U-shaped optimal connected barrier, with length
312: 266: 145: 3718: 3666: 3630: 3557: 3479: 3430: 3391: 3311: 3182: 3151: 3068: 3034: 2936: 2897: 2825: 2765: 2705: 2660: 2611: 2499: 2135: 2044: 2014: 3714: 3662: 3626: 3553: 3475: 3426: 3387: 3307: 3178: 3147: 3064: 3030: 2932: 2910: 2893: 2821: 2761: 2701: 2656: 2607: 2495: 1897:
For connected opaque sets, they provide an algorithm whose approximation ratio is at most
1886: 1830: 1739: 1731: 1720: 1568: 1543: 976: 632: 349: 292: 3212: 3607:
Croft, H. T. (1969), "Curves intersecting certain sets of great-circles on the sphere",
3099: 2544: 2162: 1767:
For general opaque sets, they provide an algorithm whose approximation ratio is at most
1574: 1086: 40:. Upper left: its boundary, length 4. Upper right: Three sides, length 3. Lower left: a 3107: 2229: 2115: 2095: 2075: 1994: 1974: 1894:
to find the supporting line for which the length of the resulting barrier is minimized.
1296: 1149: 1129: 1109: 1066: 1046: 1026: 1006: 986: 917: 878: 855: 776: 750: 732: 708: 677: 645: 614: 594: 562: 542: 506: 486: 466: 446: 426: 406: 383: 363: 337: 3519: 3422: 1924:
For interior barriers, they provide an algorithm whose approximation ratio is at most
1759:
approximation algorithms for the shortest opaque set for convex polygons, with better
3731: 3674: 3383: 3303: 2791: 2732: 2713: 2644: 2575: 2522: 1676: 667: 260: 17: 3319: 2619: 2736: 2580: 2328: 2313: 1826: 1424: 874: 580: 173: 41: 2473: 2289: 3570:
Smart, J. R. (April 1966), "Searching for mathematical Talent in Wisconsin, II",
2757: 2652: 2787: 1965: 1756: 1672: 1632: 1451: 903: 671: 345: 256: 192: 37: 3143: 2859: 2794:(1986), "The shortest curve that meets all the lines that meet a convex body", 753:
has an opaque forest as its shortest opaque set, but this has not been proven.
3658: 3622: 2952:
Jones, Robert Edward Douglas (1962), "Chapter 4: Opaque subsets of a square",
2888: 2603: 762: 703: 663: 248: 2967: 2491: 2851: 2697: 2309: 1921:, for which the Steiner tree of the triangle is a shorter connected barrier. 333: 252: 149: 1818:{\displaystyle {\frac {1}{2}}+{\frac {2+{\sqrt {2}}}{\pi }}\approx 1.5868.} 3470: 3542:; Basu Mazumdar, N. C. (1955), "A note on certain plane sets of points", 3515: 3493: 2388: 2360: 1389: 3243: 3115: 3710: 3593: 3060: 3026: 2817: 2643:, International Series of Numerical Mathematics, vol. 123, Basel: 2396: 2294: 1746:
for the problem, and for determining the coverage of a given barrier.
1490:. However, a shorter, disconnected opaque forest is known, with length 1433: 1023:(which form a vanishing fraction of all lines), a line that intersects 726: 184:
in 1916, and the problem of minimizing their total length was posed by
153: 3643:
Asimov, Daniel; Gerver, Joseph L. (2008), "Minimum opaque manifolds",
3461: 3368:
algorithm for finding the minimal opaque forest of a convex polygon",
2953: 1742:
can be computed exactly. There has also been more successful study of
1441:
What are the shortest opaque sets for the unit square and unit circle?
3702: 3585: 3047:
Kawohl, Bernd (2000), "Some nonconvex shape optimization problems",
3018: 2809: 2635:
Kawohl, Bernd (1997), "The opaque square and the opaque circle", in
983:
on lines. It is convenient to simplify the problem by approximating
3191: 2682:, New York: Association for Computing Machinery, pp. 529–538, 1960:
The region covered by a given forest can be determined as follows:
1535:{\displaystyle {\sqrt {2}}+{\tfrac {1}{2}}{\sqrt {6}}\approx 2.639} 1043:
crosses its boundary twice. Therefore, if a random line intersects
443:
consists of points for which all lines through the point intersect
240:{\displaystyle {\sqrt {2}}+{\tfrac {1}{2}}{\sqrt {6}}\approx 2.639} 125:{\displaystyle {\sqrt {2}}+{\tfrac {1}{2}}{\sqrt {6}}\approx 2.639} 3527:
Proc. 25th Canadian Conference on Computational Geometry (CCCG'13)
3501:
Proc. 24th Canadian Conference on Computational Geometry (CCCG'12)
2688: 2639:; Everitt, William N.; Losonczi, Laszlo; Walter, Wolfgang (eds.), 2594: 2535: 2288: 1604:. Right: The best barrier known, with three components and length 1573: 31: 2917:, The Dolciani Mathematical Expositions, vol. 3, New York: 2678:
Dumitrescu, Adrian; Jiang, Minghui (2014), "The opaque square",
