Knowledge (XXG)

Organic electrochemical transistor

Source đź“ť

117:. In the latter type of device, ions do not penetrate into the channel, but rather accumulate near its surface (or near the surface of a dielectric layer, when such a layer is deposited on the channel). This induces accumulation of electronic charge inside the channel, near the surface. In contrast, in OECTs, ions are injected into the channel and change the electronic charge density throughout its entire volume. As a result of this bulk coupling between ionic and electronic charge, OECTs show a very high 40:. The exchange of ions is driven by a voltage applied to the gate electrode which is in ionic contact with the channel through the electrolyte. The migration of ions between the channel and the electrolyte is accompanied by electrochemical redox reactions occurring in the channel material. The electrochemical redox of the channel along with ion migration changes the conductivity of the channel in a process called electrochemical doping. OECTs are being explored for applications in 73:) present in the channel. When a voltage is applied to the gate, ions from the electrolyte are injected in the channel and change the electronic charge density, and hence the drain current. When the gate voltage is removed, the injected ions return to the electrolyte and the drain current goes back to its original value. However, some channel materials can hold the migrated ions even after removing the gate voltage enabling their use as memory devices. 137:. Advantages such as straightforward fabrication and miniaturization, compatibility with low-cost printing techniques, compatibility with a wide range of mechanical supports (including fibers, paper, plastic and elastomer), and stability in aqueous environments, led to their use in a variety of applications in biosensors. Moreover, their high transconductance makes OECTs powerful amplifying transducers. OECTs have been used to detect 69:. Source and drain electrodes establish electrical contact to the channel, while a gate electrode establishes electrical contact to the electrolyte. The electrolyte can be liquid, gel, or solid. In the most common biasing configuration, the source is grounded and a voltage (drain voltage) is applied to the drain. This causes a current to flow (drain current), due to electronic charge (usually 105:
from the electrolyte are injected into the PEDOT:PSS channel, where they compensate the negative charge on the sulfonate anions. This leads to electrochemical reduction of PEDOT from its oxidised state to its neutral state resulting in de-doping of the OECT channel. The OECT is then said to be in the
121:
along with an outstanding intrinsic gain. The disadvantage of OECTs is that they are slow, as they are limited by the inherently slow migration of ions into and out of the channel. However, micro-fabricated OECTs show response times of the order of hundreds of
48:
and large-area, low-cost electronics. OECTs can also be used as multi-bit memory devices that mimic the synaptic functionalities of the brain. For this reason, OECTs can be also being investigated as elements in neuromorphic computing applications.
414:
Inal, Sahika; Rivnay, Jonathan; Leleux, Pierre; Ferro, Marc; Ramuz, Marc; Brendel, Johannes C.; Schmidt, Martina M.; Thelakkat, Mukundan; Malliaras, George G. (2014-10-13). "A High Transconductance Accumulation Mode Electrochemical Transistor".
1633:
Jimison, Leslie H; Tria, Scherrine A.; Khodagholy, Dion; Gurfinkel, Moshe; Lanzarini, Erica; Hama, Adel; Malliaras, George G.; Owens, RĂłisĂ­n M. (2012-09-05). "Measurement of Barrier Tissue Integrity with an Organic Electrochemical Transistor".
1356:
Zhu, Zheng-Tao; Mabeck, Jeffrey T.; Zhu, Changcheng; Cady, Nathaniel C.; Batt, Carl A.; Malliaras, George G. (2004). "A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH".
1396:
Tang, Hao; Yan, Feng; Lin, Peng; Xu, Jianbin; Chan, Helen L. W. (2011-04-26). "Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials".
100:
exhibits a high electronic conductivity. When no gate voltage is applied, a high drain current flows through the highly conductive channel, and the OECT is said to be in the ON state. When a positive voltage is applied to the gate,
362:
Cho, Jeong Ho; Lee, Jiyoul; Xia, Yu; Kim, BongSoo; He, Yiyong; Renn, Michael J.; Lodge, Timothy P.; Daniel Frisbie, C. (2008-10-19). "Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic".
