Knowledge

Orchard-planting problem

Source đź“ť

27: 813: 642: 693: 1130: 530: 983: 134: 902: 1177: 858: 469: 369: 323: 267: 214: 1268: 682: 1213: 1456: 1040: 808:{\displaystyle \left\lfloor {\frac {{\binom {n}{2}}-{\frac {6n}{13}}}{3}}\right\rfloor =\left\lfloor {\frac {n^{2}}{6}}-{\frac {25n}{78}}\right\rfloor .} 380: 1494: 1424: 1002: 77: 1612: 1366: 637:{\displaystyle \left\lfloor {\binom {n}{2}}{\Big /}{\binom {3}{2}}\right\rfloor =\left\lfloor {\frac {n^{2}-n}{6}}\right\rfloor .} 1617: 925: 1534: 1313: 1218: 645: 1607: 1132:
3-point lines which matches the lower bound established by Burr, GrĂĽnbaum and Sloane. Thus, for sufficiently large
865: 1485: 1141: 822: 517: 433: 333: 274: 231: 178: 55: 862:
are given by constructions for sets of points with many 3-point lines. The earliest quadratic lower bound of
1224: 1281:
Orchard-planting problem has also been considered over finite fields. In this version of the problem, the
905: 520: 1309: 1622: 653: 1271: 1189: 31: 1389: 20: 1447: 1184:
This is slightly better than the bound that would directly follow from their tight lower bound of
1561: 1543: 1521: 1503: 1473: 1406: 1380: 990: 563: 1580: 1362: 39: 1584: 1553: 1513: 1465: 1451: 1433: 1398: 1275: 1017: 59: 1325: 63: 51: 26: 1532:
Padmanabhan, R.; Shukla, Alok (2020), "Orchards in elliptic curves over finite fields",
1601: 1565: 1410: 1354: 1321: 71: 1525: 1024:
published a paper in which they prove that for all point sets of sufficient size,
1489: 1384: 1376: 1021: 1006: 994: 986: 1557: 1517: 218:
to be the maximum number of 3-point lines attainable with a configuration of
1589: 1270:
proved in the same paper and solving a 1951 problem posed independently by
1125:{\displaystyle {\frac {n(n-3)}{6}}+1={\frac {1}{6}}n^{2}-{\frac {1}{2}}n+1} 1477: 1438: 1402: 1469: 1548: 1508: 1454:(1984), "Arrangements of lines with a large number of triangles", 25: 1285:
points lie in a projective plane defined over a finite field. (
375: 165:. One can also ask the question if these are not allowed. 978:{\displaystyle {\tfrac {1}{6}}n^{2}-{\tfrac {1}{2}}n+1} 1229: 1194: 955: 930: 873: 658: 279: 1227: 1192: 1144: 1043: 928: 868: 825: 696: 656: 533: 436: 336: 277: 234: 181: 80: 516:
Since no two lines may share two distinct points, a
1262: 1207: 1171: 1124: 998: 977: 896: 852: 807: 676: 636: 463: 363: 317: 261: 208: 128: 16:Geometry; how many 3-point lines can n points form 1286: 584: 571: 555: 542: 129:{\displaystyle t_{k}>{\frac {cn^{2}}{k^{3}}},} 1457:Proceedings of the American Mathematical Society 151:-point lines. Their construction contains some 70:-point lines there can be. Hallard T. Croft and 1492:(2013), "On sets defining few ordinary lines", 523:for the number of 3-point lines determined by 66:. There are also investigations into how many 30:An arrangement of nine