Knowledge

Optical depth (astrophysics)

Source đź“ť

218:
is known. These can generally be calculated from other equations if a fair amount of information is known about the chemical makeup of the star. From the definition, it is also clear that large optical depths correspond to higher rate of obscuration. Optical depth can therefore be thought of as the
769:
This illustrates not only that the observable temperature and actual temperature at a certain physical depth of a star vary, but that the optical depth plays a crucial role in understanding the stellar structure. It also serves to demonstrate that the depth of the photosphere of a star is highly
922: 246:. In most astrophysical problems, this is exceptionally difficult to solve since solving the corresponding equations requires the incident radiation as well as the radiation leaving the star. These values are usually theoretical. 710: 173: 1034: 331: 625:
produces a "gray" absorption in the atmosphere of a star, that is, it is independent of any specific wavelength and absorbs along the entire electromagnetic spectrum. In that case,
391:
of the incident light before being absorbed or scattered. It is important to note that the Beer–Lambert law is only appropriate when the absorption occurs at a specific wavelength,
416: 385: 611: 561: 819: 965: 811: 504: 484: 354: 271: 240: 196: 945: 788: 764: 740: 459: 439: 92: 52: 530: 216: 72: 631: 790:
is about 2/3, which corresponds to a state where a photon would experience, in general, less than 1 scattering before leaving the star.
998: 119: 279: 31: 106: 94:
is able to show the relationship between these two quantities and can lead to a greater understanding of the
1029: 743: 250: 74:
respectively, can vary widely depending on the absorptivity of the astrophysical environment. Indeed,
616: 770:
dependent upon the absorptivity of its environment. The photosphere extends down to a point where
418:. For a gray atmosphere, for instance, it is most appropriate to use the Eddington Approximation. 394: 363: 917:{\displaystyle T^{4}={\frac {3}{4}}T_{e}^{4}\left(\int _{0}^{z}(\alpha )dz+{\frac {2}{3}}\right)} 576: 243: 582: 441:
is simply a constant that depends on the physical distance from the outside of a star. To find
95: 950: 796: 489: 339: 256: 225: 181: 984: 357: 930: 773: 749: 718: 444: 424: 77: 37: 1002: 535: 509: 464: 620: 201: 57: 16:
This article is about optical depth in astrophysics. For optical depth in general, see
1023: 17: 27: 572: 705:{\displaystyle T^{4}={\frac {3}{4}}T_{e}^{4}\left(\tau +{\frac {2}{3}}\right),} 388: 110: 571:
Since it is difficult to define where the interior of a star ends and the
99: 178:
The assumption here is that either the extinction coefficient
567:
The Eddington approximation and the depth of the photosphere
168:{\displaystyle \tau \equiv \int _{0}^{z}\alpha dz=\sigma N.} 985:"Optical Depth -- from Eric Weisstein's World of Physics" 1035:
Scattering, absorption and radiative transfer (optics)