1802:
Leleux, Pierre; Rivnay, Jonathan; Lonjaret, Thomas; Badier, Jean-Michel; Bénar, Christian; Hervé, Thierry; Chauvel, Patrick; Malliaras, George G. (2014-09-29). "Organic Electrochemical Transistors for Clinical Applications".
1188:
Rivnay, Jonathan; Leleux, Pierre; Sessolo, Michele; Khodagholy, Dion; Hervé, Thierry; Fiocchi, Michel; Malliaras, George G. (2013-10-02). "Organic Electrochemical Transistors with Maximum Transconductance at Zero Gate Bias".
1693:
Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, SĂ©bastien; Owens, RĂłisĂ­n M.; Malliaras, George G. (2013-07-12).
997:
Zhang, Shiming; Hubis, Elizabeth; Girard, Camille; Kumar, Prajwal; DeFranco, John; Cicoira, Fabio (2016). "Water stability and orthogonal patterning of flexible micro-electrochemical transistors on plastic".
1854:
Yao, Chunlei; Li, Qianqian; Guo, Jing; Yan, Feng; Hsing, I-Ming (2014-10-31). "Rigid and Flexible Organic Electrochemical Transistor Arrays for Monitoring Action Potentials from Electrogenic Cells".
595:
Ferro, LetĂ­cia M. M.; Merces, Leandro; de Camargo, Davi H. S.; Bof Bufon, Carlos C. (2021-07-22). "Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes".
746:
White, Henry S.; Kittlesen, Gregg P.; Wrighton, Mark S. (1984). "Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor".
1519:
He, Rong-Xiang; Zhang, Meng; Tan, Fei; Leung, Polly H. M.; Zhao, Xing-Zhong; Chan, Helen L. W.; Yang, Mo; Yan, Feng (2012). "Detection of bacteria with organic electrochemical transistors".
474:
Kim, Se Hyun; Hong, Kihyon; Xie, Wei; Lee, Keun Hyung; Zhang, Sipei; Lodge, Timothy P.; Frisbie, C. Daniel (2012-12-02). "Electrolyte-Gated Transistors for Organic and Printed Electronics".
1450:
Lin, Peng; Luo, Xiaoteng; Hsing, I-Ming; Yan, Feng (2011-07-27). "Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for Label-Free DNA Sensing".
876:
Basiricò, L.; Cosseddu, P.; Scidà, A.; Fraboni, B.; Malliaras, G.G.; Bonfiglio, A. (2012). "Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors".
1033:
Zhang, Shiming; Hubis, Elizabeth; Tomasello, Gaia; Soliveri, Guido; Kumar, Prajwal; Cicoira, Fabio (2017-03-08). "Patterning of Stretchable Organic Electrochemical Transistors".
352:
A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker and K. Reuter, in PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, 2010), pp. 113-166.
1564:
Lin, Peng; Yan, Feng; Yu, Jinjiang; Chan, Helen L. W.; Yang, Mo (2010-08-20). "The Application of Organic Electrochemical Transistors in Cell-Based Biosensors".
1297:
Sessolo, Michele; Rivnay, Jonathan; Bandiello, Enrico; Malliaras, George G.; Bolink, Henk J. (2014-05-23). "Ion-Selective Organic Electrochemical Transistors".
1763:"Organic Electrochemical Transistors: Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold" 962:
Nilsson, D (2002-09-20). "An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper".
654:
Khodagholy, Dion; Gurfinkel, Moshe; Stavrinidou, Eleni; Leleux, Pierre; Herve, Thierry; Sanaur, SĂ©bastien; Malliaras, George G. (2011-10-17).
129:
OECTs were first developed in the 80’s by the group of Mark Wrighton. They are currently the focus of intense development for applications in
781:
Strakosas, Xenofon; Bongo, Manuelle; Owens, RĂłisĂ­n M. (2015-01-07). "The organic electrochemical transistor for biological applications".
703:
Szymanski, Marek; Tu, Deyu; Forchheimer, Robert (2017). "2-D Drift-Diffusion Simulation of Organic Electrochemical Transistors".
81: 212:
Bernards, D. A.; Malliaras, G. G. (2007-10-16). "Steady-State and Transient Behavior of Organic Electrochemical Transistors".
