Knowledge (XXG)

Ophiocoma scolopendrina

Source 📝

387: 417:'s positionality in its ecosystem, breakage has typically been mainly observed in the top third of the arm. Since these types of stars spend a majority of their time hidden in crevices, only the tips of their arms suffer the most damage. In many cases, these arms remain functional, however, as the majority of the arm is not exceedingly damaged. Arms that are used for anchorage within crevices are those least likely to be lost as they are not frequently exposed to the dangers of the intertidal. Those that are out, whether it be for feeding or general sweeping, have been noted to be the arms most affected. 33: 61: 308: 897: 424:. As one arm may be damaged by a predator or ecological force, other arms must take its place as the most frequently used, causing them to suffer more harm than otherwise. Those that dwell in poor habitats are oftentimes more vulnerable to the forces of nature and are subject to consistent damage to their bodies. The average rate of regeneration is about 0.4 mm/day. 883: 386: 409:
does not lose parts of its arms as rapidly as expected. Arms are important sources of feeding and have been noted to be used as a means of quick predator evasion. Since arms are used for both food capture and locomotion, O. scolopendrina are more hesitant to expose their arms to harmful situations.
293:
These brittle stars are present in crevices and under boulders of intertidal reef platforms in the upper and middle eulittoral. They have also been seen underneath coral rubble. They typically hide amongst concealing vegetation during surface-film feeding. They live primarily in areas with shallow
401:
has the ability to regenerate its arms. Stars may be injured by a variety of means, from general aggression and predation to the intense waves of their ecosystems. To account for this loss, stars regenerate these damaged portions of their arms, investing incredible amounts of energy as a means to
340:
becomes fully exposed and remains attached to the ground by anchoring an arm to a substratum or piece of vegetation. Occasionally, they may also climb vegetation to gain better feeding positionality. The brittle star then utilizes two to four arms to sweep the sea surface, using its arms' ventral
245:
brittle stars, they are known for their unique way of surface-film feeding, using their arms to sweep the sea surface and trap food. Regeneration of their arms are a vital component of their physiology, allowing them to efficiently surface-film feed. These stars also have the ability to reproduce
402:
survive for a longer amount of time. Regeneration, in turn, allows for the recuperation in functionality and strength in that arm. This adaptation has become vital in allowing brittle stars to survive even the harshest of environments.
676:
Chang D (1999) Spawning induction of two brittle stars, Ophiocoma dentata (Muller and Troschel) and Ophiocoma scolopendrina (Lamarck) (Echinodermata: Ophiuroidea). MS thesis, National Sun Yat-sen University, Kaohsiung,
277:
can reach a length of about 13cm, while the disc diameter can reach up to 25mm. The star's sexes can be identified by checking slits between the arms, which expose the white male spermaries and red female ovaries.
289:
can be found in the Red Sea, the tropical Indo-Pacific region, Taiwan, Eastern Africa, Southeastern Polynesia, the Marshall Islands, and Madagascar. Their typical density is about 20 individuals per 1 m.
348:
species. During these types of feedings, arms are extended and food is caught from the water column into their mucus-covered spines during this process. This has typically been observed after a high tide.
452:'s hooked terminal spines may be advantageous in remaining attached to the host star, as they are difficult to dislodge. Symbionts typically switch hosts as they become larger, switching between new 819:
Delroisse, Jerome. "Reproductive cycles and recruitment of the two co-existing tropical brittle-stars from the barrier reef of Toliara (Madagascar), Ophiocoma scolopendrina and Ophiomastix venosa".
322:
changes its location depending on tide positionality. Stars have been observed to be nearly entirely concealed at high tide, and expose themselves progressively as the tide becomes lower.
257:, as other brittle stars, have long, thin arms emanating from a small, disk-shaped body and are about the size of an outstretched human hand. They belong to the phylum of 576:
Soong, K. (1997). "Regeneration and Potential Functional Differentiation of Arms in the Brittlestar, Ophiocoma scolopendrina (Lamarck) (Echinodermata: Ophiuroidea)".
