Knowledge (XXG)

Orbital magnetization

Source 📝

1429: 1147: 1424:{\displaystyle \mathbf {M} _{\rm {orb}}={\frac {e}{2\hbar }}\sum _{n}\int _{\rm {BZ}}{\frac {1}{(2\pi )^{3}}}\,f_{n\mathbf {k} }\;\operatorname {Im} \;\left\langle {\frac {\partial u_{n\mathbf {k} }}{\partial {\mathbf {k} }}}\right|\times \left(H_{\mathbf {k} }+E_{n\mathbf {k} }-2\mu \right)\left|{\frac {\partial u_{n\mathbf {k} }}{\partial {\mathbf {k} }}}\right\rangle \,d^{3}k\,,} 1064: 701:
However, real crystals are made up out of atomic or molecular constituents whose charge clouds overlap, so that the above formula cannot be taken as a fundamental definition of orbital magnetization. Only recently have theoretical developments led to a proper theory of orbital magnetization in
875: 1121:) inside each sphere, and summing the contributions. This approximation neglects the contributions from currents in the interstitial regions between the atomic spheres. Nevertheless, it is often a good approximation because the orbital currents associated with partially filled 529: 823: 1761: 182: 1658: 318: 1547: 696: 1899: 1059:{\displaystyle \mathbf {M} _{\rm {orb}}={\frac {-e}{2m_{e}}}\sum _{n}\int _{\rm {BZ}}{\frac {1}{(2\pi )^{3}}}\,\langle \psi _{n\mathbf {k} }\vert \mathbf {r} \times \mathbf {p} \vert \psi _{n\mathbf {k} }\rangle \,d^{3}k\,,} 422: 433: 721: 1669: 92: 1137:
A general and exact formulation of the theory of orbital magnetization was developed in the mid-2000s by several authors, first based on a semiclassical approach, then on a derivation from the
836:
in the integrand, the integral has contributions from surface currents that cannot be neglected, and as a result the above equation does not lead to a bulk definition of orbital magnetization.
1565: 233: 1797:, i.e., the ratio between the magnetic dipole moment of a body and its angular momentum. The gyromagnetic ratio is related to the spin and orbital magnetization according to 1468: 839:
Another way to see that there is a difficulty is to try to write down the quantum-mechanical expression for the orbital magnetization in terms of the occupied single-particle
603: 1803: 2190:
Ceresoli, D.; Thonhauser, T.; Vanderbilt, D.; Resta, R. (2006). "Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals".
356: 1105:
In practice, orbital magnetization is often computed by decomposing space into non-overlapping spheres centered on atoms (similar in spirit to the
2246:
Shi, Junren; Vignale, G.; Niu, Qian (November 2007), "Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems",
2467: 1141:, and finally from a long-wavelength expansion. The resulting formula for the orbital magnetization, specialized to zero temperature, is 58:, to the total magnetization. A nonzero orbital magnetization requires broken time-reversal symmetry, which can occur spontaneously in 1937: 524:{\displaystyle \mathbf {m} _{\rm {spin}}={\frac {-g_{s}\mu _{\rm {B}}}{\hbar }}\,\langle \Psi \vert \mathbf {S} \vert \Psi \rangle } 818:{\displaystyle \mathbf {M} _{\rm {orb}}={\frac {1}{2V}}\int _{V}\mathbf {r} \times \mathbf {J} (\mathbf {r} )\ d^{3}\mathbf {r} } 1756:{\displaystyle H_{\mathbf {k} }\left|u_{n\mathbf {k} }\right\rangle =E_{n\mathbf {k} }\left|u_{n\mathbf {k} }\right\rangle \;.} 1779: 1782:. Results computed using the above formula have appeared in the literature. A recent review summarizes these developments. 177:{\displaystyle \mathbf {m} _{\rm {orb}}={\frac {1}{2}}\int \mathbf {r} \times \mathbf {J} (\mathbf {r} )\ d^{3}\mathbf {r} } 2035:
Todorova, M.; Sandratskii, M.; Kubler, J. (January 2001), "Current-determined orbital magnetization in a metallic magnet",
2306:
Ceresoli, D.; Gerstmann, U.; Seitsonen, A.P.; Mauri, F. (Feb 2010). "First-principles theory of orbital magnetization".
