Knowledge (XXG)

Waveguide (optics)

Source 📝

560:(typically femtosecond) laser pulses are used, and focused with a high NA microscope objective. By translating the focal spot through a bulk transparent material the waveguides can be directly written. A variation of this method uses a low NA microscope objective and translates the focal spot along the beam axis. This improves the overlap between the focused laser beam and the photorefractive material, thus reducing power needed from the laser. When transparent material is exposed to an unfocused laser beam of sufficient brightness to initiate photorefractive effect, the waveguides may start forming on their own as a result of an accumulated 109: 302: 249: 591: 564:. The formation of such waveguides leads to a breakup of the laser beam. Continued exposure results in a buildup of the refractive index towards the centerline of each waveguide, and collapse of the mode field diameter of the propagating light. Such waveguides remain permanently in the glass and can be photographed off-line (see the picture on the right). 548:. Configuring the waveguides in 3D space provides integration between electronic components on a chip and optical fibers. Such waveguides may be designed for a single mode propagation of infrared light at telecommunication wavelengths, and configured to deliver optical signal between input and output locations with very low loss. 559:
One of the methods for constructing such waveguides utilizes photorefractive effect in transparent materials. An increase in the refractive index of a material may be induced by nonlinear absorption of pulsed laser light. In order to maximize the increase of the refractive index, a very short
535:
Optical waveguides typically maintain a constant cross-section along their direction of propagation. This is for example the case for strip and of rib waveguides. However, waveguides can also have periodic changes in their cross-section while still allowing lossless transmission of light via
526:
is a waveguide in which the guiding layer basically consists of the slab with a strip (or several strips) superimposed onto it. Rib waveguides also provide confinement of the wave in two dimensions and near-unity confinement is possible in multi-layer rib structures.
552: 171:). Take, for example, light passing from air into glass. Similarly, light traveling in the opposite direction (from glass into air) takes the same path, bending away from the normal. This is a consequence of 328:
The slab waveguide consists of three layers of materials with different dielectric constants, extending infinitely in the directions parallel to their interfaces. Light is confined in the middle layer by
536:
so-called Bloch modes. Such waveguides are referred to as segmented waveguides (with a 1D patterning along the direction of propagation) or as photonic crystal waveguides (with a 2D or 3D patterning).
555:
Optical waveguides formed in pure silica glass as a result of an accumulated self-focusing effect with 193 nm laser irradiation. Pictured using transmission microscopy with collimated illumination.
212:). The red rays bounce off both the top and bottom surface of the high index medium. They're guided even if the slab curves or bends, so long as it bends slowly. This is the basic principle behind 1117: 838:
Westerveld, W. J., Leinders, S. M., van Dongen, K. W. A., Urbach, H. P. and Yousefi, M (2012). "Extension of Marcatili's Analytical Approach for Rectangular Silicon Optical Waveguides".
424: 385:
in the plane of the slab. Guided modes constructively interfere on one complete roundtrip in the slab. At each frequency, one or more modes can be found giving a set of eigenvalues
179:. There's a one-to-one correspondence. But because of refraction, some of the rays in the glass are left out (red). The remaining rays are trapped in the glass by a process called 441:
by injecting it with a lens in the plane of the slab. Alternatively a coupling element may be used to couple light into the waveguide, such as a grating coupler or prism coupler.
379: 948: 891: 582:
on a circuit board to the user interface surface. In buildings, light pipes are used to transfer illumination from outside the building to where it is needed inside.
1261:
13. Yao Zhou, Jufan Zhang, Fengzhou Fang. Design of a dual-focal geometrical waveguide near-eye see-through display. Optics and Laser Technology, 2022, Volume 156,
471:, which is formed when the guiding layer of the slab waveguide is restricted in both transverse directions rather than just one. Rectangular waveguides are used in 578:
Light pipes are tubes or cylinders of solid material used to guide light a short distance. In electronics, plastic light pipes are used to guide light from
1268:
14. Yao Zhou, Jufan Zhang, Fengzhou Fang. Design of a large field-of-view two-dimensional geometrical waveguide. Results in Optics, Volume 5, 2021, 100147,
495:
are frequently constructed as rectangular optical waveguides. Optical waveguides with rectangular geometry are produced by a variety of means, usually by a
1139:
Streltsov, AM; Borrelli, NF (1 January 2001). "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses".
198: 352:
decay away from the slab. The plane wave in domain II bounces between the top and bottom interfaces at some angle typically specified by the
905:
Kumar, A., K. Thyagarajan and A. K. Ghatak. (1983). "Analysis of rectangular-core dielectric waveguides—An accurate perturbation approach".