points (related to the 1010: 720: 707: 8: 1418:Csima, J.; Sawyer, E. (1993), "There exist 6 897:{\displaystyle \approx {\tfrac {1}{8}}n^{2}} 1318:Extremal Problems in Combinatorial Geometry 687: 373:are given in the following table (sequence 1547: 1507: 1437: 1228: 1226: 1193: 1191: 1172:{\displaystyle t_{3}^{\text{orchard}}(n)} 1154: 1149: 1143: 1103: 1094: 1080: 1044: 1042: 954: 945: 929: 927: 888: 872: 867: 853:{\displaystyle t_{3}^{\text{orchard}}(n)} 835: 830: 824: 782: 768: 762: 729: 719: 706: 704: 701: 695: 657: 655: 609: 602: 583: 570: 568: 562: 561: 554: 541: 539: 532: 464:{\displaystyle t_{3}^{\text{orchard}}(n)} 446: 441: 435: 364:{\displaystyle t_{3}^{\text{orchard}}(n)} 346: 341: 335: 318:{\displaystyle {\tfrac {1}{6}}n^{2}-O(n)} 294: 278: 276: 262:{\displaystyle t_{3}^{\text{orchard}}(n)} 244: 239: 233: 209:{\displaystyle t_{3}^{\text{orchard}}(n)} 191: 186: 180: 115: 104: 94: 85: 79: 50:) asks for the maximum number of 3-point 1337: 385: 1298: 1359:Research Problems in Discrete Geometry 690:), this upper bound can be lowered to 1263:{\displaystyle {\tfrac {n(n-2)}{6}},} 7: 1535:Finite Fields and Their Applications 1005:. An elementary construction using 222:points. For an arbitrary number of 1495:Discrete and Computational Geometry 1425:Discrete and Computational Geometry 711: 575: 546: 14: 1001:), using a construction based on 677:{\displaystyle {\tfrac {6n}{13}}} 1013:achieving the same lower bound. 1003:Weierstrass's elliptic functions 1387:(1974), "The Orchard problem", 1316:, et al, in the chapter titled 1208:{\displaystyle {\tfrac {n}{2}}} 1247: 1235: 1166: 1160: 1062: 1050: 847: 841: 458: 452: 358: 352: 312: 306: 256: 250: 203: 197: 1: 1306:The Handbook of Combinatorics 1287:Padmanabhan & Shukla 2020 1353:Brass, P.; Moser, W. O. J.; 140:is the number of points and 34:) forming ten 3-point lines. 1011:FĂĽredi & Palásti (1984) 646:the number of 2-point lines 1639: 1585:"Orchard-Planting Problem" 912:points on the cubic curve 18: 1558:10.1016/j.ffa.2020.101756 1518:10.1007/s00454-013-9518-9 1613:Euclidean plane geometry 922:. This was improved to 328:The first few values of 58:of a specific number of 44:orchard-planting problem 19:Not to be confused with 688:Csima & Sawyer 1993 1422:/13 ordinary points", 1338:Green & Tao (2013) 1264: 1209: 1173: 1126: 979: 898: 854: 809: 678: 638: 512:Upper and lower bounds 465: 365: 319: 263: 210: 130: 35: 1618:Mathematical problems 1265: 1210: 1174: 1136:, the exact value of 1127: 1037:, there are at most 980: 899: 855: 810: 679: 644:Using the fact that 639: 466: 366: 320: 264: 211: 131: 48:tree-planting problem 29: 1272:Gabriel Andrew Dirac 1225: 1190: 1142: 1041: 926: 866: 823: 694: 654: 531: 434: 334: 275: 232: 179: 155:-point lines, where 78: 32:Pappus configuration 1390:Geometriae Dedicata 