1909: 1653:{\displaystyle u_{n\mathbf {k} }(\mathbf {r} )=e^{-i\mathbf {k} \cdot \mathbf {r} }\psi _{n\mathbf {k} }(\mathbf {r} )} 2069:
Xiao, Di; Shi, Junren; Niu, Qian (September 2005), "Berry Phase Correction to Electron Density of States in Solids",
1129:
shells are typically strongly localized inside these atomic spheres. It remains, however, an approximate approach.
2462: 2457: 2129:
Thonhauser, T.; Ceresoli, D.; Vanderbilt, D.; Resta, R. (2005). "Orbital magnetization in periodic insulators".
1106: 313:{\displaystyle \mathbf {m} _{\rm {orb}}={\frac {-e}{2m_{e}}}\langle \Psi \vert \mathbf {L} \vert \Psi \rangle } 36: 1093:(BZ). However, because the Bloch functions are extended, the matrix element of a quantity containing the 1542:{\displaystyle H_{\mathbf {k} }=e^{-i\mathbf {k} \cdot \mathbf {r} }He^{i\mathbf {k} \cdot \mathbf {r} }} 579:
is defined as the orbital moment density; i.e., orbital moment per unit volume. For a crystal of volume
1766:
A generalization to finite temperature is also available. Note that the term involving the band energy
2421: 2378: 2325: 2265: 2209: 2148: 2088: 2044: 1994: 1961: 691:{\displaystyle \mathbf {M} _{\rm {orb}}={\frac {1}{V}}\sum _{j\in V}\mathbf {m} _{{\rm {orb}},j}\;.} 1989:
Resta, Raffaele (2010), "Electrical polarization and orbital magnetization: the modern theories",
2452: 2412:
Meyer, A.J.P.; Asch, G. (1961). "Experimental g' and g values for Fe, Co, Ni, and their alloys".
2394: 2368: 2341: 2315: 2289: 2255: 2225: 2199: 2172: 2138: 2112: 2078: 2018: 1791: 542: 1894:{\displaystyle \gamma =1+{\frac {M_{\mathrm {orb} }}{(M_{\mathrm {spin} }+M_{\mathrm {orb} })}}} 840: 2281: 2164: 2104: 2010: 1933: 1074: 224: 67: 17: 2429: 2386: 2333: 2273: 2217: 2156: 2096: 2052: 2002: 1969: 1138: 863: 347: 40: 561: 196: 83: 2006: 2425: 2382: 2329: 2269: 2213: 2152: 2092: 2048: 1998: 1965: 51:. The term "orbital" distinguishes it from the contribution of spin degrees of freedom, 1905: 1090: 569: 220: 208: 71: 63: 59: 1790:
The orbital magnetization of a material can be determined accurately by measuring the
2446: 2398: 2345: 2116: 553: 339: 32: 2176: 2022: 2293: 2277: 2229: 2160: 2100: 427:
where the spin contribution is intrinsically quantum-mechanical and is given by
2337: 2221: 2056: 1956:
Hirst, L. L. (1997), "The microscopic magnetization: concept and application",
417:{\displaystyle \mathbf {m} =\mathbf {m} _{\rm {orb}}+\mathbf {m} _{\rm {spin}}} 2390: 1973: 1553: 2285: 2168: 2108: 2014: 2204: 2143: 2083: 1912:. Experimental data for Fe, Co, Ni, and their alloys have been compiled. 335: 204: 44: 2359:
Thonhauser, T. (May 2011). "Theory of Orbital Magnetization in Solids".
1778:
in this formula is really just an integral of the band energy times the
2433: 583:
composed of isolated entities (e.g., molecules) labelled by an index
1097:
operator is ill-defined, and this formula is actually ill-defined.