1911: 911:
Hamedi, Mahiar; Forchheimer, Robert; Inganäs, Olle (2007-04-04). "Towards woven logic from organic electronic fibres".
525:
Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; et al. (2013-07-12).
1916: 114: 107: 89: 816:
Nilsson, D.; Robinson, N.; Berggren, M.; Forchheimer, R. (2005-02-10). "Electrochemical Logic Circuits".
1127:
Lin, Peng; Yan, Feng (2011-11-21). "Organic Thin-Film Transistors for Chemical and Biological Sensing".
85: 866:
D. Nilsson, M. X. Chen, T. Kugler, T. Remonen, M. Armgarth and M. Berggren, Adv. Mater. 14, 51 (2002).
1707: 1643: 1573: 1459: 1306: 1261: 1250:"A sensor circuit using reference-based conductance switching in organic electrochemical transistors" 1198: 1077: 920: 825: 712: 667: 604: 538: 424: 372: 268: 318:
Owens, RĂłisĂ­n M.; Malliaras, George G. (2010). "Organic Electronics at the Interface with Biology".
1761:
Campana, Alessandra; Cramer, Tobias; Simon, Daniel T.; Berggren, Magnus; Biscarini, Fabio (2014).
1887: 1836: 1675: 1615: 1501: 1432: 1338: 1230: 1170: 1109: 849: 728: 636: 507: 456: 300: 256: 237: 1879: 1871: 1828: 1820: 1784: 1743: 1725: 1667: 1659: 1607: 1599: 1546: 1493: 1485: 1424: 1378: 1370: 1330: 1322: 1279: 1222: 1214: 1162: 1154: 1101: 1093: 1050: 1015: 979: 944: 936: 893: 841: 798: 763: 685: 628: 620: 574: 556: 499: 491: 448: 440: 396: 388: 335: 292: 284: 229: 62: 1863: 1812: 1774: 1733: 1715: 1651: 1589: 1581: 1536: 1528: 1475: 1467: 1414: 1406: 1362: 1314: 1269: 1206: 1144: 1136: 1085: 1042: 1007: 971: 928: 885: 833: 790: 755: 720: 675: 612: 564: 546: 483: 432: 380: 327: 276: 221: 142: 118: 1711: 1647: 1577: 1463: 1310: 1265: 1248:
Svensson, Per-Olof; Nilsson, David; Forchheimer, Robert; Berggren, Magnus (2008-11-17).
1202: 1081: 924: 829: 716: 671: 608: 542: 428: 376: 272: 1738: 1695: 569: 526: 130: 45: 975: 1905: 1505: 1342: 1234: 1174: 853: 640: 511: 460: 158: 70: 58: 37: 1891: 1840: 1679: 1619: 1436: 1113: 732: 304: 241: 123: 1046: 889: 134: 66: 33: 1089: 146: 25: 1875: 1824: 1788: 1729: 1663: 1603: 1550: 1489: 1428: 1374: 1326: 1283: 1218: 1158: 1097: 1054: 1019: 983: 940: 897: 845: 802: 767: 724: 689: 624: 560: 495: 444: 392: 339: 288: 233: 165:
activity in rats, and interface with electrically active cells and tissues.
126:. Accurate simulation of OECTs is possible using the drift-diffusion model. 97: 93: 77: 41: 1883: 1867: 1832: 1816: 1779: 1762: 1747: 1671: 1655: 1611: 1585: 1497: 1471: 1410: 1382: 1334: 1318: 1226: 1210: 1166: 1140: 1105: 1068:
Zhang, Shiming; Cicoira, Fabio (2018). "Flexible self-powered biosensors".
948: 837: 632: 616: 578: 503: 487: 452: 436: 400: 296: 280: 225: 110:
organic semiconductors (for example p(g2T-TT)), have also been described.
