Knowledge (XXG)

Open-channel flow

Source đź“ť

1631: 1352: 1626:{\displaystyle \overbrace {\underbrace {\partial {\bf {v}} \over {\partial t}} _{\begin{smallmatrix}{\text{Local}}\\{\text{Change}}\end{smallmatrix}}+\underbrace {{\bf {v}}\cdot \nabla {\bf {v}}} _{\text{Advection}}} ^{\text{Inertial Acceleration}}=-\underbrace {{1 \over {\rho }}\nabla p} _{\begin{smallmatrix}{\text{Pressure}}\\{\text{Gradient}}\end{smallmatrix}}+\underbrace {\nu \Delta {\bf {v}}} _{\text{Diffusion}}-\underbrace {\nabla \Phi } _{\text{Gravity}}+\underbrace {\bf {F}} _{\begin{smallmatrix}{\text{External}}\\{\text{Forces}}\end{smallmatrix}}} 66: 2278: 3332: 1917: 2082: 3200: 3116: 1741: 217:
has a minor contribution, but does not play a significant enough role in most circumstances to be a governing factor. Due to the presence of a free surface, gravity is generally the most significant driver of open-channel flow; therefore, the ratio of inertial to gravity forces is the most important
191:
The discharge of a steady flow is non-uniform along a channel. This happens when water enters and/or leaves the channel along the course of flow. An example of flow entering a channel would be a road side gutter. An example of flow leaving a channel would be an irrigation channel. This flow can be
2929: 1085: 2606: 2962: 3657: 2746: 1266: 2273:{\displaystyle {\partial u \over {\partial t}}+u{\partial u \over {\partial x}}+g{\partial \zeta \over {\partial x}}=F_{x}\implies {\partial u \over {\partial t}}+u{\partial u \over {\partial x}}+g{\partial \eta \over {\partial x}}-gS=F_{x}} 2805: 3327:{\displaystyle E=\underbrace {{1 \over {2}}\rho \|{\bf {v}}\|^{2}} _{\begin{smallmatrix}{\text{Kinetic}}\\{\text{Energy}}\end{smallmatrix}}+\underbrace {\rho \Phi } _{\begin{smallmatrix}{\text{Potential}}\\{\text{Energy}}\end{smallmatrix}}} 4059: 795: 944: 1912:{\displaystyle {\begin{aligned}{\partial u \over {\partial t}}+u{\partial u \over {\partial x}}&=-{1 \over {\rho }}{\partial p \over {\partial x}}+F_{x}\\-{1 \over {\rho }}{\partial p \over {\partial z}}-g&=0\end{aligned}}} 559: 1335: 949: 3426: 457: 81:
Open-channel flow can be classified and described in various ways based on the change in flow depth with respect to time and space. The fundamental types of flow dealt with in open-channel hydraulics are:
3171: 123:
The depth of flow is the same at every section of the channel. Uniform flow can be steady or unsteady, depending on whether or not the depth changes with time, (although unsteady uniform flow is rare).
58:. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not, resulting in flow dominated by gravity but not 2488: 2385: 2660: 3558: 1746: 133:
The depth of flow changes along the length of the channel. Varied flow technically may be either steady or unsteady. Varied flow can be further classified as either rapidly or gradually-varied:
262: 3553: 2655: 2030: 1175: 675: 3111:{\displaystyle {\partial \over {\partial t}}\left({1 \over {2}}\|{\bf {v}}\|^{2}\right)+{\bf {v}}\cdot \nabla \left({1 \over {2}}\|{\bf {v}}\|^{2}+{p \over {\rho }}+\Phi \right)=0} 2480: 703: 800: 1170: 612: 3689: 1952: 1124: 2328: 3522: 2796: 496: 2957: 394: 1732: 2766: 1699: 2050: 3724: 3458: 3352: 2405: 2077: 579: 3357: 1675: 3545: 3478: 3191: 2429: 1651: 698: 639: 326: 302: 282: 192:
described using the continuity equation for continuous unsteady flow requires the consideration of the time effect and includes a time element as a variable.
2924:{\displaystyle {\partial {\bf {v}} \over {\partial t}}+\omega \times {\bf {v}}=-\nabla \left({1 \over {2}}\|{\bf {v}}\|^{2}+{p \over {\rho }}+\Phi \right)} 357: 177:
of the channel under consideration. This is often the case with a steady flow. This flow is considered continuous and therefore can be described using the
1274: 366:
for quantities that are useful in open-channel flow: mass, momentum, and energy. The governing equations result from considering the dynamics of the
2333: 1346: 399: 4107: 348:. However, it is generally acceptable to assume that the Reynolds number is sufficiently large so that viscous forces may be neglected. 225: 3918: 1080:{\displaystyle {d \over {dt}}\int _{x}\left(\int _{A}dA\right)dx=-\int _{x}{\partial \over {\partial x}}\left(\int _{A}u\;dA\right)dx} 4041: 3901: 141:
The depth changes abruptly over a comparatively short distance. Rapidly varied flow is known as a local phenomenon. Examples are the
4293: 4028: 4011: 3981: 3928: 3800: 345: 2601:{\displaystyle {\partial u \over {\partial t}}+u{\partial u \over {\partial x}}+g{\partial \eta \over {\partial x}}+g(S_{f}-S)=0} 96:
The depth of flow does not change over time, or if it can be assumed to be constant during the time interval under consideration.
3124: 4002: 4339: 4298: 3652:{\displaystyle {\begin{aligned}h&=e+{p \over {\rho g}}\\&={u^{2} \over {2g}}+z+{p \over {\gamma }}\end{aligned}}} 3763: 4176: 4166: 3844: 460: 2623: 1957: 4324: 4303: 329: 3888: 700:
can change with both time and space in the channel. If we start from the integral form of the continuity equation:
4181: 4171: 3428:
Assuming that the energy density is time-independent and the flow is one-dimensional leads to the simplification:
4100: 678: 4161: 3481: 644: 2741:{\displaystyle {\bf {v}}\cdot \nabla {\bf {v}}=\omega \times {\bf {v}}+{1 \over {2}}\nabla \|{\bf {v}}\|^{2}} 4329: 4252: 3859: 1735: 69: 3431: 4272: 4237: 2438: 797:
it is possible to decompose the volume integral into a cross-section and length, which leads to the form:
4217: 4196: 4145: 3119: 1261:{\displaystyle \int _{x}{\partial A \over {\partial t}}\;dx=-\int _{x}{\partial Q \over {\partial x}}dx} 305: 1132: 3864: 1920: 1127: 588: 3665: 1925: 4334: 4212: 4093: 1678: 1090: 490: 471: 178: 2283: 4242: 4232: 59: 4079: 3490: 2775: 2938: 375: 4227: 4024: 4007: 3977: 3924: 3897: 1708: 174: 2802:. This leads to a form of the momentum equation, ignoring the external forces term, given by: 2751: 1684: 3839: 2432: 2035: 1702: 790:{\displaystyle {d \over {dt}}\int _{V}\rho \;dV=-\int _{V}\nabla \cdot (\rho {\bf {v}})\;dV} 363: 3702: 3337: 2390: 2055: 564: 466:
To simplify the final form of the equations, it is acceptable to make several assumptions:
4257: 4247: 4222: 4190: 4135: 3968: 3854: 3822: 3692: 3485: 2330:. To account for shear stress along the channel banks, we may define the force term to be: 1660: 939:{\displaystyle {d \over {dt}}\int _{x}\left(\int _{A}\rho \;dA\right)dx=-\int _{x}\leftdx} 333: 214: 31: 2482:, a way of quantifying friction losses, leads to the final form of the momentum equation: 463:, these components correspond to the flow velocity in the x, y, and z axes respectively. 1268:
Finally, this leads to the continuity equation for incompressible, 1D open-channel flow:
4277: 4262: 3849: 3768: 3530: 3525: 3463: 3194: 3176: 2799: 2414: 1636: 683: 624: 619: 341: 311: 287: 267: 146: 142: 51: 4019: 1738:. By invoking the high Reynolds number and 1D flow assumptions, we have the equations: 477:
The Reynolds number is sufficiently large such that viscous diffusion can be neglected
4318: 4267: 4052: 4047: 3817: 367: 219: 3790: 3738:
that was ignored by discounting the external forces term in the momentum equation.