2373: 2320: 2260: 48: 832:
of the system becomes large. However, because of the factor of
86:
of a finite system, such as a molecule, is given classically by
1904:
The two main experimental techniques are based either on the
715:
For a magnetic crystal, it is tempting to try to define
711:
Difficulties in the definition of orbital magnetization
1806: 1672: 1568: 1471: 1150: 878: 724: 606: 436: 359: 236: 95: 1893: 1755: 1652: 1541: 1423: 1058: 817: 690: 523: 416: 312: 176: 1663:is the cell-periodic Bloch function satisfying 1960:, vol. 69, no. 2, pp. 607–628, 1993:, vol. 22, no. 12, p. 123201, 8: 1035: 1017: 1001: 983: 518: 512: 504: 498: 307: 301: 293: 287: 1749: 1446:is 0 or 1 respectively as the band energy 1262: 1258: 684: 2372: 2319: 2259: 2254:(19), American Physical Society: 197202, 2203: 2142: 2082: 1872: 1871: 1848: 1847: 1826: 1825: 1819: 1805: 1738: 1734: 1719: 1715: 1697: 1693: 1678: 1677: 1671: 1642: 1632: 1628: 1617: 1609: 1602: 1587: 1577: 1573: 1567: 1532: 1524: 1520: 1506: 1498: 1491: 1477: 1476: 1470: 1417: 1408: 1403: 1390: 1389: 1377: 1373: 1363: 1338: 1334: 1320: 1319: 1294: 1293: 1281: 1277: 1267: 1251: 1247: 1242: 1233: 1214: 1204: 1203: 1193: 1174: 1158: 1157: 1152: 1149: 1089:, and the integral is evaluated over the 1052: 1043: 1038: 1028: 1024: 1012: 1004: 994: 990: 982: 973: 954: 944: 943: 933: 920: 902: 886: 885: 880: 877: 810: 804: 789: 781: 773: 767: 748: 732: 731: 726: 723: 664: 663: 662: 657: 644: 630: 614: 613: 608: 605: 507: 497: 484: 483: 473: 463: 444: 443: 438: 435: 398: 397: 392: 375: 374: 369: 360: 358: 296: 278: 260: 244: 243: 238: 235: 169: 163: 148: 140: 132: 119: 103: 102: 97: 94: 2043:(5), American Physical Society: 052408, 350:operator. The total magnetic moment is 1984: 1982: 1951: 1949: 1920: 1183: 828:where the limit is taken as the volume 492: 1458:falls above or below the Fermi energy 1133:Modern theory of orbital magnetization 66:materials, or can be induced in a non- 2241: 2239: 227:context, this can also be written as 7: 1991:Journal of Physics: Condensed Matter 1930:Classical Electrodynamics (3rd ed.) 1879: 1876: 1873: 1858: 1855: 1852: 1849: 1833: 1830: 1827: 1386: 1366: 1290: 1270: 1208: 1205: 1165: 1162: 1159: 948: 945: 893: 890: 887: 739: 736: 733: 671: 668: 665: 621: 618: 615: 515: 501: 485: 454: 451: 448: 445: 408: 405: 402: 399: 382: 379: 376: 304: 290: 251: 248: 245: 110: 107: 104: 14: 1739: 1720: 1698: 1679: 1643: 1633: 1618: 1610: 1588: 1578: 1552:is the effective Hamiltonian at 1533: 1525: 1507: 1499: 1478: 1391: 1378: 1339: 1321: 1295: 1282: 1252: 1153: 1029: 1013: 1005: 995: 881: 811: 790: 782: 774: 727: 658: 609: 508: 439: 393: 370: 361: 297: 239: 170: 149: 141: 133: 98: 334:are the charge and mass of the 2007:10.1088/0953-8984/22/12/123201 1885: 1840: 1647: 1639: 1592: 1584: 1230: 1220: 970: 960: 794: 786: 702:crystals, as explained below. 