28:. The current flowing through the device is controlled by the exchange of 162: 154: 759: 331: 189: 174: 1720: 1594: 1541: 1532: 1480: 1419: 1149: 1011: 656:"High speed and high density organic electrochemical transistor arrays" 551: 1274: 1249: 794: 680: 655: 1366: 932: 384: 184: 150: 138: 102: 29: 180:
Department of Bioelectronics, Ecole des Mines de St. Etienne
1696:"High transconductance organic electrochemical transistors" 527:"High transconductance organic electrochemical transistors" 1076:(7724). Springer Science and Business Media LLC: 466–467. 257:"Active Materials for Organic Electrochemical Transistors" 179: 36:
and the OECT channel composed of an organic conductor or
24:) is an organic electronic device which functions like a 185:
Laboratory of Organic Electronics, Linkoping University
190:
C. Dan Frisbie Research group, University of Minnesota
1706:(1). Springer Science and Business Media LLC: 1575. 537:(1). Springer Science and Business Media LLC: 2133. 1361:(13). Royal Society of Chemistry (RSC): 1556–1557. 1006:(7). Royal Society of Chemistry (RSC): 1382–1385. 754:(18). American Chemical Society (ACS): 5375–5377. 175:Bioelectronics Laboratory, University of Cambridge 161:, measure the integrity of barrier tissue, detect 1041:(7). American Chemical Society (ACS): 3126–3132. 326:(6). Cambridge University Press (CUP): 449–456. 53:OECT device construction and operating mechanism 1527:(41). Royal Society of Chemistry (RSC): 22072. 207: 205: 106:OFF state. Accumulation mode OECTs, based on 8: 590: 588: 113:OECTs are different from electrolyte-gated 61:thin-film (the channel), usually made of a 1778: 1737: 1719: 1593: 1540: 1479: 1418: 1273: 1148: 679: 568: 550: 80:as the channel material, and work in the 748:Journal of the American Chemical Society 201: 705:IEEE Transactions on Electron Devices 255:Zeglio, Erica; Inganäs, Olle (2018). 65:, which is in direct contact with an 7: 96:anions of present in PSS and hence 783:Journal of Applied Polymer Science 18:organic electrochemical transistor 14: 964:Sensors and Actuators B: Chemical 1000:Journal of Materials Chemistry C 371:(11). Springer Nature: 900–906. 919:(5). Springer Nature: 357–362. 157:organisms, as well as to probe 59:semiconductor or even conductor 1521:Journal of Materials Chemistry 1260:(20). AIP Publishing: 203301. 666:(16). AIP Publishing: 163304. 133:, and in large-area, low-cost 1: 1856:Advanced Healthcare Materials 1805:Advanced Healthcare Materials 1399:Advanced Functional Materials 1047:10.1021/acs.chemmater.7b00181 976:10.1016/s0925-4005(02)00170-3 970:(2–3). Elsevier BV: 193–197. 214:Advanced Functional Materials 890:10.1016/j.orgel.2011.11.010 884:(2). Elsevier BV: 244–248. 1933: 1090:10.1038/d41586-018-06788-1 1642:(44). Wiley: 5919–5923. 1572:(33). Wiley: 3655–3660. 1458:(35). Wiley: 4035–4040. 1405:(12). Wiley: 2264–2272. 1305:(28). Wiley: 4803–4807. 1197:(48). Wiley: 7010–7014. 725:10.1109/TED.2017.2757766 482:(13). Wiley: 1822–1846. 423:(44). Wiley: 7450–7455. 