2375:
in 1916. Other early works on opaque sets include the papers of
2680:
Proc. 30th Annual Symposium on Computational Geometry (SoCG'14)
914:
There are several proofs that an opaque set for any convex set
3203:
Makai, E. Jr. (1980), "On a dual of Tarski's plank problem",
2387:
The problem has also been generalized to sets that block all
156:, circle, or other shape. Opaque sets have also been called 2838:
Nahin, Paul J. (2021), "Chapter 7: The Modern Age Begins",
2958:, Retrospective Theses and Dissertations, vol. 2058, 1567:, for any barrier that consists of at most countably many 642:
Most research on this problem assumes that the given set
380:
in the plane blocks the visibility through a superset of
3051:, Lecture Notes in Mathematics, vol. 1740, Berlin: 2293:
The first four stages of a construction by Bagemihl for
591:. There are many possible opaque sets for any given set 80:. Lower right: the conjectured optimal solution, length 2324:(a notion of length suitable for such sets) is finite. 1878:{\displaystyle {\frac {\pi +5}{\pi +2}}\approx 1.5835.} 975:, half the perimeter. One of the simplest involves the 3687:
Brakke, Kenneth A. (1992), "The opaque cube problem",
1508: 213: 98: 3338: 3167:
Joris, H. (1980), "Le chasseur perdu dans la forêt",
2989: 2337: 2242: 2188: 2165: 2138: 2118: 2098: 2078: 2047: 2017: 1997: 1977: 1930: 1903: 1842: 1773: 1689: 1651: 1610: 1584: 1553: 1496: 1460: 1398: 1339: 1319: 1299: 1258: 1217: 1175: 1152: 1132: 1112: 1089: 1069: 1049: 1029: 1009: 989: 940: 920: 858: 825: 802: 779: 735: 711: 680: 648: 617: 597: 565: 545: 509: 489: 469: 449: 429: 409: 386: 366: 315: 295: 269: 201: 86: 50: 3264:, Encyclopedia of Mathematics and its Applications, 2731:
Kawamura, Akitoshi; Moriyama, Sonoko; Otachi, Yota;
3360: 2995: 2347: 2273: 2220: 2174: 2151: 2124: 2104: 2084: 2068:. This intersection is the coverage of the forest. 2060: 2030: 2003: 1983: 1936: 1909: 1877: 1817: 1695: 1663: 1619: 1596: 1559: 1534: 1482: 1415: 1372: 1325: 1305: 1285: 1244: 1202: 1158: 1138: 1118: 1098: 1075: 1055: 1035: 1015: 995: 967: 926: 864: 844: 819:forms an opaque set whose length is the perimeter 811: 785: 741: 717: 686: 654: 623: 603: 571: 551: 515: 495: 475: 455: 435: 415: 392: 372: 321: 301: 281: 239: 124: 72: 3207:, Inst. Math. Univ. Salzburg, pp. 127–132, 793:is a bounded convex set to be covered, then its 579:has a special form, consisting of finitely many 2983:Jones, R. E. D. (1964), "Opaque sets of degree 1333:such that all opaque sets have length at least 1083:, the expected number of boundary crossings is 729:without ever reaching it. Every opaque set for 336:claiming to find the shortest opaque set for a 3131:Proceedings of the London Mathematical Society 1738:algorithm, in models of computation for which 3545:Bulletin of the Calcutta Mathematical Society 3084:(September 1995), "The great drain robbery", 1252:is best possible. However, getting closer to 168:, or (in cases where they have the form of a 8: 3494:"Computing the coverage of an opaque forest" 2301: 1991:of the hull, sweep a line circularly around 902:perimeter or Steiner tree length provide an 3492:Beingessner, Alexis; Smid, Michiel (2012), 3186:; translated into English by Steven Finch, 2641:General inequalities, 7 (Oberwolfach, 1995) 2527:Minimum opaque covers for polygonal regions 3610:Journal of the London Mathematical Society 3402: 3400: 2978: 2976: 2947: 2945: 1968:of each connected component of the forest. 1483:{\displaystyle 1+{\sqrt {3}}\approx 2.732} 144:is a system of curves or other set in the 73:{\displaystyle 1+{\sqrt {3}}\approx 2.732} 3469: 3349: 3337: 2988: 2887: 2687: 2593: 2534: 2338: 2336: 2256: 2241: 2209: 2199: 2187: 2164: 2143: 2137: 2117: 2097: 2077: 2052: 2046: 2041:Find the intersection of all of the sets 2022: 2016: 1996: 1976: 1929: 1902: 1843: 1841: 1796: 1787: 1774: 1772: 1688: 1650: 1609: 1583: 1552: 1519: 1507: 1497: 1495: 1467: 1459: 1405: 1397: 1356: 1351: 1340: 1338: 1318: 1298: 1275: 1270: 1259: 1257: 1234: 1229: 1218: 1216: 1192: 1187: 1176: 1174: 1151: 1131: 1111: 1088: 1068: 1048: 1028: 1008: 988: 957: 952: 941: 939: 919: 857: 837: 826: 824: 801: 778: 734: 710: 679: 