329:
these stars have evolved an adaptation that lets them participate in surface-film feeding during both low and flooding tides. This adaptation allows them to consume
1195: 1053: 364:
Ovarian substances have been noted to induce male spawn. Adult female stars each contain an estimated 12 * 10⁵ premature oocytes and it is believed that all adult
1066: 341:
sides to trap suspended objects into mucus-covered spines. The food is then transferred to the mouth once the spines have been cleaned by tube feet.
1182: 1027: 344:
Outside of flooding tide, these brittle stars simply participate in microphagous suspension and deposit-feeding, behavior that is common for other
1079: 356:
has been attributed to a variety of influences, including changes in tidal patterns, the presence of predation, and food availability.
1241: 372:
reproduce continuously throughout the year, as once gametes are available in the gonads, allowing them to spawn regardless of season.
887: 1208: 1128: 456:
hosts as their size increases. The relationship between these stars has largely been considered a form of brood parasitism, as
844:
Habitat Distribution and Comparison of Brittle Star (Echinodermata: Ophiuroidea) Arm Regeneration on Moorea, French Polynesia
988: 975: 953: 901: 1071: 687:
Sbaihat, Majduleen. "Level of Heavy Metals in Ophoidea (Ophiocoma scolopendrina) from the Gulf of Aqaba, Red Sea".
60: 869: 368:
produce gametes throughout the remainder of their lives. They consistently produce gametes at all studied ages.
510:"Tidal activity pattern and feeding behaviour of the ophiuroid Ophiocoma scolopendrina on a Kenyan reef flat" 241:. They can typically be found within crevices or beneath borders on intertidal reef platforms. Unlike other 32: 273:. Dorsal disc and dorsal arm plates vary from variegated black to pale brown. They are irregularly banded. 915: 294:
water strictly in the intertidal and are often observed sweeping their arms over sand or coral substrata.
1236: 993: 155: 1213: 1133: 1014: 962: 800:
Chartok, M.A. "Habitat and feeding observations on species of Ophiocoma (Ophiocomidae) at Enewetak".
722: 521: 1110: 631: 545: 177: 55: 967: 1200: 1058: 980: 246:
throughout the year, and have been known to have symbiotic relationships with other organisms.
1169: 1092: 1001: 848: 779: 740: 659: 623: 537: 1120: 1097: 771: 730: 615: 529: 231: 711:"Presence of spawn-inducing pheromones in two brittle stars (Echinodermata: Ophiuroidea)" 726: 604:"Babysitting Brittle Stars: Heterospecific Symbiosis between Ophiuroids (Echinodermata)" 525: 378:
have planktonic planktotrophic larvae and have been observed to spawn in large numbers.
307: 333:
and detrital particles and film that are found suspended on the surface of sea water.
44: 1230: 775: 266: 112: 549: 1174: 1160: 1006: 238: 234: 227: 122: 102: 759: 1105: 1040: 947: 262: 938: 896: 509: 852: 533: 258: 92: 783: 744: 663: 627: 602:
Hendler, Gordon; Grygier, Mark J.; Maldonado, Elisa; Denton, Jessica (1999).
541: 655:
Contribution to the study of the development and larval forms of echinoderms
270: 132: 72: 864: 882: 1154: 932: 330: 1187: 1032: 735: 710: 635: 48: 1045: 842: 653: 603: 82: 909: 619: 440:
in the intertidal zone of Okinawa, Japan. In this region, younger
385: 306: 1084: 1019: 913: 436:
have a heterospecific symbiotic relationship with juveniles of
464:
adults and there is no physical damage to the host organism.