220:(17). Wiley: 3538–3544. 115:field-effect transistors 1359:Chemical Communications 1254:Applied Physics Letters 660:Applied Physics Letters 1868:10.1002/adhm.201400406 1817:10.1002/adhm.201400356 1780:10.1002/adma.201470165 1656:10.1002/adma.201202612 1586:10.1002/adma.201000971 1472:10.1002/adma.201102017 1411:10.1002/adfm.201002117 1319:10.1002/adma.201400731 1211:10.1002/adma.201303080 1141:10.1002/adma.201103334 1035:Chemistry of Materials 838:10.1002/adma.200401273 617:10.1002/adma.202101518 603:(29). Wiley: 2101518. 488:10.1002/adma.201202790 437:10.1002/adma.201403150 281:10.1002/adma.201800941 226:10.1002/adfm.200601239 1862:(4). Wiley: 528–533. 1811:(1). Wiley: 142–147. 1700:Nature Communications 824:(3). Wiley: 353–358. 531:Nature Communications 86:organic semiconductor 789:(15). Wiley: 41735. 1912:Organic electronics 1773:(23). Wiley: 3873. 1712:2013NatCo...4.2133K 1648:2012AdM....24.5919J 1578:2010AdM....22.3655L 1464:2011AdM....23.4035L 1311:2014AdM....26.4803S 1266:2008ApPhL..93t3301S 1203:2013AdM....25.7010R 1135:(1). Wiley: 34–51. 1082:2018Natur.561..466Z 925:2007NatMa...6..357H 878:Organic Electronics 830:2005AdM....17..353N 760:10.1021/ja00330a070 717:2017ITED...64.5114S 672:2011ApPhL..99p3304K 609:2021AdM....3301518F 543:2013NatCo...4.2133K 429:2014AdM....26.7450I 377:2008NatMa...7..900C 332:10.1557/mrs2010.583 273:2018AdM....3000941Z 76:OECTs commonly use 57:OECTs consist of a 1767:Advanced Materials 1721:10.1038/ncomms3133 1636:Advanced Materials 1566:Advanced Materials 1533:10.1039/c2jm33667g 1452:Advanced Materials 1299:Advanced Materials 1191:Advanced Materials 1129:Advanced Materials 1012:10.1039/c5tc03664j 818:Advanced Materials 597:Advanced Materials 552:10.1038/ncomms3133 476:Advanced Materials 417:Advanced Materials 261:Advanced Materials 63:conjugated polymer 1275:10.1063/1.2975377 795:10.1002/app.41735 711:(12): 5114–5120. 681:10.1063/1.3652912 143:neurotransmitters 1924: 1917:Transistor types 1896: 1895: 1851: 1845: 1844: 1799: 1793: 1792: 1782: 1758: 1752: 1751: 1741: 1723: 1690: 1684: 1683: 1630: 1624: 1623: 1597: 1561: 1555: 1554: 1544: 1516: 1510: 1509: 1483: 1447: 1441: 1440: 1422: 1393: 1387: 1386: 1367:10.1039/b403327m 1353: 1347: 1346: 1294: 1288: 1287: 1277: 1245: 1239: 1238: 1185: 1179: 1178: 1152: 1124: 1118: 1117: 1065: 1059: 1058: 1030: 1024: 1023: 994: 988: 987: 959: 953: 952: 933:10.1038/nmat1884 913:Nature Materials 908: 902: 901: 873: 867: 864: 858: 857: 813: 807: 806: 778: 772: 771: 743: 737: 736: 700: 694: 693: 683: 651: 645: 644: 592: 583: 582: 572: 554: 522: 516: 515: 471: 465: 464: 411: 405: 404: 385:10.1038/nmat2291 365:Nature Materials 359: 353: 350: 344: 343: 315: 309: 308: 252: 246: 245: 209: 119:transconductance 1932: 1931: 1927: 1926: 1925: 1923: 1922: 1921: 1902: 1901: 1900: 1899: 1853: 1852: 1848: 1801: 1800: 1796: 1760: 1759: 1755: 1692: 1691: 1687: 1632: 1631: 1627: 1563: 1562: 1558: 1518: 1517: 1513: 1449: 1448: 1444: 1395: 1394: 1390: 1355: 1354: 1350: 1296: 1295: 1291: 1247: 1246: 1242: 1187: 1186: 1182: 1126: 1125: 1121: 1067: 1066: 1062: 1032: 1031: 1027: 996: 995: 991: 961: 960: 956: 910: 909: 905: 875: 874: 870: 865: 861: 815: 814: 810: 780: 779: 775: 745: 744: 740: 702: 701: 697: 653: 652: 648: 594: 593: 586: 524: 523: 519: 473: 472: 468: 413: 412: 408: 361: 360: 356: 351: 347: 317: 316: 312: 267:(44): 1800941. 