2408: 554:{\displaystyle {\partial \rho \over {\partial t}}+\nabla \cdot (\rho {\bf {v}})=0} 370: 337: 47: 332:. Depending on the effect of viscosity relative to inertia, as represented by the 1330:{\displaystyle {\partial A \over {\partial t}}+{\partial Q \over {\partial x}}=0} 17: 4140: 3945: 3727: 3301: 3257: 2932: 1600: 1502: 1392: 65: 4130: 4116: 4074: 4069: 4064: 3805: 3773: 3753: 3735: 1345:
The momentum equation for open-channel flow may be found by starting from the
615: 35: 3421:{\displaystyle {\partial E \over {\partial t}}+{\bf {v}}\cdot \nabla (E+p)=0} 3827: 3795: 3778: 3696: 2769: 206: 55: 3731: 1654: 452:{\displaystyle {\bf {v}}={\begin{pmatrix}u&v&w\end{pmatrix}}^{T}} 3748: 946:
Under the assumption of incompressible, 1D flow, this equation becomes:
618:
operator. Under the assumption of incompressible flow, with a constant
582: 210: 2617: 43: 64: 4023:. Water Science and Technology Library. New York, NY: Springer. 205:
The behavior of open-channel flow is governed by the effects of
4089: 4085: 3166:{\displaystyle {\bf {v}}\cdot (\omega \times {\bf {v}})=0} 2380:{\displaystyle F_{x}=-{1 \over {\rho }}{\tau \over {R}}} 3695:. However, realistic systems require the addition of a 474:(this is not a good assumption for rapidly-varied flow) 362:
It is possible to formulate equations describing three
218:
dimensionless parameter. The parameter is known as the
493:, describing the conservation of mass, takes the form: 419: 3705: 3668: 3556: 3533: 3493: 3484:. Of particular interest in open-channel flow is the 3466: 3434: 3360: 3340: 3203: 3179: 3127: 2965: 2941: 2808: 2778: 2754: 2663: 2626: 2491: 2441: 2417: 2393: 2336: 2286: 2085: 2058: 2038: 2032:
is the difference between the free surface elevation
1960: 1928: 1744: 1711: 1687: 1663: 1639: 1355: 1277: 1178: 1135: 1093: 952: 803: 706: 686: 647: 627: 591: 567: 499: 402: 378: 314: 290: 270: 228: 2620:
equation, note that the advective acceleration term
4286: 4205: 4154: 4123: 3718: 3683: 3651: 3539: 3516: 3472: 3452: 3420: 3346: 3326: 3185: 3165: 3110: 2951: 2923: 2790: 2760: 2740: 2649: 2600: 2474: 2423: 2399: 2379: 2322: 2272: 2071: 2044: 2024: 1946: 1911: 1726: 1693: 1669: 1645: 1625: 1329: 1260: 1164: 1118: 1079: 938: 789: 692: 669: 633: 606: 573: 553: 451: 388: 320: 296: 276: 257:{\displaystyle {\text{Fr}}={U \over {\sqrt {gD}}}} 256: 4048:Derivation of the Equations of Open Channel Flow 4006:. IAHR Monograph. Rotterdam, NL: A.A. Balkema. 3947:Basic Hydraulic Principles of Open-Channel Flow 3944:Jobson, Harvey E.; Froehlich, David C. (1988). 3917:Battjes, Jurjen A.; Labeur, Robert Jan (2017). 3354:is time-independent, we arrive at the equation: 2650:{\displaystyle {\bf {v}}\cdot \nabla {\bf {v}}} 2025:{\displaystyle \eta (t,x)=\zeta (t,x)-z_{b}(x)} 4101: 4020:Numerical Modeling in Open Channel Hydraulics 3923:. Cambridge, UK: Cambridge University Press. 2079:. Substitution into the first equation gives: 480:The flow is one-dimensional across the x-axis 54:. The other type of flow within a conduit is 8: 3240: 3229: 3067: 3056: 3009: 2998: 2886: 2875: 2785: 2779: 2729: 2718: 358:Computational methods for free surface flow 4108: 4094: 4086: 2175: 2171: 1209: 1155: 1059: 918: 847: 780: 735: 641:, this equation has the simple expression 3710: 3704: 3667: 3638: 3633: 3614: 3608: 3602: 3582: 3577: 3557: 3555: 3532: 3503: 3492: 3465: 3433: 3385: 3384: 3371: 3361: 3359: 3339: 3313: 3304: 3299: 3284: 3269: 3260: 3255: 3243: 3233: 3232: 3219: 3214: 3211: 3202: 3178: 3148: 3147: 3129: 3128: 3126: 3084: 3079: 3070: 3060: 3059: 3049: 3044: 3027: 3026: 3012: 3002: 3001: 2991: 2986: 2971: 2966: 2964: 2943: 2942: 2940: 2903: 2898: 2889: 2879: 2878: 2868: 2863: 2843: 2842: 2823: 2816: 2815: 2809: 2807: 2777: 2753: 2732: 2722: 2721: 2708: 2703: 2694: 2693: 2678: 2677: 2665: 2664: 2662: 2641: 2640: 2628: 2627: 2625: 2577: 2554: 2544: 2528: 2518: 2502: 2492: 2490: 2458: 2446: 2440: 2416: 2392: 2370: 2365: 2358: 2353: 2341: 2335: 2309: 2303: 2285: 2264: 2238: 2228: 2212: 2202: 2186: 2176: 2165: 2148: 2138: 2122: 2112: 2096: 2086: 2084: 2063: 2057: 2037: 2007: 1959: 1927: 1879: 1869: 1862: 1857: 1844: 1827: 1817: 1810: 1805: 1785: 1775: 1759: 1749: 1745: 1743: 1710: 1686: 1662: 1638: 1612: 1603: 1598: 1588: 1586: 1576: 1561: 1551: 1539: 1538: 1529: 1514: 1505: 1500: 1481: 1476: 1473: 1460: 1448: 1436: 1435: 1423: 1422: 1419: 1404: 1395: 1390: 1376: 1369: 1368: 1361: 1357: 1354: 1311: 1301: 1288: 1278: 1276: 1242: 1232: 1226: 1199: 1189: 1183: 1177: 1146: 1134: 1098: 1092: 1050: 1031: 1026: 1020: 987: 972: 958: 953: 951: 909: 908: 890: 875: 838: 823: 809: 804: 802: 771: 770: 752: 726: 712: 707: 705: 685: 655: 654: 646: 626: 590: 566: 536: 535: 510: 500: 498: 443: 414: 404: 403: 401: 380: 379: 377: 313: 289: 269: 242: 237: 229: 227: 173:The discharge is constant throughout the 4053:Surface Profiles for Steady Channel Flow 3976:. New York, NY: McGraw-Hill. p. 2. 