Knowledge (XXG)

Ordered Bell number

Source đź“ť

4255: 558: 3706:, and the outcome of a race that may contain ties (including all the horses, not just the first three finishers) may be described using a weak ordering. For this reason, the ordered Bell numbers count the possible number of outcomes of a horse race. In contrast, when items are ordered or ranked in a way that does not allow ties (such as occurs with the ordering of cards in a deck of cards, or batting orders among 8753: 4168:. For a restricted class of parking functions, in which each car parks either on its preferred spot or on the next spot, the number of parking functions is given by the ordered Bell numbers. Each restricted parking function corresponds to a weak ordering in which the cars that get their preferred spot are ordered by these spots, and each remaining car is tied with the car in its preferred spot. The 22: 1155: 3776:, cross-trained workers are allocated to groups of workers at different stages of a production line. The number of alternative assignments for a given number of workers, taking into account the choices of how many stages to use and how to assign workers to each stage, is an ordered Bell number. As another example, in the computer simulation of 4790:
are constructed by ranking certain constraints, and (in a phenomenon called factorial typology) the number of different grammars that can be formed in this way is limited to the number of permutations of the constraints. A paper reviewed by Ellison and Klein suggested an extension of this linguistic
4102:
parking spots. Each car has a preferred parking spot, given by its value in the sequence. When a car arrives on the street, it parks in its preferred spot, or, if that is full, in the next available spot. A sequence of preferences forms a parking function if and only if each car can find a parking
561:
13 plane trees with ordered leaves and equal-length root-leaf paths, with the gaps between adjacent leaves labeled by the height above the leaves of the nearest common ancestor. These labels induce a weak ordering on the gaps, showing that the trees of this type are counted by the ordered Bell
1656: 2105:
Here, the left hand side is just the definition of the exponential generating function and the right hand side is the function obtained from this summation. The form of this function corresponds to the fact that the ordered Bell numbers are the numbers in the first column of the
3767:
with a numeric keypad, in which several keys may be pressed simultaneously and a combination consists of a sequence of keypresses that includes each key exactly once. As they show, the number of different combinations in such a system is given by the ordered Bell numbers. In
5207:
term from the sum (because only nonempty sequences are considered), and adding one separately from the sum (to make the result exceed, rather than equalling, the sum). These differences have offsetting effects, and the resulting weights are the ordered Bell numbers.
1858: 131:
on equivalent forms of multiple integrals. Because weak orderings have many names, ordered Bell numbers may also be called by those names, for instance as the numbers of preferential arrangements or the numbers of asymmetric generalized weak orders.
2363: 4791:
model in which ties between constraints are allowed, so that the ranking of constraints becomes a weak order rather than a total order. As they point out, the much larger magnitude of the ordered Bell numbers, relative to the corresponding
3843:
prime factors, an ordered multiplicative partition can be described by a weak ordering on its prime factors, describing which prime appears in which term of the partition. Thus, the number of ordered multiplicative partitions is given by
1044: 3974:
ordered multiplicative partitions. Numbers that are neither squarefree nor prime powers have a number of ordered multiplicative partitions that (as a function of the number of prime factors) is between these two extreme cases.
1469: 2103: 4524:
arguments to the relation and false for others. He defines the "complexity" of a relation to mean the number of other relations one can derive from the given one by permuting and repeating its arguments. For instance, for
191:
of this relation partition the elements of the ordering into subsets of mutually tied elements, and these equivalence classes can then be linearly ordered by the weak ordering. Thus, a weak ordering can be described as an
2830: 3216:
choices of the weak ordering on the rest of the elements. Multiplying these two factors, and then summing over the choices of how many elements to include in the first set, gives the number of weak orderings,
752:
Because weak orderings can be described as total orderings on the subsets of a partition, one can count weak orderings by counting total orderings and partitions, and combining the results appropriately. The
5141: 3069: 1698: 1743: 2483: 2532: 3585: 3514: 6059: 5958: 3444: 2232: 3374: 932: 792: 4954:, the problem of assigning weights to sequences of words with the property that the weight of any sequence exceeds the sum of weights of all its subsequences can be solved by using weight 4250: 1123: 2890: 2922: 1325:, the convex hull of points whose coordinates are permutations of (1,2,3,4), in the three-dimensional subspace of points whose coordinate sum is 10. This polyhedron has one volume ( 1994:
and working with the function that results from summing this series can provide useful information about the sequence. The fast growth of the ordered Bell numbers causes their
6855: 3179: 4878: 4849: 964: 4489: 4166: 2152: 2623: 2005: 5411: 4431: 4392: 3972: 2959: 517: 5176: 4770: 4732: 4694: 4659: 4624: 3279: 3214: 2714: 1149: 4458: 4314: 4283: 2556: 2383: 1980: 1885: 5205: 5030: 4981: 4351: 3871: 3244: 2743: 2652: 400: 298: 4549: 3138: 2856: 2413: 1453: 1427: 1401: 1375: 1349: 1295: 1237: 644: 598: 547: 371: 3754: 955: 857:
total orderings of its subsets. Therefore, the ordered Bell numbers can be counted by summing over the possible numbers of subsets in a partition (the parameter
855: 6099: 6079: 5998: 5978: 5001: 4930: 4906: 4589: 4569: 4522: 4121: 4100: 4080: 4060: 4040: 4020: 4000: 3939: 3915: 3895: 3841: 3728: 3675: 3655: 3635: 3611: 3303: 3112: 3092: 2676: 2580: 2220: 2196: 2172: 1953: 1929: 1905: 1738: 1718: 1315: 1269: 1211: 1191: 895: 875: 832: 812: 692: 664: 618: 484: 440: 318: 269: 86: 6682:; Meyles et al credit the connection between parking functions and ordered Bell numbers to a 2021 bachelor's thesis by Kimberly P. Hadaway of Williams College 3694:
faces, Cayley trees, Cayley permutations, and equivalent formulae in Fubini's theorem. Weak orderings in turn have many other applications. For instance, in
2748: 4803:
If a fair coin (with equal probability of heads or tails) is flipped repeatedly until the first time the result is heads, the number of tails follows a
6012: 5384: 4320:. The faces of the complex intersect the sphere in 24 triangles, 36 arcs, and 14 vertices; one more face, at the center of the sphere, is not visible. 736: 412: 6848: 5038: 4394:. Here, a Coxeter group can be thought of as a finite system of reflection symmetries, closed under repeated reflections, whose mirrors partition a 704:. These numbers were called Fubini numbers by Louis Comtet, because they count the different ways to rearrange the ordering of sums or integrals in 694:
positive integers that include at least one copy of each positive integer between one and the maximum value in the sequence) "Cayley permutations".
6740:
Proceedings of the 18th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC / SFCA), San Diego, California, 2006
6629: 5750: 418:
When the elements to be ordered are unlabeled (only the number of elements in each tied set matters, not their identities) what remains is a
1651:{\displaystyle a(n)=\sum _{k=0}^{n}\sum _{j=0}^{k}(-1)^{k-j}{\binom {k}{j}}j^{n}={\frac {1}{2}}\sum _{m=0}^{\infty }{\frac {m^{n}}{2^{m}}}.} 6764: 6166: 4491:
angles. The complex formed by these three lines has 13 faces: the origin, six rays from the origin, and six regions between pairs of rays.
2418: 600:
totally ordered leaves. In the trees considered by Cayley, each root-to-leaf path has the same length, and the number of nodes at distance
1462:, the formula for the ordered Bell numbers may be expanded out into a double summation. The ordered Bell numbers may also be given by an 7655: 6841: 754: 8782: 7650: 6499: 3281:(there is one weak ordering on zero items). Based on this recurrence, these numbers can be shown to obey certain periodic patterns in 1429:). The total number of these faces is 1 + 14 + 36 + 24 = 75, an ordered Bell number, corresponding to the summation formula above for 7665: 7645: 5250:. Because of this application, de Koninck calls these numbers "horse numbers", but this name does not appear to be in widespread use. 3593:. Peter Bala has conjectured that this sequence is eventually periodic (after a finite number of terms) modulo each positive integer 6507: 6377: 6352: 5626: 5319: 5244: 4172:, counted by the factorials, are parking functions for which each car parks on its preferred spot. This application also provides a 1982:
weak orderings, distinguished from each other by the subset of the consecutive increasing pairs that are tied in the weak ordering.
4183: 8358: 7938: 6692: 2978: 1666: 5874: 5711: 2222:
starts with the numbers in the same row of Pascal's triangle, and then continues with an infinite repeating sequence of zeros.