1361:, Springer-Verlag, 1159: 1016:In September 2013, 840: 451: 351: 249: 196: 1581:Weisstein, Eric W. 1439:10.1007/BF02189318 1403:10.1007/BF00147569 1260: 1255: 1217:for the number of 1205: 1203: 1169: 1145: 1122: 975: 964: 939: 894: 882: 850: 826: 805: 674: 672: 634: 461: 437: 361: 337: 315: 288: 259: 235: 206: 182: 126: 36: 1608:Discrete geometry 1254: 1202: 1157: 1111: 1088: 1069: 963: 938: 881: 838: 817:Lower bounds for 795: 777: 748: 742: 718: 671: 625: 582: 553: 509: 508: 449: 349: 287: 271:was shown to be 247: 194: 147:is the number of 121: 40:discrete geometry 1630: 1594: 1593: 1568: 1551: 1528: 1511: 1480: 1442: 1441: 1413: 1385:Sloane, N. J. A. 1371: 1340: 1335: 1329: 1303: 1284: 1276:Theodore Motzkin 1269: 1267: 1266: 1261: 1256: 1250: 1230: 1216: 1214: 1212: 1211: 1206: 1204: 1195: 1180: 1178: 1176: 1175: 1170: 1158: 1155: 1153: 1135: 1131: 1129: 1128: 1123: 1112: 1104: 1099: 1098: 1089: 1081: 1070: 1065: 1045: 1036: 984: 982: 981: 976: 965: 956: 950: 949: 940: 931: 921: 911: 903: 901: 900: 895: 893: 892: 883: 874: 861: 859: 857: 856: 851: 839: 836: 834: 814: 812: 811: 806: 801: 797: 796: 791: 783: 778: 773: 772: 763: 753: 749: 744: 743: 738: 730: 725: 724: 723: 710: 702: 685: 683: 681: 680: 675: 673: 667: 659: 643: 641: 640: 635: 630: 626: 621: 614: 613: 603: 594: 590: 589: 588: 587: 574: 567: 566: 560: 559: 558: 545: 526: 472: 470: 468: 467: 462: 450: 447: 445: 391: 386: 378: 372: 370: 368: 367: 362: 350: 347: 345: 324: 322: 321: 316: 299: 298: 289: 280: 270: 268: 266: 265: 260: 248: 245: 243: 225: 221: 217: 215: 213: 212: 207: 195: 192: 190: 169:Integer sequence 164: 154: 150: 146: 139: 135: 133: 132: 127: 122: 120: 119: 110: 109: 108: 95: 90: 89: 69: 54:attainable by a 21:Euclid's orchard 1638: 1637: 1633: 1632: 1631: 1629: 1628: 1627: 1598: 1597: 1579: 1578: 1575: 1531: 1484: 1470:10.2307/2045427 1446: 1417: 1375: 1369: 1352: 1349: 1344: 1343: 1336: 1332: 1326:George B. Purdy 1304: 1300: 1295: 1282: 1231: 1223: 1222: 1188: 1187: 1185: 1140: 1139: 1137: 1133: 1090: 1046: 1039: 1038: 1035: 1025: 941: 924: 923: 913: 909: 884: 864: 863: 821: 820: 818: 784: 764: 761: 757: 731: 705: 703: 697: 692: 691: 660: 652: 651: 649: 605: 604: 598: 569: 540: 538: 534: 529: 528: 524: 514: 432: 431: 429: 389: 374: 332: 331: 329: 290: 273: 272: 230: 229: 227: 223: 219: 177: 176: 174: 171: 156: 152: 148: 145: 141: 137: 111: 100: 96: 81: 76: 75: 67: 42:, the original 24: 17: 12: 11: 5: 1636: 1634: 1626: 1625: 1620: 1615: 1610: 1600: 1599: 1596: 1595: 1574: 1573:External links 1571: 1570: 1569: 1529: 1502:(2): 409–468, 1482: 1464:(4): 561–566, 1444: 1432:(2): 187–202, 1415: 1397:(4): 397–424, 1373: 1367: 1348: 1345: 1342: 1341: 1330: 1297: 1296: 1294: 1291: 1259: 1253: 1249: 1246: 1243: 1240: 1237: 1234: 1201: 1198: 1168: 1165: 1162: 1152: 1148: 1121: 1118: 1115: 1110: 1107: 