254: 253: 249: 211: 210: 203: 198: 171: 88:PEDOT is doped 55: 12: 11: 5: 1930: 1928: 1920: 1919: 1914: 1904: 1903: 1898: 1897: 1846: 1794: 1753: 1685: 1625: 1556: 1511: 1442: 1388: 1348: 1289: 1240: 1180: 1119: 1060: 1025: 989: 954: 903: 868: 859: 808: 773: 738: 695: 646: 584: 517: 466: 406: 354: 345: 310: 247: 200: 199: 197: 194: 193: 192: 187: 182: 177: 170: 169:External links 167: 131:bioelectronics 82:depletion mode 54: 51: 46:bioelectronics 13: 10: 9: 6: 4: 3: 2: 1929: 1918: 1915: 1913: 1910: 1909: 1907: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1861: 1857: 1850: 1847: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1798: 1795: 1790: 1786: 1781: 1776: 1772: 1768: 1764: 1757: 1754: 1749: 1745: 1740: 1735: 1731: 1727: 1722: 1717: 1713: 1709: 1705: 1701: 1697: 1689: 1686: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1629: 1626: 1621: 1617: 1613: 1609: 1605: 1601: 1596: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1560: 1557: 1552: 1548: 1543: 1538: 1534: 1530: 1526: 1522: 1515: 1512: 1507: 1503: 1499: 1495: 1491: 1487: 1482: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1446: 1443: 1438: 1434: 1430: 1426: 1421: 1416: 1412: 1408: 1404: 1400: 1392: 1389: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1352: 1349: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1290: 1285: 1281: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1184: 1181: 1176: 1172: 1168: 1164: 1160: 1156: 1151: 1146: 1142: 1138: 1134: 1130: 1123: 1120: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1061: 1056: 1052: 1048: 1044: 1040: 1036: 1029: 1026: 1021: 1017: 1013: 1009: 1005: 1001: 993: 990: 985: 981: 977: 973: 969: 965: 958: 955: 950: 946: 942: 938: 934: 930: 926: 922: 918: 914: 907: 904: 899: 895: 891: 887: 883: 879: 872: 869: 863: 860: 855: 851: 847: 843: 839: 835: 831: 827: 823: 819: 812: 809: 804: 800: 796: 792: 788: 784: 777: 774: 769: 765: 761: 757: 753: 749: 742: 739: 734: 730: 726: 722: 718: 714: 710: 706: 699: 696: 691: 687: 682: 677: 673: 669: 665: 661: 657: 650: 647: 642: 638: 634: 630: 626: 622: 618: 614: 610: 606: 602: 598: 591: 589: 585: 580: 576: 571: 566: 562: 558: 553: 548: 544: 540: 536: 532: 528: 521: 518: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 470: 467: 462: 458: 454: 450: 446: 442: 438: 434: 430: 426: 422: 418: 410: 407: 402: 398: 394: 390: 386: 382: 378: 374: 370: 366: 358: 355: 349: 346: 341: 337: 333: 329: 325: 321: 314: 311: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 251: 248: 243: 239: 235: 231: 227: 223: 219: 215: 208: 206: 202: 195: 191: 188: 186: 183: 181: 178: 176: 173: 172: 168: 166: 164: 160: 159:cell