647: 616: 596: 564: 544: 508: 488: 468: 448: 428: 408: 385: 365: 314: 294: 268: 224: 212: 202: 200: 109: 97: 87: 85: 57: 49: 3162: 3160: 2913:(1978), "Problem 12: An opaque square", 2379:and N. C. Basu Mazumdar in 1955, and by 2305: 2425: 2371:Opaque sets were originally studied by 2112:connected components, then each of the 1445:(more unsolved problems in mathematics) 1313:that is not a triangle, there exists a 3597:; see Problem set 4, problem 5, p. 405 3441: 3439: 2782: 2780: 2778: 2776: 2774: 2726: 2724: 2722: 2516: 2514: 2512: 2510: 2508: 1885:The resulting barrier is defined by a 1373:{\displaystyle |\partial K|/2+\delta } 2630: 2628: 2569: 2567: 2565: 2563: 2561: 2559: 2557: 2555: 2553: 2464: 2462: 2460: 2458: 2456: 2433: 2431: 2429: 1679:credit this single-curve solution to 666:. When it is not convex but merely a 7: 3449:SIAM Journal on Discrete Mathematics 2673: 2671: 2669: 2574:Dumitrescu, Adrian; Jiang, Minghui; 1950:polynomial-time approximation scheme 251:in the plane has length at most the 29:Shape that blocks all lines of sight 3520:"Computing covers of plane forests" 3205:2nd Colloquium on Discrete Geometry 2919:Mathematical Association of America 761:When the region to be covered is a 191:For instance, visibility through a 3514:Barba, Luis; Beingessner, Alexis; 3108:10.1038/scientificamerican0995-206 3049:Optimal shape design (Tróia, 1998) 2521:Provan, J. Scott; Brazil, Marcus; 2409:Bellman's lost in a forest problem 2320:is one, and whose one-dimensional 1345: 1264: 1223: 1181: 1146:, which is at least half that for 946: 831: 803: 483:forms a subset of the coverage of 25: 3690:The American Mathematical Monthly 3573:The American Mathematical Monthly 3006:The American Mathematical Monthly 2797:The American Mathematical Monthly 2474:"Some opaque subsets of a square" 885:must be included. Therefore, the 180:. Opaque sets were introduced by 1106:. But each line that intersects 934:must have total length at least 906:on the length of an opaque set. 897:of the vertices is the shortest 889:of the vertices is the shortest 694:. In this case, it is called an 2297:opaque sets for the unit square 1436:Unsolved problem in mathematics 3410:Information Processing Letters 3371:Information Processing Letters 3355: 3342: 3291:Information Processing Letters 3258:"8.11 Beam detection constant" 2955:Linear measure and opaque sets 2737:"A lower bound on opaque sets" 2274:{\displaystyle O(n\log ^{2}n)} 2268: 2246: 2215: 2192: 1829:of the input, consisting of a 1620:{\displaystyle \approx 4.7998} 1352: 1341: 1286:{\displaystyle |\partial K|/2} 1271: 1260: 1245:{\displaystyle |\partial K|/2} 1230: 1219: 1203:{\displaystyle |\partial K|/2} 1188: 1177: 968:{\displaystyle |\partial K|/2} 953: 942: 838: 827: 1: 3423:10.1016/S0020-0190(05)80008-0 3228:(February 1996), "Feedback", 2479:Michigan Mathematical Journal 2221:{\displaystyle O(m^{2}n^{2})} 3384:10.1016/0020-0190(88)90122-6 3332:Dublish, Pratul (1988), "An 3304:10.1016/0020-0190(87)90185-2 2875:Discrete Applied Mathematics 2758:10.1016/j.comgeo.2019.01.002 2653:10.1007/978-3-0348-8942-1_27 1717:triangulation of the polygon 1645:, with a solution of length 845:{\displaystyle |\partial K|} 670:, it can be replaced by its 2348:{\displaystyle {\sqrt {2}}} 3759: 3266:Cambridge University Press 2844:Princeton University Press 2312:of this construction is a 895:traveling salesperson path 812:{\displaystyle \partial K} 3659:10.1007/s10711-008-9234-4 3256:Finch, Steven R. (2003), 2889:10.1016/j.dam.2016.05.006 2604:10.1007/s00453-012-9735-2 2399:that cannot be attained. 