1102: 1097: 1093: 1087: 1084: 1079: 1076: 1073: 1068: 1064: 1061: 1058: 1055: 1052: 1049: 1033: 993:, and 974: 971: 968: 962: 959: 953: 948: 944: 937: 934: 891: 887: 880: 877: 871: 849: 846: 843: 833: 829: 804: 800: 794: 790: 787: 781: 776: 771: 767: 760: 756: 752: 747: 741: 737: 734: 728: 722: 717: 714: 709: 700: 670: 666: 663: 633: 629: 624: 620: 617: 612: 608: 601: 597: 593: 586: 581: 578: 573: 565: 557: 552: 549: 544: 537: 513: 510: 507: 506: 503: 500: 497: 494: 491: 488: 485: 482: 479: 476: 473: 460: 457: 454: 444: 440: 426: 425: 422: 419: 416: 413: 410: 407: 404: 401: 398: 395: 392: 360: 357: 354: 344: 340: 314: 311: 308: 305: 302: 297: 293: 286: 283: 258: 255: 252: 242: 238: 205: 202: 199: 189: 185: 170: 167: 143: 125: 118: 114: 107: 103: 99: 93: 88: 84: 15: 13: 10: 9: 6: 4: 3: 2: 1635: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1605: 1603: 1592: 1591: 1586: 1582: 1577: 1576: 1572: 1567: 1563: 1559: 1555: 1550: 1545: 1542:(2): 101756, 1541: 1537: 1536: 1530: 1527: 1523: 1519: 1515: 1510: 1505: 1501: 1497: 1496: 1491: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1458: 1453: 1449: 1445: 1440: 1435: 1431: 1427: 1426: 1421: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1391: 1386: 1382: 1378: 1374: 1370: 1368:0-387-23815-8 1364: 1360: 1356: 1351: 1350: 1346: 1339: 1334: 1331: 1327: 1323: 1319: 1315: 1311: 1310:LászlĂł Lovász 1307: 1302: 1299: 1292: 1290: 1288: 1279: 1277: 1273: 1257: 1251: 1244: 1241: 1238: 1232: 1220: 1219:2-point lines 1199: 1196: 1182: 1163: 1150: 1146: 1119: 1116: 1113: 1108: 1105: 1100: 1095: 1091: 1085: 1082: 1077: 1074: 1071: 1066: 1059: 1056: 1053: 1047: 1032: 1028: 1023: 1019: 1014: 1012: 1009:was found by 1008: 1004: 1000: 996: 992: 988: 972: 969: 966: 960: 957: 951: 946: 942: 935: 932: 920: 916: 908:, who placed 907: 904:was given by 889: 885: 878: 875: 869: 844: 831: 827: 815: 802: 798: 792: 788: 785: 779: 774: 769: 765: 758: 754: 750: 745: 739: 735: 732: 726: 715: 712: 698: 689: 668: 664: 661: 647: 631: 627: 622: 618: 615: 610: 606: 599: 595: 591: 579: 576: 550: 547: 535: 522: 519: 511: 504: 501: 498: 495: 492: 489: 486: 483: 480: 477: 474: 455: 442: 438: 428: 427: 423: 420: 417: 414: 411: 408: 405: 402: 399: 396: 393: 388: 387: 384: 382: 377: 355: 342: 338: 326: 309: 303: 300: 295: 291: 284: 281: 253: 240: 236: 200: 187: 183: 168: 166: 163: 159: 123: 116: 112: 105: 101: 97: 91: 86: 82: 73: 65: 61: 57: 56:configuration 53: 49: 45: 41: 33: 28: 22: 1623:Dot patterns 1588: 1539: 1533: 1499: 1493: 1490:Tao, Terence 1461: 1455: 1429: 1423: 1419: 1394: 1388: 1381:GrĂĽnbaum, B. 1358: 1333: 1317: 1308:, edited by 1305: 1301: 1280: 1183: 1030: 1026: 1015: 1007:hypocycloids 918: 914: 816: 648:is at least 515: 327: 172: 161: 157: 47: 43: 37: 1452:Palásti, I. 1377:Burr, S. A. 1022:Terence Tao 985:in 1974 by 521:upper-bound 1602:Categories 1549:2003.07172 1486:Green, Ben 1448:FĂĽredi, Z. 1347:References 1322:Paul ErdĹ‘s 1314:Ron Graham 1181:is known. 