adhesion 156: 152: 148: 144: 140: 136: 132: 127: 125: 120: 116: 111: 109: 104: 99: 95: 91: 87: 83: 79: 74: 72: 68: 64: 60: 52: 50: 47: 43: 39: 38:semiconductor 35: 31: 27: 23: 19: 1859: 1855: 1849: 1808: 1804: 1797: 1770: 1766: 1756: 1703: 1699: 1688: 1639: 1635: 1628: 1569: 1565: 1559: 1524: 1520: 1514: 1455: 1451: 1445: 1402: 1398: 1391: 1358: 1351: 1302: 1298: 1292: 1257: 1253: 1243: 1194: 1190: 1183: 1132: 1128: 1122: 1073: 1069: 1063: 1038: 1034: 1028: 1003: 999: 992: 967: 963: 957: 916: 912: 906: 881: 877: 871: 862: 821: 817: 811: 786: 782: 776: 751: 747: 741: 708: 704: 698: 663: 659: 649: 600: 596: 534: 530: 520: 479: 475: 469: 420: 416: 409: 368: 364: 357: 348: 323: 320:MRS Bulletin 319: 313: 264: 260: 250: 217: 213: 128: 124:microseconds 112: 75: 56: 21: 17: 15: 1595:10397/15450 1542:10397/12945 1481:10397/11943 1420:10397/33050 1150:10397/11453 147:metabolites 135:electronics 67:electrolyte 34:electrolyte 32:between an 1906:Categories 196:References 155:pathogenic 42:biosensors 26:transistor 1876:2192-2640 1825:2192-2640 1789:0935-9648 1730:2041-1723 1664:0935-9648 1604:0935-9648 1551:0959-9428 1506:205241505 1490:0935-9648 1429:1616-301X 1375:1359-7345 1343:205255158 1327:0935-9648 1284:0003-6951 1235:205251741 1219:0935-9648 1175:205242523 1159:0935-9648 1098:0028-0836 1055:0897-4756 1020:2050-7526 984:0925-4005 941:1476-1122 898:1566-1199 854:135787001 846:0935-9648 803:0021-8995 768:0002-7863 690:0003-6951 641:235269557 625:0935-9648 561:2041-1723 512:205247030 496:0935-9648 461:205257151 445:0935-9648 393:1476-1122 340:0883-7694 289:1521-4095 234:1616-301X 163:epileptic 108:intrinsic 98:PEDOT:PSS 94:sulfonate 78:PEDOT:PSS 1892:28927047 1884:25358525 1841:32442448 1833:25262967 1748:23851620 1680:22510220 1672:22949380 1620:39442648 1612:20661950 1498:21793055 1437:98742240 1383:15216378 1335:24862110 1227:24123258 1167:22102447 1114:52844636 1106:30258144 949:17406663 733:28231599 633:34061409 579:23851620 504:23203564 453:25312252 401:18931674 305:51699034 297:30022545 242:97447440 1739:3717497 1708:Bibcode 1644:Bibcode 1574:Bibcode 1460:Bibcode 1307:Bibcode 1262:Bibcode 1199:Bibcode 1078:Bibcode 921:Bibcode 826:Bibcode 713:Bibcode 668:Bibcode 605:Bibcode 570:3717497 539:Bibcode 425:Bibcode 373:Bibcode 269:Bibcode 103:cations 92:by the 1890:  1882:  1874:  1839:  1831:  1823:  1787:  1746:  1736:  1728:  1678:  1670:  1662:  1618:  1610:  1602:  1549:  1504:  1496:  1488:  1435:  1427:  1381:  1373:  1341:  1333:  1325:  1282:  1233:  1225:  1217:  1173:  1165:  1157:  1112:  1104:  1096:  1070:Nature 1053:  1018:  982:  947:  939:  896:  852:  844:  801:  766:  731:  688:  639:  631:  623:  577:  567:  559:  510:  502:  494:  459:  451:  443:  399:  391:  338:  303:  295:  287:  240:  232:  90:p-type 84:. The 1888:S2CID 1837:S2CID 1676:S2CID 1616:S2CID 1502:S2CID 1433:S2CID 1339:S2CID 1231:S2CID 1171:S2CID 1110:S2CID 850:S2CID 729:S2CID 637:S2CID 508:S2CID 457:S2CID 301:S2CID 238:S2CID 71:holes 1880:PMID 1872:ISSN 