2072:If the input consists of 1734:for convex polygons by a 259:, for which the shortest 3518:; Smid, Michiel (2013), 3361:{\displaystyle O(n^{3})} 3144:10.1112/plms/s3-45.3.456 2968:10.31274/rtd-180813-2223 2445:(in Polish and French), 1744:approximation algorithms 1635:was described in a 1995 981:probability distribution 44:of the vertices, length 3623:10.1112/jlms/s2-1.1.461 3170:Elemente der Mathematik 2996:{\displaystyle \alpha } 2852:10.2307/j.ctv19qmf43.12 2698:10.1145/2582112.2582113 2578:(2014), "Opaque sets", 2525:; Weng, Jia F. (2012), 1705:beam detection constant 1560:{\displaystyle 2.00002} 1416:{\displaystyle 2\pi /3} 1326:{\displaystyle \delta } 36:Four opaque sets for a 3362: 3262:Mathematical Constants 2997: 2745:Computational Geometry 2492:10.1307/mmj/1028998183 2349: 2298: 2285:Curve-free opaque sets 2275: 2222: 2176: 2153: 2126: 2106: 2092:line segments forming 2086: 2062: 2032: 2005: 1985: 1938: 1937:{\displaystyle 1.7168} 1911: 1910:{\displaystyle 1.5716} 1879: 1819: 1697: 1696:{\displaystyle 4.7998} 1665: 1664:{\displaystyle 2+\pi } 1628: 1621: 1598: 1597:{\displaystyle 2+\pi } 1561: 1536: 1484: 1417: 1374: 1327: 1307: 1287: 1246: 1204: 1160: 1140: 1120: 1100: 1077: 1057: 1037: 1017: 997: 969: 928: 866: 846: 813: 787: 743: 719: 688: 656: 625: 605: 573: 553: 517: 497: 477: 457: 437: 417: 394: 374: 323: 322:{\displaystyle 4.7998} 303: 283: 282:{\displaystyle 2+\pi } 263:opaque set has length 241: 133: 126: 74: 3363: 2998: 2960:Iowa State University 2350: 2292: 2276: 2223: 2177: 2154: 2152:{\displaystyle C_{p}} 2127: 2107: 2087: 2063: 2061:{\displaystyle C_{p}} 2033: 2031:{\displaystyle C_{p}} 2006: 1986: 1939: 1912: 1880: 1820: 1698: 1666: 1622: 1599: 1577: 1562: 1537: 1485: 1418: 1375: 1328: 1308: 1288: 1247: 1205: 1161: 1141: 1121: 1101: 1078: 1058: 1038: 1018: 998: 970: 929: 867: 847: 814: 788: 744: 720: 689: 657: 626: 606: 574: 554: 518: 498: 478: 458: 438: 418: 395: 375: 324: 304: 284: 242: 127: 75: 35: 18:Opaque forest problem 3336: 3268:, pp. 515–519, 2987: 2915:Mathematical Morsels 2846:, pp. 279–330, 2647:, pp. 339–346, 2439:Mazurkiewicz, Stefan 2357:continuum hypothesis 2335: 2240: 2186: 2163: 2159:consists of at most 2136: 2116: 2096: 2076: 2045: 2015: 1995: 1975: 1928: 1919:equilateral triangle 1901: 1840: 1771: 1761:approximation ratios 1687: 1649: 1608: 1582: 1551: 1494: 1458: 1429:equilateral triangle 1396: 1337: 1317: 1297: 1256: 1215: 1173: 1169:This lower bound of 1150: 1130: 1110: 1087: 1067: 1047: 1027: 1007: 987: 938: 918: 893:opaque set, and the 887:minimum Steiner tree 856: 823: 800: 777: 733: 709: 678: 646: 615: 595: 583:whose union forms a 563: 559:. If, additionally, 543: 507: 487: 467: 447: 427: 407: 384: 364: 313: 302:{\displaystyle \pi } 293: 267: 199: 84: 48: 3646:Geometriae Dedicata 3231:Scientific American 3100:1995SciAm.273c.206S 3087:Scientific American 2545:2012arXiv1210.8139P 2393:Riemannian manifold 2373:Stefan Mazurkiewicz 2361:set of measure zero 2318:Hausdorff dimension 2302:Mazurkiewicz (1916) 1736:dynamic programming 1725:dynamic programming 1638:Scientific American 342:approximation ratio 182:Stefan Mazurkiewicz 3358: 3061:10.1007/BFb0106741 2993: 2962:, pp. 36–45, 2921:, pp. 22–25, 2381:Frederick Bagemihl 2345: 2299: 2271: 2218: 2175:{\displaystyle 2m} 2172: 2149: 2122: 2102: 2082: 2058: 2028: 2001: 1981: 1934: 1907: 1875: 1815: 1693: 1661: 1629: 1617: 1594: 1569:rectifiable curves 1557: 1532: 1517: 1480: 1413: 1370: 1323: 1303: 1283: 1242: 1200: 1156: 1136: 1116: 1099:{\displaystyle 2p} 1096: 1073: 1053: 1033: 1013: 993: 965: 924: 862: 842: 809: 783: 739: 715: 684: 652: 633:rectifiable curves 621: 601: 587:, it is called an 569: 549: 513: 493: 473: 453: 433: 413: 390: 370: 332:Several published 319: 299: 279: 237: 222: 186:Frederick Bagemihl 134: 122: 107: 70: 3738:Discrete geometry 3613:, Second Series, 3503:, pp. 95–100 3462:10.1137/14098805X 3275:978-0-521-81805-6 3055:, pp. 7–46, 2928:978-0-88385-303-0 2637:Bandle, Catherine 2343: 2322:Hausdorff measure 2125:{\displaystyle n} 2105:{\displaystyle m} 2085:{\displaystyle n} 2004:{\displaystyle p} 1984:{\displaystyle p} 1892:rotating calipers 1867: 1807: 1801: 1782: 1524: 1516: 1502: 1472: 1306:{\displaystyle K} 1159:{\displaystyle K} 1139:{\displaystyle p} 1119:{\displaystyle K} 1076:{\displaystyle p} 1063:with probability 1056:{\displaystyle K} 1036:{\displaystyle K} 1016:{\displaystyle K} 996:{\displaystyle K} 927:{\displaystyle K} 865:{\displaystyle K} 786:{\displaystyle K} 742:{\displaystyle P} 718:{\displaystyle P} 687:{\displaystyle K} 655:{\displaystyle K} 637:Hausdorff measure 624:{\displaystyle K} 604:{\displaystyle K} 572:{\displaystyle S} 552:{\displaystyle K} 523:is said to be an 516:{\displaystyle S} 496:{\displaystyle S} 476:{\displaystyle K} 463:. If a given set 456:{\displaystyle S} 