444:
have been observed to attach to the bursae of the living
237:. Restricted to life in the intertidal, they live in the 420:
Multiple arm breakages have also been seen to occur in
1144: 922: 764:Journal of Experimental Marine Biology and Ecology 760:"The behaviour of some amphiurid Brittle-Stars" 8: 910: 847:. eScholarship, University of California. 31: 20: 734: 397:Similar to other types of brittle stars, 508:Oak, T.; Scheibling, R.E. (2006-03-15). 460:young are, in a sense, cared for by the 352:The unusual feeding pattern observed in 473: 836: 834: 795: 793: 709:Soong, K; Chang, D; Chao, SM (2005). 704: 702: 571: 569: 567: 565: 563: 561: 559: 488:. Beijing: Science Press. p. 23. 7: 647: 645: 597: 595: 593: 591: 503: 501: 499: 497: 495: 479: 477: 14: 486:The Echinoderms of Southern China 405:Compared to other brittle stars, 325:Unlike other brittle star species 895: 881: 689:Fresenius Environmental Bulletin 59: 715:Marine Ecology Progress Series 393:with arms of different lengths 1: 776:10.1016/0022-0981(75)90014-3 841:Sarah, Chinn (2006-12-01). 1258: 821:Cahiers de Biologie Marine 758:Woodley, J.D. (May 1975). 1242:Animals described in 1816 534:10.1007/s00338-006-0089-6 448:host. It is thought that 183: 176: 161: 154: 56:Scientific classification 54: 39: 30: 23: 428:Heterospecific symbiosis 282:Distribution and habitat 981:Ophiocoma_scolopendrina 968:Ophiocoma_scolopendrina 954:Ophiocoma scolopendrina 924:Ophiocoma scolopendrina 903:Ophiocoma scolopendrina 889:Ophiocoma scolopendrina 434:Ophiocoma scolopendrina 391:Ophiocoma scolopendrina 376:Ophiocoma scolopendrina 354:Ophiocoma scolopendrina 312:Ophiocoma scolopendrina 287:Ophiocoma scolopendrina 255:Ophiocoma scolopendrina 223:Ophiocoma scolopendrina 165:Ophiocoma scolopendrina 41:Ophiocoma scolopendrina 25:Ophiocoma scolopendrina 16:Species of brittle star 652:T., Mortensen (1938). 394: 315: 314:in its natural habitat 1146:Ophiura scolopendrina 870:Ophiuroidea Data Base 389: 310: 211:Ophiura scolopendrina 147:O. scolopendrina 892:at Wikimedia Commons 658:. Levin Hunksgaard. 608:Invertebrate Biology 438:Ophiomastix annulosa 205:Ophiocoma variabilis 727:2005MEPS..292..195S 526:2006CorRe..25..213O 187:Ophiocoma alternans 736:10.3354/meps292195 578:Zoological Studies 395: 316: 1224: 1223: 1093:Open Tree of Life 916:Taxon identifiers 886:Media related to 261:, which includes 230:belonging to the 219: 218: 199:Ophiocoma molaris 193:Ophiocoma lubrica 189:von Martens, 1870 1249: 1217: 1216: 1204: 1203: 1191: 1190: 1178: 1177: 1165: 1164: 1163: 1137: 1136: 1124: 1123: 1114: 1113: 1101: 1100: 1088: 1087: 1075: 1074: 1062: 1061: 1049: 1048: 1036: 1035: 1023: 1022: 1010: 1009: 997: 996: 984: 983: 971: 970: 958: 957: 956: 943: 942: 941: 911: 900:Data related to 899: 885: 857: 856: 838: 829: 828: 816: 810: 809: 797: 788: 787: 755: 749: 748: 738: 706: 697: 696: 684: 678: 674: 668: 667: 649: 640: 639: 599: 586: 585: 573: 554: 553: 505: 490: 489: 484:Liao, Y (1995). 