153: 145: 1: 2278:10.1103/PhysRevLett.99.197202 2161:10.1103/PhysRevLett.95.137205 2101:10.1103/PhysRevLett.95.137204 1109:), computing the integral of 2468:Electronic structure methods 211:, the prefactor would be 1/2 1101:Atomic sphere approximation 2484: 2338:10.1103/PhysRevB.81.060409 2222:10.1103/PhysRevB.74.024408 2057:10.1103/PhysRevB.63.052408 575:The orbital magnetization 2391:10.1142/S0217979211058912 1974:10.1103/RevModPhys.69.607 1958:Reviews of Modern Physics 1928:Jackson, John D. (1998). 2314:(6): 060409 of 4 pages. 1107:muffin-tin approximation 587:having magnetic moments 338:, Ψ is the ground-state 1910:Einstein–de Haas effect 562:reduced Planck constant 1895: 1757: 1654: 1543: 1425: 1139:Wannier representation 1060: 819: 692: 543:electron spin g-factor 525: 418: 314: 178: 1896: 1758: 1655: 1544: 1426: 1061: 820: 693: 526: 419: 315: 179: 22:orbital magnetization 2361:Int. J. Mod. Phys. B 1804: 1670: 1566: 1469: 1148: 876: 722: 604: 434: 357: 234: 93: 2426:1961JAP....32S.330M 2383:2011IJMPB..25.1429T 2330:2010PhRvB..81f0409C 2270:2007PhRvL..99s7202S 2214:2006PhRvB..74b4408C 2153:2005PhRvL..95m7205T 2093:2005PhRvL..95m7204X 2049:2001PhRvB..63e2408T 1999:2010JPCM...22l3201R 1966:1997RvMP...69..607H 1891: 1792:gyromagnetic ratio 1753: 1650: 1539: 1421: 1198: 1056: 938: 815: 688: 655: 521: 414: 310: 225:quantum-mechanical 174: 2463:Quantum mechanics 2434:10.1063/1.2000457 2367:(11): 1429–1458. 2037:Physical Review B 1889: 1397: 1301: 1240: 1189: 1187: 1075:momentum operator 980: 929: 927: 799: 761: 640: 638: 495: 285: 158: 127: 68:magnetic material 41:charged particles 18:quantum mechanics 2475: 2458:Electromagnetism 2438: 2437: 2409: 2403: 2402: 2376: 2356: 2350: 2349: 2323: 2303: 2297: 2296: 2263: 2248:Phys. Rev. Lett. 2243: 2234: 2233: 2207: 2205:cond-mat/0512142 2187: 2181: 2180: 2146: 2144:cond-mat/0505518 2126: 2120: 2119: 2086: 2084:cond-mat/0502340 2071:Phys. Rev. Lett. 2066: 2060: 2059: 2032: 2026: 2025: 1986: 1977: 1976: 1953: 1944: 1943: 1925: 1900: 1898: 1897: 1892: 1890: 1888: 1884: 1883: 1882: 1863: 1862: 1861: 1838: 1837: 1836: 1820: 1762: 1760: 1759: 1754: 1748: 1744: 1743: 1742: 1725: 1724: 1723: 1707: 1703: 1702: 1701: 1684: 1683: 1682: 1659: 1657: 1656: 1651: 1646: 1638: 1637: 1636: 1623: 1622: 1621: 1613: 1591: 1583: 1582: 1581: 1548: 1546: 1545: 1540: 1538: 1537: 1536: 1528: 1512: 1511: 1510: 1502: 1483: 1482: 1481: 1430: 1428: 1427: 1422: 1413: 1412: 1402: 1398: 1396: 1395: 1394: 1384: 1383: 1382: 1381: 1364: 1358: 1354: 1344: 1343: 1342: 1326: 1325: 1324: 1306: 1302: 1300: 1299: 1298: 1288: 1287: 1286: 1285: 1268: 1257: 1256: 1255: 1241: 1239: 1238: 1237: 1215: 1213: 1212: 1211: 1197: 1188: 1186: 1175: 1170: 1169: 1168: 1156: 1065: 1063: 1062: 1057: 1048: 1047: 1034: 1033: 1032: 1016: 1008: 