436:{\displaystyle C} 416:{\displaystyle C} 393:{\displaystyle S} 373:{\displaystyle S} 229: 221: 207: 176:or other curves) 138:discrete geometry 114: 106: 92: 62: 16:(Redirected from 3750: 3722: 3721: 3684: 3678: 3677: 3640: 3634: 3633: 3604: 3598: 3596: 3567: 3561: 3560: 3540:Sen Gupta, H. M. 3536: 3530: 3529: 3524: 3511: 3505: 3504: 3498: 3489: 3483: 3482: 3473: 3456:(3): 1372–1386, 3443: 3434: 3433: 3404: 3395: 3394: 3367: 3365: 3364: 3359: 3354: 3353: 3329: 3323: 3322: 3285: 3279: 3278: 3253: 3247: 3246: 3222: 3216: 3215: 3200: 3194: 3185: 3164: 3155: 3154: 3134:, Third Series, 3125: 3119: 3118: 3078: 3072: 3071: 3044: 3038: 3037: 3002: 3000: 2999: 2994: 2980: 2971: 2970: 2949: 2940: 2939: 2911:Honsberger, Ross 2907: 2901: 2900: 2891: 2869: 2863: 2862: 2835: 2829: 2828: 2784: 2769: 2768: 2741: 2728: 2717: 2716: 2691: 2675: 2664: 2663: 2632: 2623: 2622: 2597: 2571: 2548: 2547: 2538: 2518: 2503: 2502: 2466: 2451: 2450: 2435: 2414:Euclid's orchard 2354: 2352: 2351: 2346: 2344: 2339: 2280: 2278: 2277: 2272: 2261: 2260: 2228:as expressed in 2227: 2225: 2224: 2219: 2214: 2213: 2204: 2203: 2181: 2179: 2178: 2173: 2158: 2156: 2155: 2150: 2148: 2147: 2131: 2129: 2128: 2123: 2111: 2109: 2108: 2103: 2091: 2089: 2088: 2083: 2067: 2065: 2064: 2059: 2057: 2056: 2037: 2035: 2034: 2029: 2027: 2026: 2010: 2008: 2007: 2002: 1990: 1988: 1987: 1982: 1971:For each vertex 1943: 1941: 1940: 1935: 1916: 1914: 1913: 1908: 1884: 1882: 1881: 1876: 1868: 1866: 1855: 1844: 1824: 1822: 1821: 1816: 1808: 1803: 1802: 1797: 1788: 1783: 1775: 1740:sums of radicals 1702: 1700: 1699: 1694: 1681:Menachem Magidor 1670: 1668: 1667: 1662: 1631:The case of the 1626: 1624: 1623: 1618: 1603: 1601: 1600: 1595: 1566: 1564: 1563: 1558: 1541: 1539: 1538: 1533: 1525: 1520: 1518: 1509: 1503: 1498: 1489: 1487: 1486: 1481: 1473: 1468: 1437: 1422: 1420: 1419: 1414: 1409: 1379: 1377: 1376: 1371: 1360: 1355: 1344: 1332: 1330: 1329: 1324: 1312: 1310: 1309: 1304: 1292: 1290: 1289: 1284: 1279: 1274: 1263: 1251: 1249: 1248: 1243: 1238: 1233: 1222: 1209: 1207: 1206: 1201: 1196: 1191: 1180: 1165: 1163: 1162: 1157: 1145: 1143: 1142: 1137: 1125: 1123: 1122: 1117: 1105: 1103: 1102: 1097: 1082: 1080: 1079: 1074: 1062: 1060: 1059: 1054: 1042: 1040: 1039: 1034: 1022: 1020: 1019: 1014: 1002: 1000: 999: 994: 974: 972: 971: 966: 961: 956: 945: 933: 931: 930: 925: 871: 869: 868: 863: 851: 849: 848: 843: 841: 830: 818: 816: 815: 810: 792: 790: 789: 784: 748: 746: 745: 740: 724: 722: 721: 716: 700:exterior barrier 696:interior barrier 693: 691: 690: 685: 661: 659: 658: 653: 630: 628: 627: 622: 610: 608: 607: 602: 578: 576: 575: 570: 558: 556: 555: 550: 522: 520: 519: 514: 502: 500: 499: 494: 482: 480: 479: 474: 462: 460: 459: 454: 442: 440: 439: 434: 422: 420: 419: 414: 399: 397: 396: 391: 379: 377: 376: 371: 328: 326: 325: 320: 308: 306: 305: 300: 288: 286: 285: 280: 246: 244: 243: 238: 230: 225: 223: 214: 208: 203: 148:that blocks all 131: 129: 128: 123: 115: 110: 108: 99: 93: 88: 79: 77: 76: 71: 63: 58: 21: 3758: 3757: 3753: 3752: 3751: 3749: 3748: 3747: 3728: 3727: 3726: 3725: 3703:10.2307/2324127 3686: 3685: 3681: 3642: 3641: 3637: 3606: 3605: 3601: 3586:10.2307/2315418 3569: 3568: 3564: 3538: 3537: 3533: 3522: 3516:Bose, Prosenjit 3513: 3512: 3508: 3496: 3491: 3490: 3486: 3445: 3444: 3437: 3406: 3405: 3398: 3345: 3334: 3333: 3331: 3330: 3326: 3287: 3286: 3282: 3276: 3255: 3254: 3250: 3224: 3223: 3219: 3202: 3201: 3197: 3166: 3165: 3158: 3127: 3126: 3122: 3080: 3079: 3075: 3046: 3045: 3041: 3019:10.2307/2312596 2985: 2984: 2982: 2981: 2974: 2951: 2950: 2943: 2929: 2909: 2908: 2904: 2871: 2870: 2866: 2860:j.ctv19qmf43.12 2837: 2836: 2832: 2810:10.2307/2322935 2804:(10): 796–801, 2786: 2785: 2772: 2739: 2730: 2729: 2720: 2677: 2676: 2667: 2634: 2633: 2626: 2573: 2572: 2551: 2520: 2519: 2506: 2468: 2467: 2454: 2443:Prace Mat.