481: 462:O. scolopendrina 454:O. scolopendrina 446:O. scolopendrina 422:O. scolopendrina 415:O. scolopendrina 407:O. scolopendrina 399:O. scolopendrina 370:O. scolopendrina 366:O. scolopendrina 338:O. scolopendrina 336:During feeding, 320:O. scolopendrina 275:O. scolopendrina 226:is a species of 167: 64: 63: 35: 21: 1257: 1256: 1252: 1251: 1250: 1248: 1247: 1246: 1227: 1226: 1225: 1220: 1212: 1207: 1199: 1194: 1186: 1181: 1173: 1168: 1159: 1158: 1153: 1140: 1132: 1127: 1119: 1117: 1109: 1104: 1096: 1091: 1083: 1078: 1070: 1065: 1057: 1052: 1044: 1039: 1031: 1026: 1018: 1013: 1005: 1000: 992: 987: 979: 974: 966: 961: 952: 951: 946: 937: 936: 931: 918: 878: 861: 860: 840: 839: 832: 818: 817: 813: 799: 798: 791: 757: 756: 752: 708: 707: 700: 686: 685: 681: 675: 671: 651: 650: 643: 620:10.2307/3227060 601: 600: 589: 575: 574: 557: 507: 506: 493: 483: 482: 475: 470: 430: 384: 362: 305: 300: 284: 252: 172: 171:(Lamarck, 1816) 169: 163: 150: 58: 17: 12: 11: 5: 1255: 1253: 1245: 1244: 1239: 1229: 1228: 1222: 1221: 1219: 1218: 1205: 1192: 1179: 1166: 1150: 1148: 1142: 1141: 1139: 1138: 1125: 1115: 1102: 1089: 1076: 1063: 1050: 1037: 1024: 1011: 998: 985: 972: 959: 944: 928: 926: 920: 919: 914: 908: 907: 906:at Wikispecies 893: 877: 876:External links 874: 873: 872: 867: 859: 858: 830: 811: 789: 750: 698: 679: 669: 641: 587: 555: 520:(2): 213–222. 491: 472: 471: 469: 466: 429: 426: 383: 380: 361: 358: 318:When feeding, 304: 301: 299: 296: 283: 280: 251: 248: 217: 216: 215: 214: 208: 202: 196: 190: 181: 180: 174: 173: 170: 159: 158: 152: 151: 144: 142: 138: 137: 130: 126: 125: 120: 116: 115: 110: 106: 105: 100: 96: 95: 90: 86: 85: 80: 76: 75: 70: 66: 65: 52: 51: 45:Sharm El Sheik 37: 36: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 1254: 1243: 1240: 1238: 1235: 1234: 1232: 1215: 1210: 1206: 1202: 1197: 1193: 1189: 1184: 1180: 1176: 1171: 1167: 1162: 1156: 1152: 1151: 1149: 1147: 1143: 1135: 1130: 1126: 1122: 1116: 1112: 1107: 1103: 1099: 1094: 1090: 1086: 1081: 1077: 1073: 1068: 1064: 1060: 1055: 1051: 1047: 1042: 1038: 1034: 1029: 1025: 1021: 1016: 1012: 1008: 1003: 999: 995: 990: 986: 982: 977: 973: 969: 964: 960: 955: 949: 945: 940: 934: 930: 929: 927: 925: 921: 917: 912: 905: 904: 898: 894: 891: 890: 884: 880: 879: 875: 871: 868: 866: 863: 862: 854: 850: 846: 845: 837: 835: 831: 826: 822: 815: 812: 807: 803: 796: 794: 790: 785: 781: 777: 773: 769: 765: 761: 754: 751: 746: 742: 737: 732: 728: 724: 720: 716: 712: 705: 703: 699: 694: 690: 683: 680: 673: 670: 665: 661: 657: 656: 648: 646: 642: 637: 633: 629: 625: 621: 617: 613: 609: 605: 598: 596: 594: 592: 588: 583: 579: 572: 570: 568: 566: 564: 562: 560: 556: 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 511: 504: 502: 500: 498: 496: 492: 487: 480: 478: 474: 467: 465: 463: 459: 455: 451: 447: 443: 439: 435: 427: 425: 423: 418: 416: 411: 408: 403: 400: 392: 388: 381: 379: 377: 373: 371: 367: 359: 357: 355: 350: 347: 342: 339: 334: 332: 328: 323: 321: 313: 309: 302: 297: 295: 291: 288: 281: 279: 276: 272: 268: 267:sea cucumbers 264: 260: 256: 249: 247: 244: 240: 236: 233: 229: 225: 224: 213:Lamarck, 1816 212: 209: 206: 203: 200: 197: 195:Koehler, 1898 194: 191: 188: 185: 184: 182: 179: 175: 168: 166: 160: 157: 156:Binomial name 153: 149: 148: 143: 140: 139: 136: 135: 131: 128: 127: 124: 121: 118: 117: 114: 113:Ophiacanthida 111: 108: 107: 104: 101: 98: 97: 94: 93:Echinodermata 91: 88: 87: 84: 81: 78: 77: 74: 71: 68: 67: 62: 57: 53: 50: 46: 42: 38: 34: 29: 26: 22: 19: 1237:Ophiocomidae 1145: 923: 902: 888: 843: 824: 820: 814: 805: 801: 770:(1): 29–46. 