266: 437:
Because guided modes are trapped in the slab, they cannot be excited by light incident on the top or bottom interfaces. Light can be
288: 340:
The slab waveguide is essentially a one-dimensional waveguide. It traps light only normal to the dielectric interfaces. For guided
964:"Single-mode porous silicon waveguide interferometers with unity confinement factors for ultra-sensitive surface adlayer sensing" 667: 484: 480: 502:
The field distribution in a rectangular waveguide cannot be solved analytically, however approximate solution methods, such as
270: 317:. Owing to their simplicity, slab waveguides are often used as toy models but also find application in on-chip devices like 662: 66: 76:
Optical waveguides can be classified according to their geometry (planar, strip, or fiber waveguides), mode structure (
1301: 1285: 702: 1281: 472: 58: 259: 657: 652: 330: 318: 181: 121: 77: 453: 388: 81: 811:
Marcatili, E. A. J. (1969). "Dielectric rectangular waveguide and directional coupler for integrated optics".
1182:
Khrapko, Rostislav; Lai, Changyi; Casey, Julie; Wood, William A.; Borrelli, Nicholas F. (15 December 2014).
322: 187: 1225:"Leaky Surface Plasmon Polariton Modes at an Interface Between Metal and Uniaxially Anisotropic Materials" 687: 232: 235:
can be solved by analytical or numerical methods for a full-field description of a dielectric waveguide.
942: 885: 625: 511: 62: 35: 507: 503: 1118:"Optical Manufacturing: Femtosecond-laser direct-written waveguides produce quantum circuits in glass" 1236: 1195: 1148: 1082: 1043: 975: 914: 857: 355: 51: 1071:"Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength" 712: 697: 647: 431: 305:
A dielectric slab waveguide consists of three dielectric layers with different refractive indices.
1306: 873: 847: 677: 153: 734:"Augmented reality and virtual reality displays: emerging technologies and future perspectives" 1164: 1098: 1009: 1001: 993: 930: 771: 753: 642: 193: 70: 1244: 1203: 1156: 1090: 1051: 1028: 983: 963: 922: 865: 820: 761: 745: 682: 613: 349: 334: 160: 120:. Some rays in the higher index medium are left out of the pairing (red) and are trapped by 85: 39: 962:
Talukdar, Tahmid H.; Allen, Gabriel D.; Kravchenko, Ivan; Ryckman, Judson D. (2019-08-05).
467:
is basically a strip of the layer confined between cladding layers. The simplest case is a
108: 637: 175:. Each ray in air (black) can be mapped to a ray in the glass (blue), as shown in Figure 1240: 1199: 1152: 1086: 1047: 979: 918: 861: 824: 766: 733: 496: 488: 152:
The basic principles behind optical waveguides can be described using the concepts of
1295: 692: 599: 561: 213: 137: 97: 47: 877: 732:
Xiong, Jianghao; Hsiang, En-Lin; He, Ziqian; Zhan, Tao; Wu, Shin-Tson (2021-10-25).
617: 427: 1262: 17: 204:
Using total internal reflection, we can trap and guide the light in a dielectric
1027:
M. Hochberg; T. Baehr-Jones; C. Walker; J. Witzens; C. Gunn; A. Scherer (2005).
492: 476: 382: 248: 1249: 1224: 749: 344:, the field in domain II in the diagram is propagating and can be treated as a 301: 672: 609: 573: 345: 172: 164: 997: 869: 757: 1269: 1055: 707: 545: 444:
There are 2 technologies: diffractive waveguides and reflective waveguides.
341: 43: 1168: 1102: 1013: 934: 775: 590: 551: 1160: 1094: 988: 926: 1282:
AdvR nonlinear waveguides in rubidium-doped potassium titanyl phosphate
273: in this section. Unsourced material may be challenged and removed. 93: 54:
made of plastic and glass, liquid light guides, and liquid waveguides.
1208: 1183: 1005: 185:. They are incident on the glass-air interface at an angle above the 1070: 479:. They are commonly used as the basis of such optical components as 852: 337:
of the middle layer is larger than that of the surrounding layers.
621: 589: 300: 107: 89: 1184:"Accumulated self-focusing of ultraviolet light in silica glass" 612:
material surrounded by another dielectric material with a lower
116:, establishing a correspondence between rays in the two media, 1069:
S. Y. Lin; E. Chow; S. G. Johnson; J. D. Joannopoulos (2000).
579: 242: 231:
Ray optics only gives a rough picture of how waveguides work.
594:
The propagation of light through a multi-mode optical fiber.