1999: 739:(OEIS). This became one of the first successful uses of the OEIS to discover equivalences between different counting problems. 6587:
Zhu, Yi; Filipov, Evgueni T. (October 2019), "An efficient numerical approach for simulating contact in origami assemblages",
7660: 6301: 5836: 5654: 8444: 674:
call the trees of this type "Cayley trees", and they call the sequences that may be used to label their gaps (sequences of
6202: 6161: 3703: 2488: 7760: 3803:. For instance, 30 has 13 multiplicative partitions, as a product of one divisor (30 itself), two divisors (for instance 3521: 8110: 7429: 7222: 4815: 3450: 1995: 724:, and the weak orderings that are counted by the ordered Bell numbers may be interpreted as a partition together with a 8145: 8115: 7790: 7780: 3114:
items that go into the first equivalence class of the ordering, together with a smaller weak ordering on the remaining
8286: 7700: 7434: 7414: 6021: 5920: 3918: 3380: 419: 7976: 3614: 2535: 8140: 3310: 900: 760: 8777: 8235: 7858: 7615: 7424: 7406: 7300: 7290: 7280: 8120: 3759:
Problems in many areas can be formulated using weak orderings, with solutions counted using ordered Bell numbers.
8363: 7908: 7529: 7315: 7310: 7305: 7295: 7272: 6697: 6257: 5178:. This recurrence differs from the one given earlier for the ordered Bell numbers, in two respects: omitting the 3897:, an ordered multiplicative partition is a product of powers of the same prime number, with exponents summing to 49: 6817:
Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), 1–4 November 2004, Brighton, UK
1853:{\displaystyle a(n)=\sum _{k=0}^{n-1}2^{k}\left\langle {\begin{matrix}n\\k\end{matrix}}\right\rangle =A_{n}(2),} 7348: 6456: 3792: 1053: 148: 7605: 1169:
An alternative interpretation of the terms of this sum is that they count the features of each dimension in a
2861: 8474: 8439: 8225: 8135: 8009: 7984: 7893: 7883: 7495: 7477: 7397: 5688: 4940: 2895: 1911:. One way to explain this summation formula involves a mapping from weak orderings on the numbers from 1 to 104: 4912:. Truncating this series to a bounded number of terms and then applying the result for unbounded values of 2562:. That is, the ratio between the ordered Bell numbers and their approximation tends to one in the limit as 700:
traces the problem of counting weak orderings, which has the same sequence as its solution, to the work of
8734: 8004: 7878: 7509: 7285: 7065: 6992: 6531: 5605: 4804: 4177: 2559: 1046:
By general results on summations involving Stirling numbers, it follows that the ordered Bell numbers are
667: 2358:{\displaystyle a(n)={\frac {n!}{2}}\sum _{k=-\infty }^{\infty }(\log 2+2\pi ik)^{-(n+1)},\qquad n\geq 1.} 7989: 7843: 7770: 6925: 6299:
Barthélémy, J.-P. (1980), "An asymptotic equivalent for the number of total preorders on a finite set",
5230: 176: 8698: 8338: 171:. This possibility describes various real-world scenarios, including certain sporting contests such as 3143: 2534:. Thus, the ordered Bell numbers are larger than the factorials by an exponential factor. Here, as in 466:} discussed above corresponds in this way to the composition 2 + 1 + 3. The number of compositions of 8631: 8525: 8489: 8230: 7953: 7933: 7750: 7419: 7207: 7179: 6118: 5536: 5455: 5268: 4881: 4854: 4825: 4808: 2655: 2199: 1459: 1322: 1159: 184: 136: 1935:, obtained by sorting each tied set into numerical order. Under this mapping, each permutation with 8353: 8217: 8212: 8180: 7943: 7918: 7913: 7888: 7818: 7814: 7745: 7467: 7263: 7232: 6425: 5803: 5033: 4936: 4885: 4173: 2970: 2389:. This leads to an approximation for the ordered Bell numbers, obtained by using only the term for 2226: 705: 571: 140: 128: 8752: 4254: 731:
The equivalence between counting Cayley trees and counting weak orderings was observed in 1970 by
8756: 8510: 8505: 8419: 8393: 8291: 8270: 8042: 7923: 7873: 7795: 7765: 7705: 7472: 7452: 7383: 7096: 6773: 6743: 6714: 6672: 6540: 6394: 6282: 6235: 6219: 6135: 5883: 5579: 5563: 5545: 5495: 5430: 5336: 5285: 4467: 4126: 3282: 2112: 721: 116: 7640: 5600: 6732: 2593: 8650: 8595: 8449: 8424: 8398: 8175: 7853: 7848: 7775: 7755: 7740: 7462: 7444: 7363: 7353: 7338: 7116: 7101: 6624: 6503: 6493: 6348: 5633: 5622: 5263: 5240: 4779: 4772:
obtained by repeating an argument. (Repeating the other argument produces the same relation.)