-Fiz. 2437: 2436: 2427: 2422: 2405: 2377:H. M. Sen Gupta 2369: 2333: 2332: 2306:Bagemihl (1959) 2287: 2252: 2238: 2237: 2205: 2195: 2184: 2183: 2161: 2160: 2139: 2134: 2133: 2114: 2113: 2094: 2093: 2074: 2073: 2048: 2043: 2042: 2018: 2013: 2012: 1993: 1992: 1973: 1972: 1958: 1926: 1925: 1899: 1898: 1887:supporting line 1856: 1845: 1838: 1837: 1831:polygonal chain 1789: 1769: 1768: 1752: 1732:polynomial time 1721:polynomial time 1713: 1685: 1684: 1647: 1646: 1606: 1605: 1580: 1579: 1549: 1548: 1544:Ross Honsberger 1492: 1491: 1456: 1455: 1448: 1447: 1442: 1439: 1435: 1394: 1393: 1386: 1384:Specific shapes 1335: 1334: 1315: 1314: 1295: 1294: 1254: 1253: 1213: 1212: 1171: 1170: 1148: 1147: 1128: 1127: 1108: 1107: 1085: 1084: 1065: 1064: 1045: 1044: 1025: 1024: 1005: 1004: 985: 984: 977:Crofton formula 936: 935: 916: 915: 912: 879:convex polygons 854: 853: 821: 820: 798: 797: 775: 774: 771: 759: 731: 730: 707: 706: 676: 675: 644: 643: 613: 612: 593: 592: 561: 560: 541: 540: 505: 504: 485: 484: 465: 464: 445: 444: 425: 424: 405: 404: 382: 381: 362: 361: 358: 350:polynomial time 311: 310: 291: 290: 265: 264: 197: 196: 82: 81: 46: 45: 30: 23: 22: 15: 12: 11: 5: 3756: 3754: 3746: 3745: 3740: 3730: 3729: 3724: 3723: 3697:(9): 866–871, 3679: 3635: 3599: 3580:(4): 401–409, 3562: 3531: 3506: 3484: 3471:10211.3/198469 3435: 3396: 3378:(5): 275–276, 3357: 3352: 3348: 3344: 3341: 3324: 3298:(3): 193–198, 3280: 3274: 3248: 3217: 3195: 3156: 3138:(3): 456–478, 3120: 3094:(3): 206–207, 3073: 3039: 2992: 2972: 2941: 2927: 2902: 2864: 2830: 2770: 2718: 2665: 2624: 2588:(2): 315–334, 2549: 2523:Thomas, Doreen 2504: 2452: 2424: 2423: 2421: 2418: 2417: 2416: 2411: 2404: 2401: 2368: 2365: 2342: 2286: 2283: 2270: 2267: 2264: 2259: 2255: 2251: 2248: 2245: 2230:big O notation 2217: 2212: 2208: 2202: 2198: 2194: 2191: 2171: 2168: 2146: 2142: 2121: 2101: 2081: 2070: 2069: 2055: 2051: 2039: 2025: 2021: 2000: 1980: 1969: 1957: 1954: 1946: 1945: 1933: 1922: 1906: 1895: 1874: 1871: 1865: 1862: 1859: 1854: 1851: 1848: 1834: 1814: 1811: 1806: 1800: 1795: 1792: 1786: 1781: 1778: 1751: 1748: 1712: 1709: 1692: 1660: 1657: 1654: 1616: 1613: 1593: 1590: 1587: 1556: 1531: 1528: 1523: 1515: 1512: 1506: 1501: 1479: 1476: 1471: 1466: 1463: 1443: 1440: 1434: 1412: 1408: 1404: 1401: 1385: 1382: 1369: 1366: 1363: 1359: 1354: 1350: 1347: 1343: 1322: 1302: 1282: 1278: 1273: 1269: 1266: 1262: 1241: 1237: 1232: 1228: 1225: 1221: 1199: 1195: 1190: 1186: 1183: 1179: 1155: 1135: 1115: 1095: 1092: 1072: 1052: 1032: 1012: 992: 964: 960: 955: 951: 948: 944: 923: 911: 908: 861: 840: 836: 833: 829: 808: 805: 782: 770: 767: 758: 755: 751:convex polygon 738: 714: 683: 651: 620: 600: 568: 548: 512: 492: 472: 452: 432: 412: 389: 369: 357: 354: 338:convex polygon 318: 298: 278: 275: 272: 236: 233: 228: 220: 217: 211: 206: 178:opaque forests 162:beam detectors 150:lines of sight 121: 118: 113: 105: 102: 96: 91: 69: 66: 61: 56: 53: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3755: 3744: 3741: 3739: 3736: 3735: 3733: 3720: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3691: 3683: 3680: 3676: 3672: 3668: 3664: 3660: 3656: 3652: 3648: 3647: 3639: 3636: 3632: 3628: 3624: 3620: 3616: 3612: 3611: 3603: 3600: 3595: 3591: 3587: 3583: 3579: 3575: 3574: 3566: 3563: 3559: 3555: 3551: 3547: 3546: 3541: 3535: 3532: 3528: 3521: 3517: 3510: 3507: 3502: 3495: 3488: 3485: 3481: 3477: 3472: 3467: 3463: 3459: 3455: 3451: 3450: 3442: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3411: 3403: 3401: 3397: 3393: 3389: 3385: 3381: 3377: 3373: 3372: 3350: 3346: 3339: 3328: 3325: 3321: 3317: 3313: 3309: 3305: 3301: 3297: 3293: 3292: 3284: 3281: 3277: 3271: 3267: 3263: 3259: 3252: 3249: 3245: 3241: 3237: 3233: 3232: 3227: 3221: 3218: 3214: 3210: 3206: 3199: 3196: 3193: 3189: 3184: 3180: 3176: 3173:(in French), 3172: 3171: 3163: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3132: 3124: 3121: 3117: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3088: 3083: 3077: 3074: 3070: 3066: 3062: 3058: 3054: 3050: 3043: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3007: 2990: 2979: 2977: 2973: 2969: 2965: 2961: 2957: 2956: 2948: 2946: 2942: 2938: 2934: 2930: 2924: 2920: 2916: 2912: 2906: 2903: 2899: 2895: 2890: 2885: 2881: 2877: 2876: 2868: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2834: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2799: 2798: 2793: 2792:Mycielski, J. 2789: 2783: 2781: 2779: 2777: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2746: 2738: 2734: 2727: 2725: 2723: 2719: 2715: 2711: 2707: 2703: 2699: 