767: 763: 753: 718: 714: 695:: 3519–3524. 692: 688: 682: 672: 654: 611: 607: 581: 577: 517: 513: 485: 461: 457: 453: 449: 445: 441: 437: 433: 431: 421: 419: 414: 412: 406: 404: 398: 396: 390: 382:Regeneration 375: 374: 369: 365: 363: 360:Reproduction 353: 351: 345: 343: 337: 335: 326: 324: 319: 317: 311: 292: 286: 285: 274: 254: 253: 242: 239:Indo-Pacific 235:Ophiocomidae 228:brittle star 222: 221: 220: 210: 204: 198: 192: 186: 164: 162: 146: 145: 133: 123:Ophiocomidae 40: 24: 18: 1106:SeaLifeBase 1041:iNaturalist 948:Wikispecies 802:Micronesica 721:: 195–201. 584:(2): 90–97. 514:Coral Reefs 458:O. annulosa 450:O. annulosa 442:O. annulosa 263:sea urchins 259:echinoderms 250:Description 207:Grube, 1857 201:Lyman, 1862 103:Ophiuroidea 1231:Categories 1161:Q105400635 853:1084702158 827:: 593–603. 808:: 131–149. 614:(2): 190. 468:References 784:0022-0981 745:0171-8630 664:853029125 628:1077-8306 542:0722-4028 346:Ophiocoma 271:sea stars 243:Ophiocoma 141:Species: 134:Ophiocoma 79:Kingdom: 73:Eukaryota 1201:11241075 1155:Wikidata 1059:10887150 939:Q3272487 933:Wikidata 550:36668801 303:Behavior 178:Synonyms 119:Family: 89:Phylum: 83:Animalia 69:Domain: 1188:2275479 1121:6029836 1098:3653670 1072:1365868 1033:2275475 1020:3049590 723:Bibcode 636:3227060 522:Bibcode 331:neuston 298:Feeding 129:Genus: 109:Order: 99:Class: 49:Red Sea 1214:245403 1134:212378 1118:uBio: 1085:212378 1046:255820 865:Biolib 851:  782:  743:  677:Taiwan 662:  634:  626:  548:  540:  432:Adult 413:Given 269:, and 232:family 1209:WoRMS 1196:IRMNG 1175:6SPHC 1129:WoRMS 1111:86722 1054:IRMNG 1007:74P8G 994:84443 632:JSTOR 546:S2CID 1183:GBIF 1080:OBIS 1067:NCBI 1028:GBIF 989:BOLD 849:OCLC 780:ISSN 741:ISSN 660:OCLC 624:ISSN 538:ISSN 1170:CoL 1015:EoL 1002:CoL 976:AFD 963:ADW 772:doi 731:doi 719:292 616:doi 612:118 530:doi 43:at 1233:: 1211:: 1198:: 1185:: 1172:: 1157:: 1131:: 1108:: 1095:: 1082:: 1069:: 1056:: 1043:: 1030:: 1017:: 1004:: 991:: 978:: 965:: 950:: 935:: 833:^ 825:54 823:. 806:19 804:. 792:^ 778:. 768:18 766:. 762:. 739:. 729:. 717:. 713:. 701:^ 693:22 691:. 644:^ 630:. 622:. 610:. 606:. 590:^ 582:36 580:. 558:^ 544:. 536:. 528:. 518:25 516:. 512:. 494:^ 476:^ 265:, 47:, 855:. 786:. 774:: 747:. 733:: 725:: 666:. 638:. 618:: 552:. 532:: 524:: 327:,

Index


Sharm El Sheik
Red Sea
Scientific classification
Edit this classification
Eukaryota
Animalia
Echinodermata
Ophiuroidea
Ophiacanthida
Ophiocomidae
Ophiocoma
Binomial name
Synonyms
brittle star
family
Ophiocomidae
Indo-Pacific
echinoderms
sea urchins
sea cucumbers
sea stars

neuston





Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.