4697: 4498: 3982:, in mathematics, is a finite sequence of positive integers with the property that, for every 2583: 2386: 193: 188: 65: 4401: 4364: 3944: 2931: 489: 8686: 8479: 8065: 8037: 8027: 8019: 7903: 7868: 7863: 7830: 7524: 7487: 7378: 7373: 7368: 7358: 7330: 7217: 7169: 7164: 7121: 7060: 6820: 6783: 6706: 6664: 6638: 6604: 6596: 6570: 6465: 6386: 6340: 6310: 6266: 6211: 6175: 6127: 5893: 5845: 5759: 5663: 5649: 5614: 5555: 5534:(2010), "The hypercube of resistors, asymptotic expansions, and preferential arrangements", 5487: 5420: 5328: 5277: 5234: 5146: 4787: 4740: 4702: 4664: 4629: 4594: 3979: 3796: 3764: 3249: 3184: 2684: 1128: 717: 108: 6795: 6650: 6479: 6438: 6406: 6362: 6322: 6278: 6231: 6187: 6147: 5905: 5859: 5816: 5771: 5675: 5575: 5507: 5442: 5348: 5297: 4436: 4292: 4261: 2541: 2368: 2229:
of this generating function, the ordered Bell numbers can be expressed by the infinite sum
1990:
As with many other integer sequences, reinterpreting the sequence as the coefficients of a
1958: 1863: 834:
nonempty subsets. A weak ordering may be obtained from such a partition by choosing one of
557: 8662: 8551: 8484: 8410: 8333: 8307: 8125: 7838: 7695: 7630: 7600: 7590: 7585: 7251: 7159: 7106: 6950: 6890: 6791: 6646: 6475: 6434: 6402: 6358: 6318: 6274: 6227: 6183: 6143: 5901: 5855: 5812: 5767: 5671: 5571: 5503: 5438: 5344: 5293: 5181: 5006: 4957: 4909: 4461: 4395: 4354: 4327: 3847: 3220: 2719: 2628: 2175: 2107: 1908: 1661: 1463: 1318: 1240: 376: 274: 180: 144: 6525:
Ellison, T. Mark; Klein, Ewan (2001), "Review: The Best of All Possible Words (review of
4528: 3117: 2835: 2392: 1432: 1406: 1380: 1354: 1328: 1274: 1216: 623: 577: 526: 350: 6223: 5567: 3736: 937: 837: 8667: 8535: 8520: 8384: 8348: 8323: 8199: 8170: 8155: 8032: 7928: 7898: 7625: 7580: 7457: 7055: 7050: 7045: 7017: 7002: 6915: 6900: 6878: 6865: 6609: 6084: 6064: 5983: 5963: 5531: 5473: 4986: 4951: 4944: 4915: 4891: 4735: 4574: 4554: 4507: 4106: 4085: 4065: 4045: 4025: 4005: 3985: 3924: 3900: 3880: 3826: 3781: 3713: 3660: 3640: 3620: 3596: 3288: 3097: 3077: 2661: 2587: 2565: 2205: 2181: 2157: 1938: 1914: 1890: 1723: 1703: 1300: 1254: 1196: 1176: 880: 860: 817: 797: 677: 649: 603: 469: 425: 303: 254: 71: 5719:(revised and enlarged ed.), D. Reidel Publishing Co., p. 228, archived from 5425: 8771: 8590: 8574: 8515: 8469: 8165: 8150: 8060: 7785: 7343: 7212: 7174: 7131: 7012: 6997: 6987: 6945: 6935: 6910: 6314: 6286: 6239: 5850: 5748:
Knopfmacher, A.; Mays, M. E. (2005), "A survey of factorization counting functions",
5667: 5596: 4358: 3788: 3773: 3691: 1170: 1163: 1039:{\displaystyle a(n)=\sum _{k=0}^{n}k!\left\{{\begin{matrix}n\\k\end{matrix}}\right\}} 156: 100: 61: 45: 6454:; MaĂŻga, Hamadoun (2017), "Some new identities and congruences for Fubini numbers", 6116:
Velleman, Daniel J.; Call, Gregory S. (1995), "Permutations and combination locks",
5720: 5583: 8626: 8615: 8530: 8368: 8343: 8260: 8160: 8130: 8105: 8089: 7994: 7961: 7710: 7684: 7595: 7534: 7111: 7007: 6940: 6920: 6895: 6589:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
6451: 6420: 5478: 4819: 4317: 3816: 3699: 3695: 1991: 732: 709: 124: 6810:"Spam filtering using a Markov random field model with variable weighting schemas" 5872:
Liu, Lily L.; Wang, Yi (2007), "On the log-convexity of combinatorial sequences",
3780:, the ordered Bell numbers give the number of orderings in which the creases of a 2098:{\displaystyle \sum _{n=0}^{\infty }a(n){\frac {x^{n}}{n!}}={\frac {1}{2-e^{x}}}.} 6809: 5618: 2969:
As well as the formulae above, the ordered Bell numbers may be calculated by the
8585: 8460: 8265: 7729: 7620: 7575: 7570: 7320: 7227: 7126: 6955: 6930: 6905: 6164:; Woan, Wen Jin; Woodson, Leon C. (1992), "How to guess a generating function", 6002: 5374: 4783: 4286: 4169: 3874: 3590: 2924:. This sequence of approximations, and this example from it, were calculated by 1932: 1248: 1244: 725: 713: 520: 197: 120: 112: 6667:; Jordaan, Richter; Kirby, Gordon Rojas; Sehayek, Sam; Spingarn, Ethan (2023), 4103:
spot on or after its preferred spot. The number of parking functions of length
2928:, using a general method for solving equations numerically (here, the equation 344:, or with both tied. The figure shows the 13 weak orderings on three elements. 8722: 8703: 7999: 7610: 6642: 6574: 6470: 6344: 6018:, which gives the row-by-row ordering of an infinite triangle of numbers with 5897: 5791: 5787: 5763: 4285:
cuts space into 24 triangular cones, shown here by their intersections with a
3812: 3690:
As has already been mentioned, the ordered Bell numbers count weak orderings,
1047: 172: 168: 152: 93: 89: 6833: 6215: 5559: 3756:, which is significantly smaller than the corresponding ordered Bell number. 1660:
Another summation formula expresses the ordered Bell numbers in terms of the
442:
as an ordered sum of positive integers. For instance, the ordered partition {
405:
1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, ... (sequence
8328: 8255: 8247: 8052: 7966: 7084: 6824: 5406: 4947:
WQSym whose dimensions in each grade are given by the ordered Bell numbers.
4792: 3731: 2925: 958: 666:
pairs of adjacent leaves, that may be weakly ordered by the height of their
620:
from the root must be strictly smaller than the number of nodes at distance
21: 6600: 6529:, Archangeli, Diana & Langendoen, D. Terence, eds., Blackwell, 1997)", 1154: 320:
elements. For instance, there are three weak orderings on the two elements
119:; the ordered Bell numbers count partitions that have been equipped with a 6270: 8429: 6255:
Bailey, Ralph W. (1998), "The number of weak orderings of a finite set",
3707: 123:. Their alternative name, the Fubini numbers, comes from a connection to 88:
elements. Weak orderings arrange their elements into a sequence allowing
3589:
Many more modular identities are known, including identities modulo any
8434: 8093: 6718: 6544: 6398: 6139: 5499: 5434: 5340: 5289: 3800: 3777: 1162:, with its vertices labeled by their four-dimensional coordinates as a 6808:
Chhabra, Shalendra; Yerazunis, William S.; Siefkes, Christian (2004),
6787: 6748: 5888: 3799:
is a representation of the number as a product of one or more of its
3784:
can be folded, allowing sets of creases to be folded simultaneously.
2825:{\displaystyle \lim _{n\to \infty }{\frac {n\,a(n-1)}{a(n)}}=\log 2.} 6710: 6390: 6179: 6131: 5491: 5462:, Graduate Texts in Mathematics, vol. 152, Springer, p. 18 5332: 5281: 4504:, mathematical statements that might be true of some choices of the 6677: 3819:; 30 is squarefree, but 20 is not, because its prime factorization 200:
on the sets of the partition. For instance, the ordered partition {
6778: 6375:
Kauffman, Dolores H. (1963), "Note on preferential arrangements",
5834:
Sprugnoli, Renzo (1994), "Riordan arrays and combinatorial sums",
5550: 4253: 1153: 20: 5713:
Advanced Combinatorics: The Art of Finite and Infinite Expansions
3074:
The intuitive meaning of this formula is that a weak ordering on
25:
The 13 possible strict weak orderings on a set of three elements
6561:
system balancing: Definition, formulation, and exact solution",
6492:
Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael J. (2008),
4795:, allows this theory to generate a much richer set of grammars. 1458:
By expanding each Stirling number in this formula into a sum of
135:
These numbers may be computed via a summation formula involving
8720: 8684: 8648: 8612: 8572: 8197: 8086: 7812: 7727: 7682: 7559: 7249: 7196: 7148: 7082: 7034: 6972: 6876: 6837: 3094:
items may be broken down into a choice of some nonempty set of
167:
Weak orderings arrange their elements into a sequence allowing
5136:{\displaystyle W(n)=1+\sum _{k=1}^{n-1}{\binom {n}{k}}W(n-1),} 4818:
of the ordered Bell numbers fails to converge, it describes a
3702:
have eliminated most but not all ties, called in this context
5476:(1956), "Semiorders and a theory of utility discrimination", 99:
The ordered Bell numbers were studied in the 19th century by
519:. This is because a composition is determined by its set of 6006: 5378: 1321:. For instance, the three-dimensional permutohedron is the 407: 4002:
up to the sequence length, the sequence contains at least
3064:{\displaystyle a(n)=\sum _{i=1}^{n}{\binom {n}{i}}a(n-i).} 1693:{\displaystyle \langle {\scriptstyle {n \atop k}}\rangle } 224:} describes an ordered partition on six elements in which 6557:
Yu, Yang; Wang, Junwei; Ma, Ke; Sun, Wei (August 2018), "
232:
are tied and both less than the other four elements, and
5409:(1952), "On the factorization of squarefree integers", 4932:
approximates the resistance to arbitrarily high order.