326:{\displaystyle \alpha =e^{4\pi \kappa /\lambda _{0}},} 953: 933: 822: 799: 776: 752: 721: 634: 585: 538: 512: 492: 467: 447: 427: 397: 366: 342: 282: 259: 228: 204: 184: 122: 80: 60: 40: 619:the approximation takes into account the fact that 959: 939: 916: 805: 782: 758: 734: 704: 605: 555: 524: 498: 478: 453: 433: 410: 379: 348: 325: 265: 234: 210: 190: 167: 86: 66: 46: 793:The above equation can be rewritten in terms of 113:up to a specific 'depth' of a star's makeup. 8: 575:begins, astrophysicists usually rely on the 952: 932: 899: 875: 870: 855: 850: 836: 827: 821: 798: 775: 751: 726: 720: 684: 667: 662: 648: 639: 633: 595: 584: 537: 511: 491: 466: 446: 426: 402: 396: 371: 365: 341: 312: 303: 293: 281: 258: 227: 203: 183: 138: 133: 121: 79: 59: 39: 976: 486:, the above equation may be used with 7: 927:Which is useful, for example, when 579:to derive the formal definition of 105:Optical depth is a measure of the 34:. Optical depth and actual depth, 14: 887: 881: 30:refers to a specific level of 1: 198:or the column number density 411:{\displaystyle \lambda _{0}} 380:{\displaystyle \lambda _{0}} 242:can be calculated using the 222:The extinction coefficient 1051: 15: 606:{\displaystyle \tau =2/3} 253:can be useful in finding 999:"CHP - Beer-Lambert Law" 960:{\displaystyle \alpha } 806:{\displaystyle \alpha } 577:Eddington Approximation 499:{\displaystyle \alpha } 349:{\displaystyle \kappa } 266:{\displaystyle \alpha } 235:{\displaystyle \alpha } 191:{\displaystyle \alpha } 961: 941: 918: 813:in the following way: 807: 784: 766:is the optical depth. 760: 736: 706: 607: 557: 526: 500: 480: 461:at a particular depth 455: 435: 412: 381: 350: 327: 267: 236: 219:opacity of a medium. 212: 192: 169: 107:extinction coefficient 88: 68: 48: 962: 942: 940:{\displaystyle \tau } 919: 808: 785: 783:{\displaystyle \tau } 761: 759:{\displaystyle \tau } 744:effective temperature 737: 735:{\displaystyle T_{e}} 707: 608: 558: 527: 506:and integration from 501: 481: 456: 454:{\displaystyle \tau } 436: 434:{\displaystyle \tau } 413: 382: 351: 328: 268: 237: 213: 193: 170: 89: 87:{\displaystyle \tau } 69: 49: 47:{\displaystyle \tau } 951: 931: 820: 797: 774: 750: 719: 632: 617:Sir Arthur Eddington 583: 556:{\displaystyle z=z'} 536: 510: 490: 465: 445: 425: 395: 364: 340: 280: 257: 226: 202: 182: 120: 78: 58: 38: 880: 860: 672: 525:{\displaystyle z=0} 143: 957: 937: 914: 866: 846: 803: 780: 756: 746:at that depth and 732: 702: 658: 603: 553: 522: 496: 479:{\displaystyle z'} 476: 451: 431: 408: 377: 346: 323: 263: 249:In some cases the 232: 208: 188: 165: 129: 84: 64: 44: 947:is not known but 907: 844: 692: 656: 244:transfer equation 211:{\displaystyle N} 67:{\displaystyle z} 1042: 1014: 1013: 1011: 1010: 1001:. Archived from 995: 989: 988: 981: 966: 964: 963: 958: 946: 944: 943: 938: 923: 921: 920: 915: 913: 909: 908: 900: 879: 874: 859: 854: 845: 837: 832: 831: 812: 810: 809: 804: 789: 787: 786: 781: 765: 763: 762: 757: 741: 739: 738: 733: 731: 730: 711: 709: 708: 703: 698: 694: 693: 685: 671: 666: 657: 649: 644: 643: 623: 612: 610: 609: 604: 599: 562: 560: 559: 554: 552: 531: 529: 528: 523: 505: 503: 502: 497: 485: 483: 482: 477: 475: 460: 458: 457: 452: 440: 438: 437: 432: 417: 415: 414: 409: 407: 406: 386: 384: 383: 378: 376: 375: 358:refractive index 355: 353: 352: 347: 332: 330: 329: 324: 319: 318: 317: 316: 307: 272: 270: 269: 264: 251:Beer–Lambert law 241: 239: 238: 233: 217: 215: 214: 209: 197: 195: 194: 189: 174: 172: 171: 166: 142: 137: 93: 91: 90: 85: 73: 71: 70: 65: 53: 51: 50: 45: 1050: 1049: 1045: 1044: 1043: 1041: 1040: 1039: 1020: 1019: 1018: 1017: 1008: 