544:
Optical waveguides find their most important application in
801:"Silicon Photonics", by Graham T. Reed, Andrew P. Knights 309:
Perhaps the simplest optical waveguide is the dielectric
788:
Ramo, Simon, John R. Whinnery, and Theodore van Duzer,
391: 358: 88:
distribution (step or gradient index), and material (
61:
or as the transmission medium in local and long-haul
604:
Optical fiber is typically a circular cross-section
1029:"Segmented Waveguides in Thin Silicon-on-Insulator" 531:Segmented waveguide and photonic crystal waveguide 418: 373: 216:in which light is guided along a high index glass 140:in which light is guided along a high index glass 624:materials are used for certain applications and 1263:https://doi.org/10.1016/j.optlastec.2022.108546 790:Fields and Waves in Communications Electronics 128:This mechanism can be used to trap light in a 792:, 2 ed., John Wiley and Sons, New York, 1984. 628:can be used for short-distance applications. 616:. Optical fibers are most commonly made from 57:Optical waveguides are used as components in 8: 947:: CS1 maint: multiple names: authors list ( 890:: CS1 maint: multiple names: authors list ( 1036:Journal of the Optical Society of America B 197:in more-advanced formulations based on the 191:. These extra rays correspond to a higher 163:bends toward the normal by the process of 112:Light refracts at a dielectric interface, 1270:https://doi.org/10.1016/j.rio.2021.100147 1248: 1223:Liu, Hsuan-Hao; Chang, Hung-Chun (2013). 1207: 987: 851: 765: 454:Planar transmission line § Imageline 419:{\displaystyle (\omega ,{\vec {\beta }})} 402: 401: 390: 360: 359: 357: 289:Learn how and when to remove this message 550: 159:Light passing into a medium with higher 724: 940: 883: 27:Physical structure guiding light waves 7: 323:acousto-optic filters and modulators 271:adding citations to reliable sources 34:is a physical structure that guides 136:This is the basic principle behind 825:10.1002/j.1538-7305.1969.tb01166.x 65:systems. They can also be used in 25: 738:Light: Science & Applications 426:which can be used to construct a 348:. The field in domains I and III 156:, as illustrated in the diagram. 668:Erbium-doped waveguide amplifier 485:wavelength division multiplexers 247: 840:Journal of Lightwave Technology 374:{\displaystyle {\vec {\beta }}} 258:needs additional citations for 413: 407: 392: 365: 1: 663:Equilibrium mode distribution 67:optical head-mounted displays 481:Mach–Zehnder interferometers 703:Waveguide (radio frequency) 508:Extended Marcatili's method 473:integrated optical circuits 59:integrated optical circuits 1323: 1250:10.1109/JPHOT.2013.2288298 750:10.1038/s41377-021-00658-8 597: 571: 451: 319:arrayed waveguide gratings 42:. Common types of optical 658:Electromagnetic radiation 653:Digital planar holography 540:Laser-inscribed waveguide 448:Two-dimensional waveguide 439:end-fire or butte coupled 331:total internal reflection 239:Dielectric slab waveguide 182:total internal reflection 154:geometrical or ray optics 122:total internal reflection 104:Total internal reflection 870:10.1109/JLT.2012.2199464 50:waveguides, transparent 1188:Applied Physics Letters 1056:10.1364/JOSAB.22.001493 586:Optical fiber waveguide 220:in a lower index glass 144:in a lower index glass 1229:IEEE Photonics Journal 1116:Meany, Thomas (2014). 688:Photonic-crystal fiber 595: 556: 420: 375: 306: 173:time-reversal symmetry 149: 626:plastic optical fiber 593: 554: 469:rectangular waveguide 421: 376: 304: 111: 63:optical communication 52:dielectric waveguides 36:electromagnetic waves 1161:10.1364/OL.26.000042 1095:10.1364/ol.25.001297 989:10.1364/OE.27.022485 606:dielectric waveguide 389: 356: 267:improve this article 1241:2013IPhoJ...500806L 1200:2014ApPhL.105x4110K 1153:2001OptL...26...42S 1087:2000OptL...25.1297L 1048:2005JOSAB..22.1493H 980:2019OExpr..2722485T 974:(16): 22485–22498. 