1829:PMID 1821:ISSN 1785:ISSN 1744:PMID 1726:ISSN 1668:PMID 1660:ISSN 1608:PMID 1600:ISSN 1547:ISSN 1494:PMID 1486:ISSN 1425:ISSN 1379:PMID 1371:ISSN 1331:PMID 1323:ISSN 1280:ISSN 1223:PMID 1215:ISSN 1163:PMID 1155:ISSN 1102:PMID 1094:ISSN 1051:ISSN 1016:ISSN 980:ISSN 945:PMID 937:ISSN 894:ISSN 842:ISSN 799:ISSN 764:ISSN 686:ISSN 629:PMID 621:ISSN 575:PMID 557:ISSN 500:PMID 492:ISSN 449:PMID 441:ISSN 397:PMID 389:ISSN 336:ISSN 293:PMID 285:ISSN 230:ISSN 139:ions 30:ions 22:OECT 16:The 1864:doi 1813:doi 1775:doi 1734:PMC 1716:doi 1652:doi 1590:hdl 1582:doi 1537:hdl 1529:doi 1476:hdl 1468:doi 1415:hdl 1407:doi 1363:doi 1315:doi 1270:doi 1207:doi 1145:hdl 1137:doi 1086:doi 1074:561 1043:doi 1008:doi 972:doi 929:doi 886:doi 834:doi 791:doi 787:132 756:doi 752:106 721:doi 676:doi 613:doi 565:PMC 547:doi 484:doi 433:doi 381:doi 328:doi 277:doi 222:doi 151:DNA 1908:: 1886:. 1878:. 1870:. 1858:. 1835:. 1827:. 1819:. 1807:. 1783:. 1771:26 1769:. 1765:. 1742:. 1732:. 1724:. 1714:. 1702:. 1698:. 1674:. 1666:. 1658:. 1650:. 1640:24 1638:. 1614:. 1606:. 1598:. 1588:. 1580:. 1570:22 1568:. 1545:. 1535:. 1525:22 1523:. 1500:. 1492:. 1484:. 1474:. 1466:. 1456:23 1454:. 1431:. 1423:. 1413:. 1403:21 1401:. 1377:. 1369:. 1337:. 1329:. 1321:. 1313:. 1303:26 1301:. 1278:. 1268:. 1258:93 1256:. 1252:. 1229:. 1221:. 1213:. 1205:. 1195:25 1193:. 1169:. 1161:. 1153:. 1143:. 1133:24 1131:. 1108:. 1100:. 1092:. 1084:. 1072:. 1049:. 1039:29 1037:. 1014:. 1002:. 978:. 968:86 966:. 943:. 935:. 927:. 915:. 892:. 882:13 880:. 848:. 840:. 832:. 822:17 820:. 797:. 785:. 762:. 750:. 727:. 719:. 709:64 707:. 684:. 674:. 664:99 662:. 658:. 635:. 627:. 619:. 611:. 601:33 599:. 587:^ 573:. 563:. 555:. 545:. 533:. 529:. 506:. 498:. 490:. 480:25 478:. 455:. 447:. 439:. 431:. 421:26 419:. 395:. 387:. 379:. 367:. 334:. 324:35 322:. 299:. 291:. 283:. 275:. 265:30 263:. 259:. 236:. 228:. 218:17 216:. 204:^ 153:, 149:, 145:, 141:, 44:, 1894:. 1866:: 1860:4 1843:. 1815:: 1809:4 1791:. 1777:: 1750:. 1718:: 1710:: 1704:4 1682:. 1654:: 1646:: 1622:. 1592:: 1584:: 1576:: 1553:. 1539:: 1531:: 1508:. 1478:: 1470:: 1462:: 1439:. 1417:: 1409:: 1385:. 1365:: 1345:. 1317:: 1309:: 1286:. 1272:: 1264:: 1237:. 1209:: 1201:: 1177:. 1147:: 1139:: 1116:. 1088:: 1080:: 1057:. 1045:: 1022:. 1010:: 1004:4 986:. 974:: 951:. 931:: 923:: 917:6 900:. 888:: 856:. 836:: 828:: 805:. 793:: 770:. 758:: 735:. 723:: 715:: 692:. 678:: 670:: 643:. 615:: 607:: 581:. 549:: 541:: 535:4 514:. 486:: 463:. 435:: 427:: 403:. 383:: 375:: 369:7 342:. 330:: 307:. 279:: 271:: 244:. 224:: 20:(

Index

transistor
ions
electrolyte
semiconductor
biosensors
bioelectronics
semiconductor or even conductor
conjugated polymer
electrolyte
holes
PEDOT:PSS
depletion mode
organic semiconductor
p-type
sulfonate
PEDOT:PSS
cations
intrinsic
field-effect transistors
transconductance
microseconds
bioelectronics
electronics
ions
neurotransmitters
metabolites
DNA
pathogenic
cell adhesion
epileptic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