3480:being a constant; this is equivalent to 670:{\displaystyle \nabla \cdot {\bf {v}}=0} 106:The depth of flow does change with time. 4000:Nezu, Iehisa; Nakagawa, Hiroji (1993). 3879: 3118:This equation was arrived at using the 159:The depth changes over a long distance. 1347:incompressible Navier-Stokes equations 3953:. Reston, VA: U.S. Geological Survey. 3896:. Caldwell, NJ: The Blackburn Press. 7: 3962: 3960: 27:Type of liquid flow within a conduit 2475:{\displaystyle S_{f}=\tau /\rho gR} 677:. However, it is possible that the 3394: 3372: 3364: 3341: 3290: 3094: 3036: 2972: 2968: 2913: 2855: 2824: 2812: 2715: 2674: 2637: 2555: 2547: 2529: 2521: 2503: 2495: 2239: 2231: 2213: 2205: 2187: 2179: 2149: 2141: 2123: 2115: 2097: 2089: 1880: 1872: 1828: 1820: 1786: 1778: 1760: 1752: 1712: 1688: 1567: 1564: 1535: 1488: 1432: 1377: 1365: 1312: 1304: 1289: 1281: 1243: 1235: 1200: 1192: 1032: 1028: 896: 758: 648: 592: 523: 511: 503: 25: 3300: 3256: 1599: 1501: 1391: 308:scale for a channel's depth, and 4003:Turbulence in Open-Channel Flows 3386: 3234: 3149: 3130: 3061: 3028: 3003: 2944: 2880: 2844: 2817: 2723: 2695: 2679: 2666: 2642: 2629: 1589: 1540: 1437: 1424: 1370: 1165:{\displaystyle Q=\int _{A}u\;dA} 910: 772: 656: 537: 405: 381: 3524:, which is used to compute the 607:{\displaystyle \nabla \cdot ()} 3920:Unsteady Flow in Open Channels 3684:{\displaystyle \gamma =\rho g} 3409: 3397: 3154: 3138: 2589: 2570: 2435:. Defining the friction slope 2172: 2019: 2013: 1997: 1985: 1976: 1964: 1947:{\displaystyle p=\rho g\zeta } 1919:The second equation implies a 915: 902: 777: 764: 601: 598: 542: 529: 1: 4080:Simulation of Turbulent Flows 4017:Syzmkiewicz, Romuald (2010). 1172:, the equation is reduced to: 1119:{\displaystyle \int _{A}dA=A} 46:flow within a conduit with a 3764:Computational fluid dynamics 2959:with this equation leads to: 2323:{\displaystyle S=-dz_{b}/dx} 2280:where the channel bed slope 209:and gravity relative to the 181:for continuous steady flow. 4356: 4065:Open Channel Flow Concepts 3517:{\displaystyle e=E/\rho g} 2791:{\displaystyle \|\cdot \|} 1954:, where the channel depth 355: 330:gravitational acceleration 4182:Hydrological optimization 4172:Groundwater flow equation 4075:Open Channel Flow Example 4070:What is a Hydraulic Jump? 2952:{\displaystyle {\bf {v}}} 389:{\displaystyle {\bf {v}}} 336:, the flow can be either 3967:Sturm, Terry W. (2001). 1727:{\displaystyle \Phi =gz} 4177:Hazen–Williams equation 4167:Darcy–Weisbach equation 3970:Open Channel Hydraulics 3890:Open-Channel Hydraulics 3845:Darcy-Weisbach equation 2761:{\displaystyle \omega } 2052:and the channel bottom 1736:gravitational potential 1694:{\displaystyle \Delta } 77:Classifications of flow 70:Central Arizona Project 3860:Saint-Venant equations 3835:Other related articles 3726:to account for energy 3720: 3685: 3653: 3541: 3518: 3474: 3454: 3422: 3348: 3328: 3187: 3167: 3112: 2953: 2925: 2792: 2762: 2742: 2651: 2602: 2476: 2425: 2401: 2381: 2324: 2274: 2073: 2046: 2045:{\displaystyle \zeta } 2026: 1948: 1913: 1728: 1695: 1671: 1647: 1627: 1331: 1262: 1166: 1120: 1081: 940: 791: 694: 671: 635: 608: 575: 555: 453: 390: 322: 298: 284:is the mean velocity, 278: 258: 114:Space as the criterion 73: 4340:Hydraulic engineering 4197:Pipe network analysis 4162:Bernoulli's principle 4146:Hydraulic engineering 3887:Chow, Ven Te (2008). 