927:10.1364/ol.8.000063 919:1983OptL....8...63K 862:2012JLwT...30.2388W 713:Zero-mode waveguide 698:Transmission medium 648:Dielectric constant 432:dispersion relation 233:Maxwell's equations 1302:Optical components 813:Bell Syst. Tech. J 678:Lightguide display 596: 557: 504:Marcatili's method 416: 371: 307: 150: 18:Optical waveguides 1209:10.1063/1.4904098 1122:Laser Focus World 1081:(17): 1297–1299. 846:(14): 2388–2401. 643:Cutoff wavelength 410: 368: 299: 298: 291: 194:density of states 71:augmented reality 32:optical waveguide 16:(Redirected from 1314: 1255: 1254: 1252: 1220: 1214: 1213: 1211: 1179: 1173: 1172: 1136: 1130: 1129: 1113: 1107: 1106: 1066: 1060: 1059: 1042:(7): 1493–1497. 1033: 1024: 1018: 1017: 991: 959: 953: 952: 946: 938: 902: 896: 895: 889: 881: 855: 835: 829: 828: 819:(7): 2071–2102. 808: 802: 799: 793: 786: 780: 779: 769: 729: 683:Photonic crystal 620:, however other 614:refractive index 608:consisting of a 425: 423: 422: 417: 412: 411: 403: 380: 378: 377: 372: 370: 369: 361: 335:refractive index 315:planar waveguide 313:, also called a 294: 287: 283: 280: 274: 251: 243: 199:Green's function 161:refractive index 86:refractive index 40:optical spectrum 21: 1322: 1321: 1317: 1316: 1315: 1313: 1312: 1311: 1292: 1291: 1278: 1259: 1258: 1222: 1221: 1217: 1181: 1180: 1176: 1138: 1137: 1133: 1115: 1114: 1110: 1068: 1067: 1063: 1031: 1026: 1025: 1021: 961: 960: 956: 939: 904: 903: 899: 882: 837: 836: 832: 810: 809: 805: 800: 796: 787: 783: 731: 730: 726: 721: 638:ARROW waveguide 634: 602: 588: 576: 570: 542: 533: 520: 465:strip waveguide 461: 459:Strip waveguide 456: 450: 387: 386: 354: 353: 295: 284: 278: 275: 264: 252: 241: 106: 28: 23: 22: 15: 12: 11: 5: 1320: 1318: 1310: 1309: 1304: 1294: 1293: 1290: 1289: 1277: 1276:External links 1274: 1257: 1256: 1235:(6): 4800806. 1215: 1194:(24): 244110. 1174: 1141:Optics Letters 1131: 1108: 1075:Optics Letters 1061: 1019: 968:Optics Express 954: 897: 830: 803: 794: 781: 723: 722: 720: 717: 716: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 640: 633: 630: 598:Main article: 587: 584: 572:Main article: 569: 566: 541: 538: 532: 529: 519: 516: 512:Kumar's method 497:planar process 460: 457: 449: 446: 415: 409: 406: 400: 397: 394: 367: 364: 311:slab waveguide 297: 296: 255: 253: 246: 240: 237: 188:critical angle 105: 102: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1319: 1308: 1305: 1303: 1300: 1299: 1297: 1287: 1283: 1280: 1279: 1275: 1273: 1271: 1266: 1264: 1251: 1246: 1242: 1238: 1234: 1230: 1226: 1219: 1216: 1210: 1205: 1201: 1197: 1193: 1189: 1185: 1178: 1175: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1132: 1127: 1123: 1119: 1112: 1109: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1065: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1030: 1023: 1020: 1015: 1011: 1007: 1003: 999: 995: 990: 985: 981: 977: 973: 969: 965: 958: 955: 950: 944: 936: 932: 928: 924: 920: 916: 912: 908: 901: 898: 893: 887: 879: 875: 871: 867: 863: 859: 854: 849: 845: 841: 834: 831: 826: 822: 818: 814: 807: 804: 798: 795: 791: 785: 782: 777: 773: 768: 763: 759: 755: 751: 747: 743: 739: 735: 728: 725: 718: 714: 711: 709: 706: 704: 701: 699: 696: 694: 693:Prism coupler 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 635: 631: 629: 627: 623: 619: 615: 611: 607: 601: 600:Optical fiber 592: 585: 583: 581: 575: 567: 565: 563: 562:self-focusing 553: 549: 547: 539: 537: 530: 528: 525: 524:rib waveguide 518:Rib waveguide 517: 515: 514:, are known. 