1000: 999: 998: 981: 979: 978: 977: 955: 953: 952: 951: 937: 928: 926: 925: 924: 911: 903: 898: 897: 896: 884: 864:crystal momentum 857: 824: 822: 821: 816: 814: 809: 808: 797: 793: 785: 777: 772: 771: 762: 760: 749: 744: 743: 742: 730: 697: 695: 694: 689: 683: 682: 675: 674: 661: 654: 639: 631: 626: 625: 624: 612: 568:is the electron 530: 528: 527: 522: 511: 496: 491: 490: 489: 488: 478: 477: 464: 459: 458: 457: 442: 423: 421: 420: 415: 413: 412: 411: 396: 387: 386: 385: 373: 364: 348:angular momentum 319: 317: 316: 311: 300: 286: 284: 283: 282: 269: 261: 256: 255: 254: 242: 183: 181: 180: 175: 173: 168: 167: 156: 152: 144: 136: 128: 120: 115: 114: 113: 101: 31:, refers to the 2483: 2482: 2478: 2477: 2476: 2474: 2473: 2472: 2443: 2442: 2441: 2411: 2410: 2406: 2358: 2357: 2353: 2305: 2304: 2300: 2245: 2244: 2237: 2189: 2188: 2184: 2131:Phys. Rev. Lett 2128: 2127: 2123: 2068: 2067: 2063: 2034: 2033: 2029: 1988: 1987: 1980: 1955: 1954: 1947: 1940: 1927: 1926: 1922: 1918: 1867: 1843: 1839: 1821: 1802: 1801: 1788: 1780:Berry curvature 1777: 1730: 1726: 1711: 1689: 1685: 1673: 1668: 1667: 1624: 1598: 1569: 1564: 1563: 1516: 1487: 1472: 1467: 1466: 1457: 1445: 1404: 1385: 1369: 1365: 1359: 1330: 1315: 1314: 1310: 1289: 1273: 1269: 1263: 1243: 1229: 1219: 1199: 1179: 1151: 1146: 1145: 1135: 1103: 1039: 1020: 986: 969: 959: 939: 916: 912: 904: 879: 874: 873: 855: 843: 841:Bloch functions 800: 763: 753: 725: 720: 719: 713: 708: 656: 607: 602: 601: 596: 550: 539: 479: 469: 465: 437: 432: 431: 391: 368: 355: 354: 332: 274: 270: 262: 237: 232: 231: 215:instead, where 197:current density 159: 96: 91: 90: 84:magnetic moment 80: 57: 30: 12: 11: 5: 2481: 2479: 2471: 2470: 2465: 2460: 2455: 2445: 2444: 2440: 2439: 2404: 2351: 2298: 2235: 2182: 2137:(13): 137205. 2121: 2077:(13): 137204, 2061: 2027: 1978: 1945: 1938: 1919: 1917: 1914: 1906:Barnett effect 1902: 1901: 1887: 1881: 1878: 1875: 1870: 1866: 1860: 1857: 1854: 1851: 1846: 1842: 1835: 1832: 1829: 1824: 1818: 1815: 1812: 1809: 1787: 1784: 1770: 1764: 1763: 1752: 1747: 1741: 1737: 1733: 1729: 1722: 1718: 1714: 1710: 1706: 1700: 1696: 1692: 1688: 1681: 1676: 1661: 1660: 1649: 1645: 1641: 1635: 1631: 1627: 1620: 1616: 1612: 1608: 1605: 1601: 1597: 1594: 1590: 1586: 1580: 1576: 1572: 1550: 1549: 1535: 1531: 1527: 1523: 1519: 1515: 1509: 1505: 1501: 1497: 1494: 1490: 1486: 1480: 1475: 1450: 1438: 1432: 1431: 1420: 1416: 1411: 1407: 1401: 1393: 1388: 1380: 1376: 1372: 1368: 1362: 1357: 1353: 1350: 1347: 1341: 1337: 1333: 1329: 1323: 1318: 1313: 1309: 1305: 1297: 1292: 1284: 1280: 1276: 1272: 1266: 1261: 1254: 1250: 1246: 1236: 1232: 1228: 1225: 1222: 1218: 1210: 1207: 1202: 1196: 1192: 1185: 1182: 1178: 1173: 1167: 1164: 1161: 1155: 1134: 1131: 1102: 1099: 1091:Brillouin zone 1067: 1066: 1055: 1051: 1046: 1042: 