2695: 2690: 2685: 2681: 2674: 2672: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2642: 2638: 2631: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2601: 2596: 2591: 2587: 2583: 2582: 2577: 2570: 2568: 2566: 2564: 2562: 2560: 2558: 2556: 2554: 2550: 2546: 2542: 2537: 2532: 2528: 2524: 2517: 2515: 2513: 2511: 2509: 2505: 2501: 2497: 2493: 2489: 2486:(2): 99–103, 2485: 2481: 2480: 2475: 2471: 2465: 2463: 2461: 2459: 2457: 2453: 2448: 2444: 2440: 2434: 2432: 2430: 2426: 2419: 2415: 2412: 2410: 2407: 2406: 2402: 2400: 2398: 2394: 2390: 2385: 2382: 2378: 2374: 2366: 2364: 2362: 2358: 2340: 2330: 2329:distance sets 2325: 2323: 2319: 2315: 2311: 2307: 2303: 2296: 2291: 2284: 2282: 2265: 2262: 2257: 2253: 2249: 2243: 2233: 2231: 2210: 2206: 2200: 2196: 2189: 2169: 2166: 2144: 2140: 2119: 2099: 2079: 2053: 2049: 2040: 2023: 2019: 1998: 1978: 1970: 1967: 1963: 1962: 1961: 1955: 1953: 1951: 1931: 1923: 1920: 1904: 1896: 1893: 1888: 1872: 1869: 1863: 1860: 1857: 1852: 1849: 1846: 1835: 1832: 1828: 1812: 1809: 1804: 1798: 1793: 1790: 1784: 1779: 1776: 1766: 1765: 1764: 1762: 1758: 1750:Approximation 1749: 1747: 1745: 1741: 1737: 1733: 1728: 1726: 1722: 1718: 1710: 1708: 1706: 1690: 1682: 1678: 1677:Jan Mycielski 1674: 1658: 1655: 1652: 1644: 1640: 1639: 1634: 1614: 1611: 1591: 1588: 1585: 1576: 1572: 1570: 1554: 1545: 1529: 1526: 1521: 1513: 1510: 1504: 1499: 1477: 1474: 1469: 1464: 1461: 1453: 1446: 1432: 1430: 1426: 1410: 1406: 1402: 1399: 1391: 1383: 1381: 1367: 1364: 1361: 1357: 1348: 1320: 1300: 1280: 1276: 1267: 1239: 1235: 1226: 1197: 1193: 1184: 1167: 1153: 1133: 1113: 1093: 1090: 1070: 1050: 1030: 1010: 990: 982: 978: 962: 958: 949: 921: 909: 907: 905: 900: 896: 892: 888: 884: 880: 876: 859: 834: 806: 796: 780: 768: 766: 764: 756: 754: 752: 736: 728: 712: 705: 701: 697: 681: 673: 669: 668:connected set 665: 649: 640: 638: 634: 618: 598: 590: 589:opaque forest 586: 582: 581:line segments 566: 546: 538: 534: 533:beam detector 530: 526: 510: 490: 470: 450: 430: 410: 403: 387: 367: 355: 353: 351: 347: 343: 339: 335: 330: 316: 296: 276: 273: 270: 262: 258: 254: 250: 234: 231: 226: 218: 215: 209: 204: 194: 189: 187: 183: 179: 175: 174:line segments 171: 167: 166:opaque covers 163: 159: 155: 151: 147: 143: 139: 119: 116: 111: 103: 100: 94: 89: 67: 64: 59: 54: 51: 43: 39: 34: 27: 19: 3694: 3688: 3682: 3650: 3644: 3638: 3614: 3608: 3602: 3577: 3571: 3565: 3549: 3543: 3534: 3526: 3509: 3500: 3487: 3453: 3447: 3417:(1): 41–42, 3414: 3408: 3375: 3369: 3327: 3295: 3289: 3283: 3261: 3251: 3235: 3229: 3226:Stewart, Ian 3220: 3204: 3198: 3174: 3168: 3135: 3129: 3123: 3091: 3085: 3082:Stewart, Ian 3076: 3048: 3042: 3010: 3004: 2954: 2914: 2905: 2879: 2873: 2867: 2839: 2833: 2801: 2795: 2749: 2743: 2679: 2640: 2585: 2581:Algorithmica 2579: 2526: 2483: 2477: 2470:Bagemihl, F. 2446: 2442: 2386: 2370: 2326: 2314:Cantor space 2300: 2234: 2071: 1959: 1947: 1827:bounding box 1753: 1729: 1714: 1704: 1636: 1630: 1449: 1425:Fermat point 1387: 1168: 913: 899:single-curve 898: 890: 875:tangent line 772: 760: 699: 695: 641: 611:, including 588: 537:opaque cover 536: 532: 528: 524: 401: 359: 331: 309:and at most 190: 177: 165: 161: 157: 141: 135: 42:Steiner tree 26: 3617:: 461–469, 3552:: 199–201, 3177:(1): 1–14, 3013:: 535–537, 2882:: 130–138, 2733:Pach, János 2576:Pach, János 1966:convex hull 1757:linear-time 1673:Vance Faber 1643:Ian Stewart 1633:unit circle 1452:unit square 910:Lower bound 904:upper bound 769:Upper bound 672:convex hull 356:Definitions 346:linear time 257:unit circle 193:unit square 38:unit square 3743:Visibility 3732:Categories 3238:(2): 125, 3192:1910.00615 2645:Birkhäuser 2420:References 1763:than two: 1711:Algorithms 1641:column by 763:convex set 704:convex set 664:convex set 525:opaque set 360:Every set 334:algorithms 249:convex set 142:opaque set 3675:122556952 3653:: 67–82, 3213:459.52005 2991:α 2788:Faber, V. 2752:: 13–22, 2714:207211457 2689:1311.3323 2595:1005.2218 2536:1210.8139 2389:geodesics 2359:) form a 2310:limit set 2263:⁡ 1964:Find the 1870:≈ 1858:π 1847:π 1810:≈ 1805:π 1659:π 1612:≈ 1592:π 1527:≈ 1475:≈ 1403:π 1368:δ 1346:∂ 1321:δ 1265:∂ 1224:∂ 1182:∂ 947:∂ 891:connected 832:∂ 804:∂ 297:π 277:π 261:connected 253:perimeter 232:≈ 188:in 1959. 