646:, until reaching the leaves. In such a tree, there are 175:. A weak ordering can be formalized axiomatically by a 6762:
FĂ©ray, Valentin (2015), "Cyclic inclusion-exclusion",
6035: 5934: 5695:, Deighton: Bell and Co., Proposition XXII, p. 93 4859: 4830: 3148: 2499: 1804: 1674: 1015: 908: 768: 6669:
Unit-interval parking functions and the permutohedron
6200:
Lewis, Barry (2010), "Revisiting the Pascal matrix",
6087: 6067: 6024: 5986: 5966: 5923: 5184: 5149: 5041: 5009: 4989: 4960: 4918: 4894: 4857: 4828: 4743: 4705: 4667: 4632: 4597: 4577: 4557: 4531: 4510: 4470: 4439: 4404: 4398:
into the cells of the Coxeter complex. For instance,
4367: 4330: 4295: 4264: 4186: 4129: 4109: 4088: 4068: 4048: 4028: 4008: 3988: 3947: 3927: 3903: 3883: 3850: 3829: 3739: 3716: 3663: 3643: 3623: 3599: 3524: 3453: 3383: 3313: 3291: 3252: 3223: 3187: 3146: 3120: 3100: 3080: 2981: 2934: 2898: 2864: 2838: 2751: 2722: 2687: 2664: 2631: 2596: 2568: 2544: 2491: 2478:{\displaystyle a(n)\sim {\frac {1}{2}}{n!}\,c^{n+1},} 2421: 2395: 2371: 2235: 2208: 2184: 2160: 2115: 2008: 1961: 1941: 1917: 1893: 1866: 1746: 1726: 1706: 1669: 1472: 1435: 1409: 1383: 1357: 1331: 1303: 1277: 1257: 1219: 1199: 1179: 1131: 1056: 967: 940: 903: 883: 863: 840: 820: 800: 763: 680: 652: 626: 606: 580: 529: 492: 472: 428: 379: 353: 306: 277: 257: 143:. They also count combinatorial objects that have a 74: 2527:{\displaystyle c={\tfrac {1}{\log 2}}\approx 1.4427} 1740:
pairs of consecutive items are in increasing order:
1271:. These vectors are defined in a space of dimension 523:, which may be any subset of the integers from 1 to 8544: 8498: 8458: 8409: 8383: 8316: 8300: 8279: 8246: 8211: 8051: 8018: 7975: 7952: 7829: 7517: 7508: 7486: 7443: 7405: 7396: 7329: 7271: 7262: 6423:(1988), "Periodicity of a combinatorial sequence", 5601:"On the analytical forms called trees, second part" 4811:of this distribution are the ordered Bell numbers. 3580:{\displaystyle a(n+500)\equiv a(n){\pmod {10000}}.} 6093: 6073: 6053: 5992: 5972: 5952: 5317:Gross, O. A. (1962), "Preferential arrangements", 5199: 5170: 5135: 5024: 4995: 4975: 4924: 4900: 4872: 4843: 4764: 4726: 4688: 4653: 4618: 4583: 4563: 4543: 4516: 4483: 4452: 4425: 4386: 4345: 4308: 4277: 4244: 4160: 4115: 4094: 4074: 4054: 4034: 4014: 3994: 3966: 3933: 3909: 3889: 3865: 3835: 3748: 3722: 3669: 3649: 3629: 3605: 3579: 3509:{\displaystyle a(n+100)\equiv a(n){\pmod {1000}},} 3508: 3438: 3368: 3297: 3273: 3238: 3208: 3173: 3132: 3106: 3086: 3063: 2953: 2916: 2884: 2850: 2824: 2737: 2708: 2670: 2646: 2617: 2574: 2550: 2526: 2477: 2407: 2377: 2357: 2214: 2190: 2166: 2146: 2097: 1974: 1947: 1923: 1899: 1879: 1852: 1732: 1712: 1692: 1650: 1447: 1421: 1395: 1369: 1343: 1309: 1289: 1263: 1231: 1205: 1185: 1143: 1117: 1038: 949: 926: 889: 869: 849: 826: 806: 786: 686: 658: 638: 612: 592: 541: 511: 478: 434: 422:or ordered integer partition, a representation of 394: 365: 312: 292: 263: 80: 5106: 5093: 4939:, an analogous construction to the (commutative) 4062:, describes the following process: a sequence of 3823:repeats the prime 2. For squarefree numbers with 3034: 3021: 1571: 1558: 300:, gives the number of distinct weak orderings on 6054:{\displaystyle k!\{{\scriptstyle {n \atop k}}\}} 5953:{\displaystyle k!