1037: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 997: 993: 989: 985: 976: 972: 968: 965: 962: 958: 950: 947: 942: 936: 932: 923: 919: 915: 910: 907: 901: 895: 892: 889: 883: 848: 826: 825: 813: 807: 803: 796: 792: 788: 784: 780: 776: 770: 766: 759: 756: 752: 747: 741: 738: 735: 729: 712: 709: 707: 704: 699: 698: 687: 681: 678: 673: 670: 667: 660: 653: 650: 647: 643: 637: 634: 629: 623: 620: 617: 611: 591: 548: 537: 532: 531: 520: 517: 514: 510: 506: 503: 500: 494: 487: 482: 476: 472: 468: 462: 456: 453: 450: 447: 441: 425: 424: 410: 407: 404: 401: 395: 390: 384: 381: 378: 372: 367: 363: 330: 321: 320: 309: 306: 303: 299: 295: 292: 289: 281: 277: 273: 268: 265: 259: 253: 250: 247: 241: 221:speed of light 209:Gaussian units 185: 184: 172: 166: 162: 155: 151: 147: 143: 139: 135: 131: 126: 123: 118: 112: 109: 106: 100: 79: 76: 72:magnetic field 70:by an applied 55: 37:orbital motion 28: 13: 10: 9: 6: 4: 3: 2: 2480: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2450: 2448: 2435: 2431: 2427: 2423: 2419: 2415: 2414:J. Appl. Phys 2408: 2405: 2400: 2396: 2392: 2388: 2384: 2380: 2375: 2370: 2366: 2362: 2355: 2352: 2347: 2343: 2339: 2335: 2331: 2327: 2322: 2317: 2313: 2309: 2302: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2262: 2257: 2253: 2249: 2242: 2240: 2236: 2231: 2227: 2223: 2219: 2215: 2211: 2206: 2201: 2198:(2): 024408. 2197: 2193: 2186: 2183: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2145: 2140: 2136: 2132: 2125: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2085: 2080: 2076: 2072: 2065: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2031: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1992: 1985: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1952: 1950: 1946: 1941: 1939:7-04-014432-8 1935: 1931: 1924: 1921: 1915: 1913: 1911: 1907: 1868: 1864: 1844: 1822: 1816: 1813: 1810: 1807: 1800: 1799: 1798: 1796: 1793: 1785: 1783: 1781: 1776: 1773: 1769: 1750: 1745: 1735: 1731: 1727: 1716: 1712: 1708: 1704: 1694: 1690: 1686: 1674: 1666: 1665: 1664: 1629: 1625: 1614: 1606: 1603: 1599: 1595: 1574: 1570: 1562: 1561: 1560: 1558: 1555: 1529: 1521: 1517: 1513: 1503: 1495: 1492: 1488: 1484: 1473: 1465: 1464: 1463: 1461: 1456: 1453: 1449: 1444: 1441: 1437: 1418: 1414: 1409: 1405: 1399: 1374: 1370: 1360: 1355: 1351: 1348: 1345: 1335: 1331: 1327: 1316: 1311: 1307: 1303: 1278: 1274: 1264: 1259: 1248: 1244: 1234: 1226: 1223: 1216: 1200: 1194: 1190: 1180: 1176: 1171: 1144: 1143: 1142: 1140: 1132: 1130: 1128: 1124: 1120: 1116: 1112: 1108: 1100: 1098: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1053: 1049: 1044: 1040: 1025: 1021: 1009: 991: 987: 974: 966: 963: 956: 940: 934: 930: 921: 917: 913: 908: 905: 899: 872: 871: 870: 868: 865: 861: 854: 851: 847: 842: 837: 835: 831: 805: 801: 778: 768: 764: 757: 754: 750: 745: 718: 717: 716: 710: 705: 703: 