3721: 3719:{\displaystyle h_{f}} 3686: 3654: 3542: 3519: 3482:Bernoulli's principle 3475: 3455: 3453:{\displaystyle E+p=C} 3423: 3349: 3347:{\displaystyle \Phi } 3329: 3188: 3168: 3120:scalar triple product 3113: 2954: 2926: 2793: 2763: 2743: 2657:may be decomposed as: 2652: 2603: 2477: 2426: 2402: 2400:{\displaystyle \tau } 2382: 2325: 2275: 2074: 2072:{\displaystyle z_{b}} 2047: 2027: 1949: 1914: 1729: 1696: 1672: 1648: 1628: 1462:Inertial Acceleration 1332: 1263: 1167: 1121: 1082: 941: 792: 695: 672: 636: 609: 576: 574:{\displaystyle \rho } 556: 461:Cartesian coordinates 454: 391: 356:Further information: 323: 306:characteristic length 299: 279: 259: 187:Spatially-varied flow 155:Gradually-varied flow 87:Time as the criterion 68: 3865:Standard step method 3703: 3666: 3554: 3531: 3491: 3464: 3432: 3358: 3338: 3201: 3177: 3125: 2963: 2939: 2806: 2776: 2752: 2661: 2624: 2489: 2439: 2415: 2391: 2334: 2284: 2083: 2056: 2036: 1958: 1926: 1921:hydrostatic pressure 1742: 1709: 1685: 1670:{\displaystyle \nu } 1661: 1637: 1353: 1275: 1176: 1133: 1128:volumetric flow rate 1091: 950: 801: 704: 684: 679:cross-sectional area 645: 625: 589: 565: 497: 400: 376: 312: 288: 268: 226: 222:, and is defined as: 213:forces of the flow. 3786:Types of fluid flow 3547:that is defined as: 1679:kinematic viscosity 491:continuity equation 485:Continuity equation 179:continuity equation 137:Rapidly-varied flow 3716: 3681: 3649: 3647: 3537: 3514: 3470: 3450: 3418: 3344: 3324: 3323: 3321: 3320: 3297: 3279: 3277: 3276: 3253: 3183: 3163: 3108: 2949: 2921: 2788: 2758: 2738: 2647: 2598: 2472: 2421: 2397: 2377: 2320: 2270: 2069: 2042: 2022: 1944: 1909: 1907: 1724: 1691: 1667: 1643: 1623: 1622: 1620: 1619: 1596: 1581: 1574: 1556: 1549: 1524: 1522: 1521: 1498: 1453: 1446: 1414: 1412: 1411: 1388: 1327: 1258: 1162: 1116: 1077: 936: 787: 690: 667: 631: 604: 571: 551: 449: 437: 386: 318: 294: 274: 254: 74: 60:hydraulic pressure 4325:Civil engineering 4312: 4311: 4187:Open-channel flow 4060:Open-Channel Flow 3801:Transitional flow 3643: 3622: 3590: 3540:{\displaystyle h} 3473:{\displaystyle C} 3379: 3316: 3307: 3285: 3283: 3272: 3263: 3224: 3212: 3210: 3186:{\displaystyle E} 3089: 3054: 2996: 2979: 2908: 2873: 2831: 2713: 2562: 2536: 2510: 2424:{\displaystyle R} 2375: 2363: 2246: 2220: 2194: 2156: 2130: 2104: 1887: 1867: 1835: 1815: 1793: 1767: 1646:{\displaystyle p} 1615: 1606: 1587: 1585: 1579: 1562: 1560: 1554: 1530: 1528: 1517: 1508: 1486: 1474: 1472: 1465: 1463: 1458: 1451: 1420: 1418: 1407: 1398: 1384: 1362: 1360: 1341:Momentum equation 1319: 1296: 1250: 1207: 1126:and defining the 1039: 966: 817: 720: 693:{\displaystyle A} 634:{\displaystyle V} 518: 364:conservation laws 321:{\displaystyle g} 297:{\displaystyle D} 277:{\displaystyle U} 252: 250: 232: 40:open-channel flow 18:Open channel flow 16:(Redirected from 4347: 4110: 4103: 4096: 4087: 3988: 3987: 3975: 3964: 3955: 3954: 3952: 3941: 3935: 3934: 3914: 3908: 3907: 3895: 3884: 3813:Fluid properties 3725: 3723: 3722: 3717: 3715: 3714: 3690: 3688: 3687: 3682: 3658: 3656: 3655: 3650: 3648: 3644: 3642: 3634: 3623: 3621: 3613: 3612: 3603: 3595: 3591: 3589: 3578: 3546: 3544: 3543: 3538: 3523: 3521: 3520: 3515: 3507: 3479: 3477: 3476: 3471: 3459: 3457: 3456: 3451: 3427: 3425: 3424: 3419: 3390: 3389: 3380: 3378: 3370: 3362: 3353: 3351: 3350: 3345: 3333: 3331: 3330: 3325: 3322: 3317: 3314: 3308: 3305: 3298: 3293: 3278: 3273: 3270: 3264: 3261: 3254: 3249: 3248: 3247: 3238: 3237: 3225: 3223: 3215: 3192: 3190: 3189: 3184: 3172: 3170: 3169: 3164: 3153: 3152: 3134: 3133: 3117: 3115: 3114: 3109: 3101: 3097: 3090: 3088: 3080: 3075: 3074: 3065: 3064: 3055: 3053: 3045: 3032: 3031: 3022: 3018: 3017: 3016: 3007: 3006: 2997: 2995: 2987: 2980: 2978: 2967: 2958: 2956: 2955: 2950: 2948: 2947: 2930: 2928: 2927: 2922: 2920: 2916: 2909: 2907: 2899: 2894: 2893: 2884: 2883: 2874: 2872: 2864: 2848: 2847: 2832: 2830: 2822: 2821: 2820: 2810: 2797: 2795: 2794: 2789: 2772:of the flow and 2767: 2765: 2764: 2759: 2747: 2745: 2744: 2739: 2737: 2736: 2727: 2726: 2714: 2712: 2704: 2699: 2698: 2683: 2682: 2670: 2669: 2656: 2654: 2653: 2648: 2646: 2645: 2633: 2632: 2607: 2605: 2604: 2599: 2582: 2581: 2563: 2561: 2553: 2545: 2537: 2535: 2527: 2519: 2511: 2509: 2501: 2493: 2481: 2479: 2478: 2473: 2462: 2451: 2450: 2433:hydraulic radius 2430: 2428: 2427: 2422: 2406: 2404: 2403: 2398: 2386: 2384: 2383: 2378: 2376: 2374: 2366: 2364: 2362: 2354: 2346: 2345: 2329: 2327: 2326: 2321: 2313: 2308: 2307: 2279: 2277: 2276: 2271: 2269: 2268: 2247: 2245: 2237: 2229: 2221: 2219: 2211: 2203: 2195: 2193: 2185: 2177: 2170: 2169: 2157: 2155: 2147: 2139: 2131: 2129: 2121: 2113: 2105: 2103: 2095: 2087: 2078: 2076: 2075: 2070: 2068: 2067: 2051: 2049: 2048: 2043: 2031: 2029: 2028: 2023: 2012: 2011: 1953: 1951: 1950: 1945: 1918: 1916: 1915: 1910: 1908: 1888: 1886: 1878: 1870: 1868: 1866: 1858: 1849: 1848: 1836: 1834: 1826: 1818: 1816: 1814: 1806: 1794: 1792: 1784: 1776: 1768: 1766: 1758: 1750: 1733: 1731: 1730: 1725: 1703:Laplace operator 1700: 1698: 1697: 1692: 1676: 1674: 1673: 1668: 1652: 1650: 1649: 1644: 1632: 1630: 1629: 1624: 1621: 1616: 1613: 1607: 1604: 