\{{\scriptstyle {n \atop k}}\}} 5412:Proceedings of the American Mathematical Society 4661:derived relations. These are the given relation 3439:{\displaystyle a(n+20)\equiv a(n){\pmod {100}},} 2753: 2415:in this sum and discarding the remaining terms: 1297:, but they and their convex hull all lie in an 566:The ordered Bell numbers appear in the work of 6625:"A survey of factorization counting functions" 4464:across three lines that meet at the origin at 4180:on the ordered Bell numbers of a simple form, 3369:{\displaystyle a(n+4)\equiv a(n){\pmod {10}},} 2002:is used. For the ordered Bell numbers, it is: 927:{\displaystyle \{{\scriptstyle {n \atop k}}\}} 787:{\displaystyle \{{\scriptstyle {n \atop k}}\}} 6849: 6733:"Polynomial realizations of some trialgebras" 3164: 3151: 8: 6048: 6031: 5947: 5930: 5829: 5827: 5825: 5239:, American Mathematical Society, p. 4, 4775: 4734:obtained by swapping the arguments, and the 4245:{\displaystyle n!\leq a(n)\leq (n+1)^{n-1}.} 3760: 1687: 1670: 921: 904: 781: 764: 6819:, IEEE Computer Society, pp. 347–350, 6731:Novelli, J.-C.; Thibon, J.-Y. (June 2006), 5258: 5256: 1247:of points whose coordinate vectors are the 1213:th term counting the features of dimension 671: 155:number or the faces of all dimensions of a 147:to the weak orderings, such as the ordered 8717: 8681: 8645: 8609: 8569: 8243: 8208: 8194: 8083: 7826: 7809: 7724: 7679: 7556: 7514: 7402: 7268: 7259: 7246: 7193: 7150:Possessing a specific set of other numbers 7145: 7079: 7031: 6969: 6873: 6856: 6842: 6834: 670:; this weak ordering determines the tree. 92:, such as might arise as the outcome of a 6777: 6747: 6676: 6608: 6469: 6339:, Springer-Verlag, New York, p. 42, 6250: 6248: 6086: 6066: 6036: 6034: 6023: 6013:On-Line Encyclopedia of Integer Sequences 5985: 5965: 5935: 5933: 5922: 5887: 5849: 5698: 5549: 5424: 5385:On-Line Encyclopedia of Integer Sequences 5183: 5148: 5105: 5092: 5090: 5078: 5067: 5040: 5008: 4988: 4959: 4917: 4893: 4858: 4856: 4829: 4827: 4742: 4704: 4666: 4631: 4596: 4576: 4556: 4530: 4509: 4497:uses the ordered Bell numbers to analyze 4475: 4469: 4444: 4438: 4403: 4372: 4366: 4329: 4300: 4294: 4269: 4263: 4227: 4185: 4146: 4128: 4108: 4087: 4067: 4047: 4027: 4007: 3987: 3952: 3946: 3926: 3917:, and this ordered sum of exponents is a 3902: 3882: 3849: 3828: 3738: 3715: 3662: 3642: 3622: 3598: 3558: 3523: 3487: 3452: 3417: 3382: 3347: 3312: 3290: 3251: 3222: 3186: 3163: 3150: 3147: 3145: 3119: 3099: 3079: 3033: 3020: 3018: 3012: 3001: 2980: 2939: 2933: 2897: 2868: 2863: 2837: 2774: 2768: 2756: 2750: 2721: 2686: 2663: 2630: 2595: 2582:grows arbitrarily large. As expressed in 2567: 2543: 2498: 2490: 2460: 2455: 2447: 2437: 2420: 2394: 2370: 2321: 2284: 2270: 2251: 2234: 2207: 2183: 2159: 2135: 2114: 2083: 2067: 2048: 2042: 2024: 2013: 2007: 1966: 1960: 1940: 1916: 1892: 1871: 1865: 1832: 1803: 1793: 1777: 1766: 1745: 1725: 1705: 1675: 1673: 1668: 1637: 1627: 1621: 1615: 1604: 1590: 1581: 1570: 1557: 1555: 1543: 1524: 1513: 1503: 1492: 1471: 1434: 1408: 1382: 1356: 1330: 1302: 1276: 1256: 1218: 1198: 1178: 1130: 1118:{\displaystyle a(n-1)a(n+1)\geq a(n)^{2}} 1109: 1055: 1014: 998: 987: 966: 939: 909: 907: 902: 882: 862: 839: 819: 799: 769: 767: 762: 