1006: 997: 996: 992: 983: 982: 978: 973: 949: 948: 929: 928: 865: 861: 823: 818: 817: 795: 794: 772: 771: 748: 747: 722: 717: 716: 677: 673: 635: 630: 629: 621: 581: 580: 569: 545: 534: 533: 508: 507: 488: 487: 468: 463: 462: 443: 442: 423: 422: 398: 393: 392: 367: 362: 361: 338: 337: 308: 289: 278: 277: 255: 254: 224: 223: 200: 199: 180: 179: 118: 117: 76: 75: 56: 55: 36: 35: 21: 12: 11: 5: 1048: 1046: 1038: 1037: 1032: 1022: 1021: 1016: 1015: 990: 975: 974: 972: 969: 956: 936: 925: 924: 912: 906: 903: 898: 895: 892: 889: 886: 883: 878: 873: 869: 864: 858: 853: 849: 843: 840: 835: 830: 826: 802: 779: 755: 729: 725: 713: 712: 701: 697: 691: 688: 683: 680: 676: 670: 665: 661: 655: 652: 647: 642: 638: 602: 598: 594: 591: 588: 568: 565: 551: 548: 544: 541: 521: 518: 515: 495: 474: 471: 450: 430: 405: 401: 374: 370: 345: 334: 333: 322: 315: 311: 306: 302: 299: 296: 292: 288: 285: 262: 231: 207: 187: 176: 175: 164: 161: 158: 155: 152: 149: 146: 141: 136: 132: 128: 125: 83: 63: 43: 13: 10: 9: 6: 4: 3: 2: 1047: 1036: 1033: 1031: 1028: 1027: 1025: 1005:on 2014-02-24 1004: 1000: 994: 991: 986: 980: 977: 970: 968: 954: 934: 910: 904: 901: 896: 893: 890: 884: 876: 871: 867: 862: 856: 851: 847: 841: 838: 833: 828: 824: 816: 815: 814: 800: 791: 777: 767: 753: 745: 727: 723: 699: 695: 689: 686: 681: 678: 674: 668: 663: 659: 653: 650: 645: 640: 636: 628: 627: 626: 624: 618: 613: 600: 596: 592: 589: 586: 578: 574: 566: 564: 549: 546: 542: 539: 519: 516: 513: 493: 472: 469: 448: 428: 419: 403: 399: 390: 372: 368: 359: 343: 320: 313: 309: 304: 300: 297: 294: 290: 286: 283: 276: 275: 274: 260: 252: 247: 245: 229: 220: 205: 185: 162: 159: 156: 153: 150: 147: 144: 139: 134: 130: 126: 123: 116: 115: 114: 112: 108: 103: 101: 97: 81: 61: 41: 33: 29: 25: 24:Optical depth 19: 18:optical depth 1030:Astrophysics 1007:. Retrieved 1003:the original 993: 979: 926: 792: 768: 714: 614: 570: 420: 335: 248: 221: 177: 111:absorptivity 104: 32:transparency 28:astrophysics 23: 22: 615:Devised by 573:photosphere 421:Therefore, 1024:Categories 1009:2011-04-09 971:References 389:wavelength 955:α 935:τ 885:α 868:∫ 801:α 778:τ 754:τ 679:τ 587:τ 494:α 449:τ 429:τ 400:λ 369:λ 344:κ 310:λ 301:κ 298:π 284:α 261:α 230:α 186:α 157:σ 145:α 131:∫ 127:≡ 124:τ 98:inside a 96:structure 82:τ 42:τ 550:′ 473:′ 742:is the 387:is the 356:is the 715:where 360:, and 336:where 967:is. 100:star 54:and 532:to 109:or 26:in 1026:: 563:. 273:. 102:. 1012:. 987:. 911:) 905:3 902:2 897:+ 894:z 891:d 888:) 882:( 877:z 872:0 863:( 857:4 852:e 848:T 842:4 839:3 834:= 829:4 825:T 728:e 724:T 700:, 696:) 690:3 687:2 682:+ 675:( 669:4 664:e 660:T 654:4 651:3 646:= 641:4 637:T 622:H 601:3 597:/ 593:2 590:= 547:z 543:= 540:z 520:0 517:= 514:z 470:z 404:0 373:0 321:, 314:0 305:/ 295:4 291:e 287:= 206:N 163:. 160:N 154:= 151:z 148:d 140:z 135:0 62:z 20:.

Index

optical depth
astrophysics
transparency
structure
star
extinction coefficient
absorptivity
transfer equation
Beer–Lambert law
refractive index
wavelength
photosphere
Eddington Approximation
Sir Arthur Eddington
H
effective temperature
"Optical Depth -- from Eric Weisstein's World of Physics"
"CHP - Beer-Lambert Law"
the original
Categories
Astrophysics
Scattering, absorption and radiative transfer (optics)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