1597: 1592: 1580: 1577: 1575: 1570: 1555: 1552: 1550: 1545: 1544: 1543: 1523: 1518: 1515: 1509: 1506: 1499: 1494: 1487: 1485: 1477: 1464: 1461: 1459: 1454: 1452: 1449: 1447: 1442: 1441: 1440: 1428: 1427: 1413: 1408: 1405: 1399: 1396: 1389: 1383: 1375: 1374: 1373: 1363: 1358: 1356: 1336: 1334: 1333: 1328: 1320: 1318: 1310: 1302: 1297: 1295: 1287: 1279: 1267: 1265: 1264: 1259: 1251: 1249: 1241: 1233: 1231: 1230: 1208: 1206: 1198: 1190: 1188: 1187: 1171: 1169: 1168: 1163: 1151: 1150: 1125: 1123: 1122: 1117: 1103: 1102: 1086: 1084: 1083: 1078: 1070: 1066: 1055: 1054: 1040: 1038: 1027: 1025: 1024: 1003: 999: 992: 991: 977: 976: 967: 965: 954: 945: 943: 942: 937: 929: 925: 914: 913: 895: 894: 880: 879: 858: 854: 843: 842: 828: 827: 818: 816: 805: 796: 794: 793: 788: 776: 775: 757: 756: 731: 730: 721: 719: 708: 699: 697: 696: 691: 676: 674: 673: 668: 660: 659: 640: 638: 637: 632: 613: 611: 610: 605: 580: 578: 577: 572: 560: 558: 557: 552: 541: 540: 519: 517: 509: 501: 458: 456: 455: 450: 448: 447: 442: 441: 409: 408: 396:with components 395: 393: 392: 387: 385: 384: 327: 325: 324: 319: 303: 301: 300: 295: 283: 281: 280: 275: 263: 261: 260: 255: 253: 251: 243: 238: 233: 230: 21: 4355: 4354: 4350: 4349: 4348: 4346: 4345: 4344: 4315: 4314: 4313: 4308: 4287:Public networks 4282: 4201: 4191:Manning formula 4150: 4136:Hydraulic fluid 4119: 4114: 4082:(p. 26-38) 4044:lecture notes: 4038: 3997: 3995:Further reading 3992: 3991: 3984: 3973: 3966: 3965: 3958: 3950: 3943: 3942: 3938: 3931: 3916: 3915: 3911: 3904: 3893: 3886: 3885: 3881: 3876: 3871: 3855:Manning formula 3823:Reynolds number 3759:Fields of study 3744: 3706: 3701: 3700: 3693:specific weight 3664: 3663: 3660: 3646: 3645: 3604: 3593: 3592: 3564: 3552: 3551: 3529: 3528: 3489: 3488: 3486:specific energy 3462: 3461: 3430: 3429: 3363: 3356: 3355: 3336: 3335: 3319: 3318: 3310: 3309: 3286: 3275: 3274: 3266: 3265: 3239: 3213: 3199: 3198: 3175: 3174: 3123: 3122: 3066: 3043: 3039: 3008: 2985: 2981: 2961: 2960: 2937: 2936: 2885: 2862: 2858: 2811: 2804: 2803: 2774: 2773: 2750: 2749: 2728: 2659: 2658: 2622: 2621: 2614: 2612:Energy equation 2609: 2573: 2546: 2520: 2494: 2487: 2486: 2442: 2437: 2436: 2413: 2412: 2389: 2388: 2337: 2332: 2331: 2299: 2282: 2281: 2260: 2230: 2204: 2178: 2161: 2140: 2114: 2088: 2081: 2080: 2059: 2054: 2053: 2034: 2033: 2003: 1956: 1955: 1924: 1923: 1906: 1905: 1895: 1871: 1851: 1850: 1840: 1819: 1795: 1777: 1751: 1740: 1739: 1707: 1706: 1683: 1682: 1659: 1658: 1635: 1634: 1618: 1617: 1609: 1608: 1563: 1531: 1520: 1519: 1511: 1510: 1475: 1421: 1410: 1409: 1401: 1400: 1364: 1359: 1351: 1350: 1343: 1338: 1303: 1280: 1273: 1272: 1234: 1222: 1191: 1179: 1174: 1173: 1142: 1131: 1130: 1094: 1089: 1088: 1087:By noting that 1046: 1045: 1041: 1016: 983: 982: 978: 968: 948: 947: 886: 885: 881: 871: 834: 833: 829: 819: 799: 798: 748: 722: 702: 701: 682: 681: 643: 642: 623: 622: 587: 586: 563: 562: 502: 495: 494: 487: 436: 435: 430: 425: 415: 413: 398: 397: 374: 373: 360: 354: 334:Reynolds number 310: 309: 286: 285: 266: 265: 224: 223: 215:Surface tension 203: 169:Continuous flow 79: 32:fluid mechanics 28: 23: 22: 15: 12: 11: 5: 4353: 4351: 4343: 4342: 4337: 4332: 4330:Fluid dynamics 4327: 4317: 4316: 4310: 4309: 4307: 4306: 4301: 4296: 4290: 4288: 4284: 4283: 4281: 4280: 4275: 4270: 4265: 4260: 4255: 4250: 4245: 4240: 4235: 4230: 4225: 4220: 4215: 4209: 4207: 4203: 4202: 4200: 4199: 4194: 4184: 4179: 4174: 4169: 4164: 4158: 4156: 4152: 4151: 4149: 4148: 4143: 4138: 4133: 4127: 4125: 4121: 4120: 4115: 4113: 4112: 4105: 4098: 4090: 4084: 4083: 4077: 4072: 4067: 4062: 4057: 4056: 4055: 4050: 4037: 4036:External links 4034: 4033: 4032: 4015: 3996: 3993: 3990: 3989: 3982: 3956: 3936: 3929: 3909: 3903:978-1932846188 3902: 3878: 3877: 3875: 3872: 3870: 3869: 3868: 3867: 3862: 3857: 3852: 3850:Hydraulic jump 3847: 3842: 3832: 3831: 3830: 3825: 3820: 3810: 3809: 3808: 3806:Turbulent flow 3803: 3798: 3793: 3783: 3782: 3781: 3776: 3771: 3769:Fluid dynamics 3766: 3756: 3751: 3745: 3743: 3740: 3713: 3709: 3680: 3677: 3674: 3671: 3641: 3637: 3632: 3629: 3626: 3620: 3617: 3611: 3607: 3601: 3598: 3596: 3594: 3588: 3585: 3581: 3576: 3573: 3570: 3567: 3565: 3563: 3560: 3559: 3549: 3536: 3526:hydraulic head 3513: 3510: 3506: 3502: 3499: 3496: 3469: 3449: 3446: 3443: 3440: 3437: 3417: 3414: 3411: 3408: 3405: 3402: 3399: 3396: 3393: 3388: 3383: 3377: 3374: 3369: 3366: 3343: 3312: 3311: 3303: 3302: 3296: 3292: 3289: 3282: 3268: 3267: 3259: 3258: 3252: 