685: 679: 676: 651: 648: 645: 641: 635: 632: 627: 600: 599: 598: 595: 590: 586: 582: 578: 573: 571: 570:spin operator 567: 563: 559: 555: 554:Bohr magneton 551: 544: 540: 480: 474: 470: 466: 460: 430: 429: 428: 388: 365: 353: 352: 351: 349: 345: 341: 340:wave function 337: 333: 326: 279: 275: 271: 266: 263: 257: 230: 229: 228: 226: 222: 218: 214: 210: 207:are used; in 206: 202: 198: 194: 190: 164: 160: 137: 129: 124: 121: 116: 89: 88: 87: 85: 77: 75: 73: 69: 65: 64:ferrimagnetic 61: 60:ferromagnetic 54: 50: 46: 42: 38: 34: 33:magnetization 27: 23: 19: 2417: 2413: 2407: 2364: 2360: 2354: 2311: 2308:Phys. Rev. B 2307: 2301: 2251: 2247: 2195: 2192:Phys. Rev. B 2191: 2185: 2134: 2130: 2124: 2074: 2070: 2064: 2040: 2036: 2030: 1990: 1957: 1929: 1923: 1903: 1794: 1789: 1774: 1771: 1767: 1765: 1662: 1556: 1551: 1459: 1454: 1451: 1447: 1442: 1439: 1435: 1433: 1136: 1126: 1122: 1118: 1114: 1110: 1104: 1094: 1086: 1082: 1078: 1070: 1068: 866: 859: 852: 849: 845: 838: 833: 829: 827: 714: 700: 593: 588: 584: 580: 576: 574: 565: 557: 546: 535: 533: 426: 343: 328: 324: 322: 216: 212: 200: 192: 188: 186: 82:The orbital 81: 52: 25: 21: 15: 2420:(3): S330. 1786:Experiments 78:Definitions 35:induced by 2447:Categories 1916:References 1554:wavevector 597:, this is 43:, usually 2453:Magnetism 2399:119292686 2374:1105.5251 2346:118625623 2321:0904.1988 2261:0704.3824 2117:119017032 1932:. Wiley. 1808:γ 1626:ψ 1615:⋅ 1604:− 1530:⋅ 1504:⋅ 1493:− 1387:∂ 1367:∂ 1352:μ 1346:− 1308:× 1291:∂ 1271:∂ 1227:π 1201:∫ 1191:∑ 1184:ℏ 1036:⟩ 1022:ψ 1010:× 988:ψ 984:⟨ 967:π 941:∫ 931:∑ 906:− 779:× 765:∫ 649:∈ 642:∑ 519:⟩ 516:Ψ 502:Ψ 499:⟨ 493:ℏ 481:μ 467:− 308:⟩ 305:Ψ 291:Ψ 288:⟨ 264:− 223:.) In a 199:at point 195:) is the 138:× 130:∫ 45:electrons 2286:18233109 2177:11961765 2169:16197172 2109:16197171 2023:18645988 2015:21389484 1746:⟩ 1705:⟩ 1400:⟩ 1265:⟨ 858:of band 856:⟩ 336:electron 205:SI units 203:. (Here 2422:Bibcode 2379:Bibcode 2326:Bibcode 2294:7942622 2266:Bibcode 2210:Bibcode 2149:Bibcode 2089:Bibcode 2045:Bibcode 1995:Bibcode 1962:Bibcode 1908:or the 1559:, and 1073:is the 560:is the 552:is the 541:is the 346:is the 323:where − 219:is the 2397:  2344:  2292:  2284:  2230:958110 2228:  2175:  2167:  2115:  2107:  2021:  2013:  1936:  1434:where 1069:where 844:| 798:  706:Theory 564:, and 534:where 342:, and 187:where 157:  49:solids 2395:S2CID 2369:arXiv 2342:S2CID 2316:arXiv 2290:S2CID 2256:arXiv 2226:S2CID 2200:arXiv 2173:S2CID 2139:arXiv 2113:S2CID 2079:arXiv 2019:S2CID 592:orb, 2282:PMID 2165:PMID 2105:PMID 2011:PMID 1934:ISBN 1125:and 862:and 327:and 62:and 56:spin 2430:doi 2387:doi 2334:doi 2274:doi 2218:doi 2157:doi 2097:doi 2053:doi 2003:doi 1970:doi 47:in 39:of 29:orb 16:In 2449:: 2428:. 2418:32 2416:. 2393:. 2385:. 2377:. 2365:25 2363:. 2340:. 2332:. 2324:. 2312:81 2310:. 