527:points is 72:Paul ErdĹ‘s 1590:MathWorld 1566:212725631 1509:1208.4714 1411:120906839 1242:− 1101:− 1057:− 1018:Ben Green 952:− 906:Sylvester 870:≈ 780:− 727:− 616:− 325:in 1974. 301:− 1526:15813230 1357:(2005), 1355:Pach, J. 991:GrĂĽnbaum 799:⌋ 759:⌊ 751:⌋ 699:⌊ 628:⌋ 600:⌊ 592:⌋ 536:⌊ 226:points, 46:(or the 1478:2045427 1215:⁠ 1186:⁠ 1179:⁠ 1156:orchard 1138:⁠ 997: ( 860:⁠ 837:orchard 819:⁠ 684:⁠ 650:⁠ 518:trivial 471:⁠ 448:orchard 430:⁠ 379:in the 376:A003035 371:⁠ 348:orchard 330:⁠ 269:⁠ 246:orchard 228:⁠ 216:⁠ 193:orchard 175:⁠ 173:Define 74:proved 62:in the 1564:  1524:  1476:  1409:  1365:  995:Sloane 989:, 136:where 60:points 1562:S2CID 1544:arXiv 1522:S2CID 1504:arXiv 1474:JSTOR 1407:S2CID 1293:Notes 1029:> 160:> 64:plane 52:lines 1363:ISBN 1324:and 1274:and 1020:and 999:1974 987:Burr 381:OEIS 92:> 1554:doi 1514:doi 1466:doi 1434:doi 1399:doi 1320:by 1312:, 1289:). 505:26 502:22 499:19 496:16 493:12 490:10 424:14 421:13 418:12 415:11 412:10 383:). 38:In 1604:: 1587:, 1583:, 1560:, 1552:, 1540:68 1538:, 1520:, 1512:, 1500:50 1498:, 1488:; 1472:, 1462:92 1460:, 1450:; 1428:, 1405:, 1393:, 1383:; 1379:; 1278:. 1221:: 917:= 793:78 786:25 740:13 669:13 487:7 484:6 481:4 478:2 475:1 409:9 406:8 403:7 400:6 397:5 394:4 1556:: 1546:: 1516:: 1506:: 1481:. 1468:: 1443:. 1436:: 1430:9 1420:n 1414:. 1401:: 1395:2 1372:. 1328:. 1283:n 1258:, 1252:6 1248:) 1245:2 1239:n 1236:( 1233:n 1200:2 1197:n 1167:) 1164:n 1161:( 1151:3 1147:t 1134:n 1120:1 1117:+ 1114:n 1109:2 1106:1 1096:2 1092:n 1086:6 1083:1 1078:= 1075:1 1072:+ 1067:6 1063:) 1060:3 1054:n 1051:( 1048:n 1034:0 1031:n 1027:n 973:1 970:+ 967:n 961:2 958:1 947:2 943:n 936:6 933:1 919:x 915:y 910:n 890:2 886:n 879:8 876:1 848:) 845:n 842:( 832:3 828:t 803:. 789:n 775:6 770:2 766:n 755:= 746:3 736:n 733:6 721:) 716:2 713:n 708:( 686:( 665:n 662:6 632:. 623:6 619:n 611:2 607:n 596:= 585:) 580:2 577:3 572:( 564:/ 556:) 551:2 548:n 543:( 525:n 459:) 456:n 453:( 443:3 439:t 390:n 359:) 356:n 353:( 343:3 339:t 313:) 310:n 307:( 304:O 296:2 292:n 285:6 282:1 257:) 254:n 251:( 241:3 237:t 224:n 220:n 204:) 201:n 198:( 188:3 184:t 162:k 158:m 153:m 149:k 144:k 142:t 138:n 124:, 117:3 113:k 106:2 102:n 98:c 87:k 83:t 68:k 23:.

Index

Euclid's orchard

Pappus configuration
discrete geometry
lines
configuration
points
plane
Paul Erdős
A003035
OEIS
trivial
upper-bound
the number of 2-point lines
Csima & Sawyer 1993
Sylvester
Burr
GrĂĽnbaum
Sloane
1974
Weierstrass's elliptic functions
hypocycloids
Füredi & Palásti (1984)
Ben Green
Terence Tao
2-point lines
Gabriel Andrew Dirac
Theodore Motzkin
Padmanabhan & Shukla 2020
László Lovász

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