3246: 3242: 3236: 3231: 3228: 3222: 3218: 3209: 3206: 3195:energy density 3182: 3162: 3159: 3156: 3151: 3146: 3143: 3140: 3137: 3132: 3107: 3104: 3100: 3096: 3093: 3087: 3083: 3078: 3073: 3069: 3063: 3058: 3052: 3048: 3042: 3038: 3035: 3030: 3025: 3021: 3015: 3011: 3005: 3000: 2994: 2990: 2984: 2977: 2974: 2970: 2946: 2919: 2915: 2912: 2906: 2902: 2897: 2892: 2888: 2882: 2877: 2871: 2867: 2861: 2857: 2854: 2851: 2846: 2841: 2838: 2835: 2829: 2826: 2819: 2814: 2800:Euclidean norm 2787: 2784: 2781: 2757: 2735: 2731: 2725: 2720: 2717: 2711: 2707: 2702: 2697: 2692: 2689: 2686: 2681: 2676: 2673: 2668: 2644: 2639: 2636: 2631: 2613: 2610: 2597: 2594: 2591: 2588: 2585: 2580: 2576: 2572: 2569: 2566: 2560: 2557: 2552: 2549: 2543: 2540: 2534: 2531: 2526: 2523: 2517: 2514: 2508: 2505: 2500: 2497: 2484: 2471: 2468: 2465: 2461: 2457: 2454: 2449: 2445: 2420: 2396: 2373: 2369: 2361: 2357: 2352: 2349: 2344: 2340: 2319: 2316: 2312: 2306: 2302: 2298: 2295: 2292: 2289: 2267: 2263: 2259: 2256: 2253: 2250: 2244: 2241: 2236: 2233: 2227: 2224: 2218: 2215: 2210: 2207: 2201: 2198: 2192: 2189: 2184: 2181: 2174: 2168: 2164: 2160: 2154: 2151: 2146: 2143: 2137: 2134: 2128: 2125: 2120: 2117: 2111: 2108: 2102: 2099: 2094: 2091: 2066: 2062: 2041: 2021: 2018: 2015: 2010: 2006: 2002: 1999: 1996: 1993: 1990: 1987: 1984: 1981: 1978: 1975: 1972: 1969: 1966: 1963: 1943: 1940: 1937: 1934: 1931: 1904: 1901: 1898: 1896: 1894: 1891: 1885: 1882: 1877: 1874: 1865: 1861: 1856: 1853: 1852: 1847: 1843: 1839: 1833: 1830: 1825: 1822: 1813: 1809: 1804: 1801: 1798: 1796: 1791: 1788: 1783: 1780: 1774: 1771: 1765: 1762: 1757: 1754: 1748: 1747: 1723: 1720: 1717: 1714: 1690: 1666: 1642: 1611: 1610: 1602: 1601: 1595: 1591: 1584: 1573: 1569: 1566: 1559: 1548: 1542: 1537: 1534: 1527: 1513: 1512: 1504: 1503: 1497: 1493: 1490: 1484: 1480: 1471: 1468: 1457: 1445: 1439: 1434: 1431: 1426: 1417: 1403: 1402: 1394: 1393: 1387: 1382: 1379: 1372: 1367: 1342: 1339: 1326: 1323: 1317: 1314: 1309: 1306: 1300: 1294: 1291: 1286: 1283: 1270: 1257: 1254: 1248: 1245: 1240: 1237: 1229: 1225: 1221: 1218: 1215: 1212: 1205: 1202: 1197: 1194: 1186: 1182: 1161: 1158: 1154: 1149: 1145: 1141: 1138: 1115: 1112: 1109: 1106: 1101: 1097: 1076: 1073: 1069: 1065: 1062: 1058: 1053: 1049: 1044: 1037: 1034: 1030: 1023: 1019: 1015: 1012: 1009: 1006: 1002: 998: 995: 990: 986: 981: 975: 971: 964: 961: 957: 935: 932: 928: 924: 921: 917: 912: 907: 904: 901: 898: 893: 889: 884: 878: 874: 870: 867: 864: 861: 857: 853: 850: 846: 841: 837: 832: 826: 822: 815: 812: 808: 786: 783: 779: 774: 769: 766: 763: 760: 755: 751: 747: 744: 741: 738: 734: 729: 725: 718: 715: 711: 689: 666: 663: 658: 653: 650: 630: 620:control volume 603: 600: 597: 594: 570: 550: 547: 544: 539: 534: 531: 528: 525: 522: 516: 513: 508: 505: 486: 483: 482: 481: 478: 475: 472:incompressible 446: 440: 434: 431: 429: 426: 424: 421: 420: 418: 412: 407: 383: 353: 350: 317: 293: 273: 249: 246: 241: 236: 202: 201:States of flow 199: 198: 197: 196: 195: 194: 193: 184: 183: 182: 166: 165: 164: 163: 162: 161: 160: 152: 151: 150: 147:hydraulic drop 143:hydraulic jump 126: 125: 124: 111: 110: 109: 108: 107: 99: 98: 97: 78: 75: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4352: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4322: 4320: 4305: 4302: 4300: 4297: 4295: 4292: 4291: 4289: 4285: 4279: 4276: 4274: 4271: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4253:Power network 4251: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4210: 4208: 4204: 4198: 4195: 4192: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4159: 4157: 4153: 4147: 4144: 4142: 4139: 4137: 4134: 4132: 4129: 4128: 4126: 4122: 4118: 4111: 4106: 4104: 4099: 4097: 4092: 4091: 4088: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4061: 4058: 4054: 4051: 4049: 4046: 4045: 4043: 4040: 4039: 4035: 4030: 4029:9789048136735 4026: 4022: 4021: 4016: 4013: 4012:9789054101185 4009: 4005: 4004: 3999: 3998: 3994: 3985: 3983:9780073397870 3979: 3972: 3971: 3963: 3961: 3957: 3949: 3948: 3940: 3937: 3932: 3930:9781316576878 3926: 3922: 3921: 3913: 3910: 3905: 3899: 3892: 3891: 3883: 3880: 3873: 3866: 3863: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3840:ChĂ©zy formula 3838: 3837: 3836: 3833: 3829: 3826: 3824: 3821: 3819: 3818:Froude number 3816: 3815: 3814: 3811: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3788: 3787: 3784: 3780: 3777: 3775: 3772: 3770: 3767: 3765: 3762: 3761: 3760: 3757: 3755: 3752: 3750: 3747: 3746: 3741: 