513: 509: 505: 500: 498: 494: 490: 486: 482: 478: 474: 470: 466: 458: 455: 447: 445: 442: 440: 435: 433: 429: 404: 398: 395: 384: 362: 351: 347: 343: 338: 336: 332: 326: 324: 320: 316: 312: 303: 293: 290: 282: 279:February 2021 272: 268: 262: 261: 256:This section 254: 250: 245: 244: 238: 236: 234: 229: 227: 223: 219: 215: 211: 207: 202: 200: 196: 195: 190: 189: 184: 183: 178: 174: 170: 166: 162: 157: 155: 147: 143: 139: 135: 131: 127: 123: 119: 115: 110: 103: 101: 99: 98:semiconductor 95: 91: 87: 83: 79: 74: 72: 68: 64: 60: 55: 53: 49: 48:optical fiber 45: 41: 37: 33: 19: 1267: 1260: 1232: 1228: 1218: 1191: 1187: 1177: 1144: 1140: 1134: 1125: 1121: 1111: 1078: 1074: 1064: 1039: 1035: 1022: 971: 967: 957: 943:cite journal 913:(1): 63–65. 910: 906: 900: 886:cite journal 843: 839: 833: 816: 812: 806: 797: 789: 784: 741: 737: 727: 618:silica glass 605: 603: 577: 558: 543: 534: 523: 521: 501: 493:laser diodes 477:laser diodes 468: 464: 462: 443: 438: 436: 428:band diagram 350:evanescently 339: 327: 314: 310: 308: 285: 276: 265:Please help 260:verification 257: 230: 225: 221: 217: 214:fiber optics 209: 205: 203: 192: 186: 180: 176: 168: 158: 151: 145: 141: 138:fiber optics 133: 129: 125: 117: 113: 75: 56: 31: 29: 1147:(1): 42–3. 383:wave vector 78:single-mode 1296:Categories 853:1504.02963 719:References 673:Leaky mode 610:dielectric 574:Light tube 568:Light pipe 452:See also: 346:plane wave 165:refraction 82:multi-mode 44:waveguides 1307:Photonics 998:1094-4087 907:Opt. Lett 758:2047-7538 708:Waveguide 546:photonics 408:→ 405:β 396:ω 366:→ 363:β 206:waveguide 130:waveguide 1169:18033501 1103:18066198 1014:31510540 935:19714136 878:23182579 776:34697292 632:See also 489:cavities 224:(Figure 222:cladding 208:(Figure 167:(Figure 146:cladding 46:include 1237:Bibcode 1196:Bibcode 1149:Bibcode 1083:Bibcode 1044:Bibcode 1006:1546510 976:Bibcode 915:Bibcode 858:Bibcode 767:8546092 475:and in 333:if the 94:polymer 38:in the 1167:  1101:  1012:  1004:  996:  933:  876:  774:  764:  756:  487:. The 381:, the 1032:(PDF) 874:S2CID 848:arXiv 744:(1). 622:glass 342:modes 90:glass 1165:PMID 1128:(7). 1099:PMID 1010:PMID 1002:OSTI 994:ISSN 949:link 931:PMID 892:link 772:PMID 754:ISSN 580:LEDs 510:and 483:and 321:and 218:core 142:core 1286:KTP 1245:doi 1204:doi 1192:105 1157:doi 1091:doi 1052:doi 984:doi 923:doi 866:doi 821:doi 762:PMC 746:doi 491:of 430:or 269:by 228:). 100:). 84:), 69:in 30:An 1298:: 1272:. 1265:. 1243:. 1231:. 1227:. 1202:. 1190:. 1186:. 1163:. 1155:. 1145:26 1143:. 1126:50 1124:. 1120:. 1097:. 1089:. 1079:25 1077:. 1073:. 1050:. 1040:22 1038:. 1034:. 1008:. 1000:. 992:. 982:. 972:27 970:. 966:. 945:}} 941:{{ 929:. 921:. 909:. 888:}} 884:{{ 872:. 864:. 856:. 844:30 842:. 817:48 815:. 770:. 760:. 752:. 742:10 740:. 736:. 522:A 506:, 499:. 463:A 434:. 325:. 201:. 169:a. 134:d. 132:. 126:c. 124:. 114:a. 96:, 92:, 80:, 73:. 1288:) 1284:( 1253:. 1247:: 1239:: 1233:5 1212:. 1206:: 1198:: 1171:. 1159:: 1151:: 1105:. 1093:: 1085:: 1058:. 1054:: 1046:: 1016:. 986:: 978:: 951:) 937:. 925:: 917:: 911:8 894:) 880:. 868:: 860:: 850:: 827:. 823:: 778:. 748:: 414:) 399:, 393:( 292:) 286:( 281:) 277:( 263:. 226:d 210:c 177:b 148:. 118:b 20:)

Index

Optical waveguides
electromagnetic waves
optical spectrum
waveguides
optical fiber
dielectric waveguides
integrated optical circuits
optical communication
optical head-mounted displays
augmented reality
single-mode
multi-mode
refractive index
glass
polymer
semiconductor

total internal reflection
fiber optics
geometrical or ray optics
refractive index
refraction
time-reversal symmetry
total internal reflection
critical angle
density of states
Green's function
fiber optics
Maxwell's equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.