2288:, 2280:, 2272:, 2264:, 2252:99 2250:, 2238:^ 2224:. 2216:. 2208:. 2196:74 2194:. 2171:. 2163:. 2155:. 2147:. 2135:95 2133:. 2111:, 2103:, 2095:, 2087:, 2075:95 2073:, 2051:, 2041:63 2039:, 2017:, 2009:, 2001:, 1981:^ 1968:, 1948:^ 1462:, 1260:Im 1113:× 1085:× 1081:= 1077:, 869:: 572:. 556:, 545:, 74:. 24:, 20:, 2436:. 2432:: 2424:: 2401:. 2389:: 2381:: 2371:: 2348:. 2336:: 2328:: 2318:: 2276:: 2268:: 2258:: 2232:. 2220:: 2212:: 2202:: 2179:. 2159:: 2151:: 2141:: 2099:: 2091:: 2081:: 2055:: 2047:: 2005:: 1997:: 1972:: 1964:: 1942:. 1886:) 1880:b 1877:r 1874:o 1869:M 1865:+ 1859:n 1856:i 1853:p 1850:s 1845:M 1841:( 1834:b 1831:r 1828:o 1823:M 1817:+ 1814:1 1811:= 1795:γ 1775:k 1772:n 1768:E 1751:. 1740:k 1736:n 1732:u 1728:| 1721:k 1717:n 1713:E 1709:= 1699:k 1695:n 1691:u 1687:| 1680:k 1675:H 1648:) 1644:r 1640:( 1634:k 1630:n 1619:r 1611:k 1607:i 1600:e 1596:= 1593:) 1589:r 1585:( 1579:k 1575:n 1571:u 1557:k 1534:r 1526:k 1522:i 1518:e 1514:H 1508:r 1500:k 1496:i 1489:e 1485:= 1479:k 1474:H 1460:μ 1455:k 1452:n 1448:E 1443:k 1440:n 1436:f 1419:, 1415:k 1410:3 1406:d 1392:k 1379:k 1375:n 1371:u 1361:| 1356:) 1349:2 1340:k 1336:n 1332:E 1328:+ 1322:k 1317:H 1312:( 1304:| 1296:k 1283:k 1279:n 1275:u 1253:k 1249:n 1245:f 1235:3 1231:) 1224:2 1221:( 1217:1 1209:Z 1206:B 1195:n 1181:2 1177:e 1172:= 1166:b 1163:r 1160:o 1154:M 1127:f 1123:d 1119:r 1117:( 1115:J 1111:r 1095:r 1087:p 1083:r 1079:L 1071:p 1054:, 1050:k 1045:3 1041:d 1030:k 1026:n 1018:| 1014:p 1006:r 1002:| 996:k 992:n 975:3 971:) 964:2 961:( 957:1 949:Z 946:B 935:n 922:e 918:m 914:2 909:e 900:= 894:b 891:r 888:o 882:M 867:k 860:n 853:k 850:n 846:ψ 834:r 830:V 812:r 806:3 802:d 795:) 791:r 787:( 783:J 775:r 769:V 758:V 755:2 751:1 746:= 740:b 737:r 734:o 728:M 686:. 680:j 677:, 672:b 669:r 666:o 659:m 652:V 646:j 636:V 633:1 628:= 622:b 619:r 616:o 610:M 594:j 589:m 585:j 581:V 577:M 566:S 558:ħ 549:B 547:μ 538:s 536:g 513:| 509:S 505:| 486:B 475:s 471:g 461:= 455:n 452:i 449:p 446:s 440:m 409:n 406:i 403:p 400:s 394:m 389:+ 383:b 380:r 377:o 371:m 366:= 362:m 344:L 331:e 329:m 325:e 302:| 298:L 294:| 280:e 276:m 272:2 267:e 258:= 252:b 249:r 246:o 240:m 217:c 213:c 201:r 193:r 191:( 189:J 171:r 165:3 161:d 154:) 150:r 146:( 142:J 134:r 125:2 122:1 117:= 111:b 108:r 105:o 99:m 53:M 26:M

Index

quantum mechanics
magnetization
orbital motion
charged particles
electrons
solids
ferromagnetic
ferrimagnetic
magnetic material
magnetic field
magnetic moment
current density
SI units
Gaussian units
speed of light
quantum-mechanical
electron
wave function
angular momentum
electron spin g-factor
Bohr magneton
reduced Planck constant
spin operator
Bloch functions
crystal momentum
momentum operator
Brillouin zone
muffin-tin approximation
Wannier representation
wavevector

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.