3739: 3737: 3733: 3729: 3711: 3707: 3698: 3694: 3678: 3675: 3672: 3669: 3659: 3639: 3635: 3630: 3627: 3624: 3618: 3615: 3609: 3605: 3599: 3597: 3586: 3583: 3579: 3574: 3571: 3568: 3566: 3561: 3548: 3534: 3527: 3511: 3508: 3504: 3500: 3497: 3494: 3487: 3483: 3467: 3447: 3444: 3441: 3438: 3435: 3415: 3412: 3406: 3403: 3400: 3391: 3381: 3375: 3367: 3294: 3287: 3280: 3250: 3244: 3226: 3220: 3216: 3207: 3204: 3196: 3180: 3160: 3157: 3144: 3141: 3135: 3121: 3105: 3102: 3098: 3091: 3085: 3081: 3076: 3071: 3050: 3046: 3040: 3033: 3023: 3019: 3013: 2992: 2988: 2982: 2975: 2934: 2917: 2910: 2904: 2900: 2895: 2890: 2869: 2865: 2859: 2852: 2849: 2839: 2836: 2833: 2827: 2801: 2782: 2771: 2755: 2733: 2709: 2705: 2700: 2690: 2687: 2684: 2671: 2634: 2619: 2616:To derive an 2611: 2608: 2595: 2592: 2586: 2583: 2578: 2574: 2567: 2564: 2558: 2550: 2541: 2538: 2532: 2524: 2515: 2512: 2506: 2498: 2483: 2469: 2466: 2463: 2459: 2455: 2452: 2447: 2443: 2434: 2418: 2410: 2394: 2371: 2367: 2359: 2355: 2350: 2347: 2342: 2338: 2317: 2314: 2310: 2304: 2300: 2296: 2293: 2290: 2287: 2265: 2261: 2257: 2254: 2251: 2248: 2242: 2234: 2225: 2222: 2216: 2208: 2199: 2196: 2190: 2182: 2166: 2162: 2158: 2152: 2144: 2135: 2132: 2126: 2118: 2109: 2106: 2100: 2092: 2064: 2060: 2039: 2016: 2008: 2004: 2000: 1994: 1991: 1988: 1982: 1979: 1973: 1970: 1967: 1961: 1941: 1938: 1935: 1932: 1929: 1922: 1902: 1899: 1897: 1892: 1889: 1883: 1875: 1863: 1859: 1854: 1845: 1841: 1837: 1831: 1823: 1811: 1807: 1802: 1799: 1797: 1789: 1781: 1772: 1769: 1763: 1755: 1737: 1721: 1718: 1715: 1704: 1680: 1664: 1656: 1640: 1593: 1582: 1571: 1557: 1546: 1532: 1525: 1495: 1491: 1482: 1478: 1469: 1466: 1455: 1443: 1429: 1415: 1385: 1380: 1348: 1340: 1337: 1324: 1321: 1315: 1307: 1298: 1292: 1284: 1269: 1255: 1252: 1246: 1238: 1227: 1223: 1219: 1216: 1213: 1210: 1203: 1195: 1184: 1180: 1159: 1156: 1152: 1147: 1143: 1139: 1136: 1129: 1113: 1110: 1107: 1104: 1099: 1095: 1074: 1071: 1067: 1063: 1060: 1056: 1051: 1047: 1042: 1035: 1021: 1017: 1013: 1010: 1007: 1004: 1000: 996: 993: 988: 984: 979: 973: 969: 962: 959: 955: 933: 930: 926: 922: 919: 905: 899: 891: 887: 882: 876: 872: 868: 865: 862: 859: 855: 851: 848: 844: 839: 835: 830: 824: 820: 813: 810: 806: 784: 781: 767: 761: 753: 749: 745: 742: 739: 736: 732: 727: 723: 716: 713: 709: 687: 680: 664: 661: 651: 628: 621: 617: 595: 584: 581:is the fluid 568: 548: 545: 532: 526: 520: 514: 506: 492: 484: 479: 476: 473: 469: 468: 467: 464: 462: 444: 438: 432: 427: 422: 416: 410: 372: 369: 368:flow velocity 365: 359: 351: 349: 347: 343: 339: 335: 331: 315: 307: 291: 271: 247: 244: 239: 234: 221: 220:Froude number 216: 212: 208: 200: 190: 189: 188: 185: 180: 176: 172: 171: 170: 167: 158: 157: 156: 153: 148: 144: 140: 139: 138: 135: 134: 132: 131: 130: 127: 122: 121: 120: 117: 116: 115: 112: 105: 104: 103: 102:Unsteady flow 100: 95: 94: 93: 90: 89: 88: 85: 84: 83: 76: 71: 67: 63: 61: 57: 53: 50:, known as a 49: 45: 42:is a type of 41: 37: 33: 19: 4273:Rescue tools 4238:Drive system 4206:Technologies 4186: 4018: 4001: 3969: 3946: 3939: 3919: 3912: 3889: 3882: 3834: 3812: 3791:Laminar flow 3785: 3758: 3661: 3550: 3334:Noting that 2615: 2485: 2409:shear stress 1344: 1271: 489:The general 488: 470:The flow is 465: 371:vector field 361: 346:transitional 204: 186: 168: 154: 136: 128: 119:Uniform flow 118: 113: 101: 91: 86: 80: 48:free surface 39: 29: 4218:Accumulator 4141:Fluid power 3728:dissipation 2933:dot product 2931:Taking the 352:Formulation 129:Varied flow 92:Steady flow 4335:Hydraulics 4319:Categories 4304:Manchester 4131:Hydraulics 4117:Hydraulics 3874:References 3774:Hydraulics 3754:Streamflow 3736:turbulence 3691:being the 3193:to be the 3173:. Define 616:divergence 36:hydraulics 4294:Liverpool 4213:Machinery 3828:Viscosity 3796:Pipe flow 3779:Hydrology 3697:head loss 3676:ρ 3670:γ 3640:γ 3584:ρ 3509:ρ 3395:∇ 3392:⋅ 3373:∂ 3365:∂ 3342:Φ 3306:Potential 3295:⏟ 3291:Φ 3288:ρ 3251:⏟ 3241:‖ 3230:‖ 3227:ρ 3145:× 3142:ω 3136:⋅ 3095:Φ 3086:ρ 3068:‖ 3057:‖ 3037:∇ 3034:⋅ 3010:‖ 2999:‖ 2973:∂ 2969:∂ 2914:Φ 2905:ρ 2887:‖ 2876:‖ 2856:∇ 2853:− 2840:× 2837:ω 2825:∂ 2813:∂ 2786:‖ 2783:⋅ 2780:‖ 2770:vorticity 2756:ω 2730:‖ 2719:‖ 2716:∇ 2691:× 2688:ω 2675:∇ 2672:⋅ 2638:∇ 2635:⋅ 2584:− 2556:∂ 2551:η 2548:∂ 2530:∂ 2522:∂ 2504:∂ 2496:∂ 2464:ρ 2456:τ 2395:τ 2368:τ 2360:ρ 2351:− 2294:− 2249:− 2240:∂ 2235:η 2232:∂ 2214:∂ 2206:∂ 2188:∂ 2180:∂ 2173:⟹ 2150:∂ 2145:ζ 2142:∂ 2124:∂ 2116:∂ 2098:∂ 2090:∂ 2040:ζ 2001:− 1983:ζ 