152:across a 117:≈ 65:≈ 3320:37582183 3244:24989406 3116:24981805 3053:Springer 2735:(2019), 2620:13884553 2472:(1959), 2403:See also 1956:Coverage 1390:triangle 883:vertices 795:boundary 402:coverage 158:barriers 3719:1191707 3711:2324127 3667:2390069 3631:0247601 3594:2315418 3558:0080287 3480:3376125 3431:1134007 3392:0981078 3312:0882227 3183:0559167 3152:0675417 3096:Bibcode 3069:1804684 3035:0164898 3027:2312596 2937:0490615 2898:3544574 2826:0867106 2818:2322935 2766:3945133 2706:3382335 2661:1457290 2612:3183418 2541:Bibcode 2500:0105657 2449:: 11–16 2397:infimum 2367:History 2295:fractal 1873:1.5835. 1813:1.5868. 1555:2.00002 727:infimum 529:barrier 503:, then 154:polygon 3717:  3709:  3673:  3665:  3629:  3592:  3556:  3478:  3429:  3390:  3318:  3310:  3272:  3242:  3211:  3181:  3150:  3114:  3067:  3033:  3025:  2935:  2925:  2896:  2858:  2824:  2816:  2764:  2712:  2704:  2659:  2618:  2610:  2498:  1932:1.7168 1905:1.5716 1723:using 1691:4.7998 1615:4.7998 1450:For a 1388:For a 881:, all 757:Bounds 698:or an 585:forest 400:, its 317:4.7998 170:forest 3707:JSTOR 3671:S2CID 3590:JSTOR 3523:(PDF) 3497:(PDF) 3316:S2CID 3240:JSTOR 3188:arXiv 3112:JSTOR 3023:JSTOR 2856:JSTOR 2814:JSTOR 2740:(PDF) 2710:S2CID 2684:arXiv 2616:S2CID 2590:arXiv 2531:arXiv 2391:on a 2132:sets 1530:2.639 1478:2.732 662:is a 535:, or 235:2.639 146:plane 140:, an 120:2.639 68:2.732 3270:ISBN 2923:ISBN 2327:The 1675:and 539:for 3699:doi 3655:doi 3651:133 3619:doi 3582:doi 3466:hdl 3458:doi 3419:doi 3380:doi 3300:doi 3236:274 3209:Zbl 3140:doi 3104:doi 3092:273 3057:doi 3015:doi 3003:", 2964:doi 2884:doi 2880:213 2848:doi 2806:doi 2754:doi 2694:doi 2649:doi 2600:doi 2488:doi 2254:log 773:If 344:in 172:of 136:In 3734:: 3715:MR 3713:, 3705:, 3695:99 3693:, 3669:, 3663:MR 3661:, 3649:, 3627:MR 3625:, 3588:, 3578:73 3576:, 3554:MR 3550:47 3548:, 3525:, 3499:, 3476:MR 3474:, 3464:, 3454:29 3452:, 3438:^ 3427:MR 3425:, 3415:40 3413:, 3399:^ 3388:MR 3386:, 3376:29 3374:, 3314:, 3308:MR 3306:, 3296:24 3294:, 3260:, 3234:, 3179:MR 3175:35 3159:^ 3148:MR 3146:, 3136:45 3110:, 3102:, 3090:, 3065:MR 3063:, 3031:MR 3029:, 3021:, 3011:71 3009:, 2975:^ 2944:^ 2933:MR 2931:, 2894:MR 2892:, 2878:, 2854:, 2842:, 2822:MR 2820:, 2812:, 2802:93 2800:, 2790:; 2773:^ 2762:MR 2760:, 2750:80 2748:, 2742:, 2721:^ 2708:, 2702:MR 2700:, 2692:, 2668:^ 2657:MR 2655:, 2627:^ 2614:, 2608:MR 2606:, 2598:, 2586:69 2584:, 2552:^ 2539:, 2529:, 2507:^ 2496:MR 2494:, 2482:, 2476:, 2455:^ 2447:27 2428:^ 2363:. 2232:. 1952:. 1707:. 1431:. 1380:. 531:, 527:, 423:. 352:. 329:. 164:, 160:, 3701:: 3657:: 3621:: 3615:1 3584:: 3468:: 3460:: 3421:: 3382:: 3356:) 3351:3 3347:n 3343:( 3340:O 3302:: 3190:: 3142:: 3106:: 3098:: 3059:: 3017:: 2966:: 2886:: 2850:: 2808:: 2756:: 2696:: 2686:: 2651:: 2602:: 2592:: 2543:: 2533:: 2490:: 2484:6 2341:2 2269:) 2266:n 2258:2 2250:n 2247:( 2244:O 2216:) 2211:2 2207:n 2201:2 2197:m 2193:( 2190:O 2170:m 2167:2 2145:p 2141:C 2120:n 2100:m 2080:n 2054:p 2050:C 2038:. 2024:p 2020:C 1999:p 1979:p 1864:2 1861:+ 1853:5 1850:+ 1799:2 1794:+ 1791:2 1785:+ 1780:2 1777:1 1656:+ 1653:2 1627:. 1589:+ 1586:2 1522:6 1514:2 1511:1 1505:+ 1500:2 1470:3 1465:+ 1462:1 1438:: 1411:3 1407:/ 1400:2 1365:+ 1362:2 1358:/ 1353:| 1349:K 1342:| 1301:K 1281:2 1277:/ 1272:| 1268:K 1261:| 1240:2 1236:/ 1231:| 1227:K 1220:| 1198:2 1194:/ 1189:| 1185:K 1178:| 1154:K 1134:p 1114:K 1094:p 1091:2 1071:p 1051:K 1031:K 1011:K 991:K 963:2 959:/ 954:| 950:K 943:| 922:K 860:K 839:| 835:K 828:| 807:K 781:K 737:P 713:P 682:K 650:K 619:K 599:K 567:S 547:K 511:S 491:S 471:K 451:S 431:C 411:C 388:S 368:S 274:+ 271:2 227:6 219:2 216:1 210:+ 205:2 132:. 112:6 104:2 101:1 95:+ 90:2 60:3 55:+ 52:1 20:)

Index

Opaque forest problem

unit square
Steiner tree
discrete geometry
plane
lines of sight
polygon
forest
line segments
Stefan Mazurkiewicz
Frederick Bagemihl
unit square
convex set
perimeter
unit circle
connected
algorithms
convex polygon
approximation ratio
linear time
polynomial time
line segments
forest
rectifiable curves
Hausdorff measure
convex set
connected set
convex hull
convex set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.