1962:η 1942:ζ 1936:ρ 1890:− 1881:∂ 1873:∂ 1864:ρ 1855:− 1829:∂ 1821:∂ 1812:ρ 1803:− 1787:∂ 1779:∂ 1761:∂ 1753:∂ 1713:Φ 1689:Δ 1665:ν 1594:⏟ 1572:⏟ 1568:Φ 1565:∇ 1558:− 1553:Diffusion 1547:⏟ 1536:Δ 1533:ν 1496:⏟ 1489:∇ 1483:ρ 1470:− 1456:⏞ 1450:Advection 1444:⏟ 1433:∇ 1430:⋅ 1386:⏟ 1378:∂ 1366:∂ 1313:∂ 1305:∂ 1290:∂ 1282:∂ 1244:∂ 1236:∂ 1224:∫ 1220:− 1201:∂ 1193:∂ 1181:∫ 1144:∫ 1096:∫ 1048:∫ 1033:∂ 1029:∂ 1018:∫ 1014:− 985:∫ 970:∫ 906:ρ 900:⋅ 897:∇ 888:∫ 873:∫ 869:− 845:ρ 836:∫ 821:∫ 768:ρ 762:⋅ 759:∇ 750:∫ 746:− 733:ρ 724:∫ 652:⋅ 649:∇ 596:⋅ 593:∇ 569:ρ 533:ρ 527:⋅ 524:∇ 512:∂ 507:ρ 504:∂ 342:turbulent 207:viscosity 56:pipe flow 4243:Manifold 4233:Cylinder 4155:Modeling 4124:Concepts 3742:See also 3732:friction 1655:pressure 1605:External 1516:Gradient 1507:Pressure 211:inertial 145:and the 72:channel. 4228:Circuit 4042:Caltech 3749:HEC-RAS 3730:due to 3262:Kinetic 2798:is the 2768:is the 2431:is the 2407:is the 1734:is the 1701:is the 1677:is the 1653:is the 1578:Gravity 1349: : 614:is the 583:density 338:laminar 328:is the 304:is the 52:channel 4299:London 4027:  4010:  3980:  3927:  3900:  3315:Energy 3271:Energy 2748:where 2618:energy 2387:where 1705:, and 1633:where 1614:Forces 1406:Change 561:where 264:where 44:liquid 4258:Press 4248:Motor 4223:Brake 3974:(PDF) 3951:(PDF) 3894:(PDF) 3699:term 3662:with 3460:with 1397:Local 459:. In 344:, or 175:reach 4278:Seal 4263:Pump 4025:ISBN 4008:ISBN 3978:ISBN 3925:ISBN 3898:ISBN 3734:and 2411:and 585:and 34:and 4268:Ram 2935:of 30:In 4321:: 3959:^ 1681:, 1657:, 340:, 231:Fr 62:. 38:, 4193:) 4189:( 4109:e 4102:t 4095:v 4031:. 4014:. 3986:. 3933:. 3906:. 3712:f 3708:h 3679:g 3673:= 3636:p 3631:+ 3628:z 3625:+ 3619:g 3616:2 3610:2 3606:u 3600:= 3587:g 3580:p 3575:+ 3572:e 3569:= 3562:h 3535:h 3512:g 3505:/ 3501:E 3498:= 3495:e 3468:C 3448:C 3445:= 3442:p 3439:+ 3436:E 3416:0 3413:= 3410:) 3407:p 3404:+ 3401:E 3398:( 3387:v 3382:+ 3376:t 3368:E 3281:+ 3245:2 3235:v 3221:2 3217:1 3208:= 3205:E 3197:: 3181:E 3161:0 3158:= 3155:) 3150:v 3139:( 3131:v 3106:0 3103:= 3099:) 3092:+ 3082:p 3077:+ 3072:2 3062:v 3051:2 3047:1 3041:( 3029:v 3024:+ 3020:) 3014:2 3004:v 2993:2 2989:1 2983:( 2976:t 2945:v 2918:) 2911:+ 2901:p 2896:+ 2891:2 2881:v 2870:2 2866:1 2860:( 2850:= 2845:v 2834:+ 2828:t 2818:v 2734:2 2724:v 2710:2 2706:1 2701:+ 2696:v 2685:= 2680:v 2667:v 2643:v 2630:v 2596:0 2593:= 2590:) 2587:S 2579:f 2575:S 2571:( 2568:g 2565:+ 2559:x 2542:g 2539:+ 2533:x 2525:u 2516:u 2513:+ 2507:t 2499:u 2470:R 2467:g 2460:/ 2453:= 2448:f 2444:S 2419:R 2372:R 2356:1 2348:= 2343:x 2339:F 2318:x 2315:d 2311:/ 2305:b 2301:z 2297:d 2291:= 2288:S 2266:x 2262:F 2258:= 2255:S 2252:g 2243:x 2226:g 2223:+ 2217:x 2209:u 2200:u 2197:+ 2191:t 2183:u 2167:x 2163:F 2159:= 2153:x 2136:g 2133:+ 2127:x 2119:u 2110:u 2107:+ 2101:t 2093:u 2065:b 2061:z 2020:) 2017:x 2014:( 2009:b 2005:z 1998:) 1995:x 1992:, 1989:t 1986:( 1980:= 1977:) 1974:x 1971:, 1968:t 1965:( 1939:g 1933:= 1930:p 1903:0 1900:= 1893:g 1884:z 1876:p 1860:1 1846:x 1842:F 1838:+ 1832:x 1824:p 1808:1 1800:= 1790:x 1782:u 1773:u 1770:+ 1764:t 1756:u 1722:z 1719:g 1716:= 1641:p 1590:F 1583:+ 1541:v 1526:+ 1492:p 1479:1 1467:= 1438:v 1425:v 1416:+ 1381:t 1371:v 1325:0 1322:= 1316:x 1308:Q 1299:+ 1293:t 1285:A 1256:x 1253:d 1247:x 1239:Q 1228:x 1217:= 1214:x 1211:d 1204:t 1196:A 1185:x 1160:A 1157:d 1153:u 1148:A 1140:= 1137:Q 1114:A 1111:= 1108:A 1105:d 1100:A 1075:x 1072:d 1068:) 1064:A 1061:d 1057:u 1052:A 1043:( 1036:x 1022:x 1011:= 1008:x 1005:d 1001:) 997:A 994:d 989:A 980:( 974:x 963:t 960:d 956:d 934:x 931:d 927:] 923:A 920:d 916:) 911:v 903:( 892:A 883:[ 877:x 866:= 863:x 860:d 856:) 852:A 849:d 840:A 831:( 825:x 814:t 811:d 807:d 785:V 782:d 778:) 773:v 765:( 754:V 743:= 740:V 737:d 728:V 717:t 714:d 710:d 688:A 665:0 662:= 657:v 629:V 602:) 599:( 549:0 546:= 543:) 538:v 530:( 521:+ 515:t 445:T 439:) 433:w 428:v 423:u 417:( 411:= 406:v 382:v 316:g 292:D 272:U 248:D 245:g 240:U 235:= 149:. 20:)

Index

Open channel flow
fluid mechanics
hydraulics
liquid
free surface
channel
pipe flow
hydraulic pressure

Central Arizona Project
hydraulic jump
hydraulic drop
reach
continuity equation
viscosity
inertial
Surface tension
Froude number
characteristic length
gravitational acceleration
Reynolds number
laminar
turbulent
transitional
Computational methods for free surface flow
conservation laws
flow velocity
vector field
Cartesian coordinates
incompressible

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