737:On-Line Encyclopedia of Integer Sequences 701: 697: 679: 651: 625: 605: 579: 528: 497: 491: 471: 427: 378: 352: 305: 276: 256: 73: 1955:consecutive increasing pairs comes from 1050:, meaning that they obey the inequality 556: 6502:(2nd ed.), Springer, p. 132, 6111: 6109: 6107: 5782: 5780: 5743: 5741: 5739: 5401: 5399: 5397: 5395: 5312: 5310: 5308: 5306: 5225: 5223: 5221: 5217: 2885:{\displaystyle 375/541\approx 0.693161} 897:, multiplying the number of partitions 6695:(1956), "Two measures of complexity", 6630:International Journal of Number Theory 6563:Computers & Industrial Engineering 5751:International Journal of Number Theory 5369: 5367: 5365: 5363: 5361: 5359: 5357: 4494: 3710:players), the number of orderings for 2917:{\displaystyle \log 2\approx 0.693145} 567: 248:, which are all tied with each other. 6623:Knopfmacher, A.; Mays, M. E. (2005), 6520: 6518: 5526: 5524: 5522: 5520: 5518: 5516: 4042:. A sequence of this type, of length 3772:, a Japanese technique for balancing 3246:. As a base case for the recurrence, 1986:Generating function and approximation 271:th ordered Bell number, denoted here 7: 6765:SIAM Journal on Discrete Mathematics 6167:SIAM Journal on Discrete Mathematics 196:, a partition of its elements and a 5796:candidates when ties are permitted" 4460:, the system of reflections of the 3566: 3495: 3425: 3355: 755:Stirling numbers of the second kind 6500:Undergraduate Texts in Mathematics 6037: 5936: 5097: 4353:counts the number of faces in the 3155: 3025: 2965:Recurrence and modular periodicity 2763: 2285: 2280: 2025: 1700:, which count the permutations of 1676: 1616: 1562: 910: 770: 14: 6378:The American Mathematical Monthly 5426:10.1090/S0002-9939-1952-0050620-1 5320:The American Mathematical Monthly 3815:when it is a product of distinct 2681:Comparing the approximations for 934:by the number of total orderings 570:, who used them to count certain 8751: 8359:Perfect digit-to-digit invariant 6000:-dimensional associahedron, see 5635:Collected Works of Arthur Cayley 3941:. Thus, in this case, there are 3174:{\displaystyle {\tbinom {n}{i}}} 2000:exponential generating function 5875:Advances in Applied Mathematics 5652:(1984), "Cayley permutations", 4873:{\displaystyle {\tfrac {2}{n}}} 4844:{\displaystyle {\tfrac {1}{n}}} 4786:. In this theory, grammars for 4626:. By Kemeny's analysis, it has 3559: 3488: 3418: 3348: 2345: 708:, which in turn is named after 6527:Optimality Theory: An Overview 6495:Combinatorics and Graph Theory 5194: 5188: 5159: 5153: 5127: 5115: 5051: 5045: 5019: 5013: 4970: 4964: 4759: 4753: 4721: 4715: 4683: 4677: 4642: 4636: 4613: 4607: 4551:, a relation on two arguments 4414: 4408: 4340: 4334: 4224: 4211: 4205: 4199: 4143: 4130: 4082:cars arrives on a street with 3860: 3854: 3570: 3560: 3555: 3549: 3540: 3528: 3499: 3489: 3484: 3478: 3469: 3457: 3429: 3419: 3414: 3408: 3399: 3387: 3359: 3349: 3344: 3338: 3329: 3317: 3262: 3256: 3233: 3227: 3203: 3191: 3181:choices of the first set, and 3055: 3043: 2991: 2985: 2804: 2798: 2790: 2778: 2760: 2732: 2726: 2703: 2691: 2641: 2635: 2612: 2606: 2431: 2425: 2337: 2325: 2318: 2290: 2245: 2239: 2198:is an infinite matrix form of 2132: 2116: 2039: 2033: 1844: 1838: 1756: 1750: 1540: 1530: 1482: 1476: 1106: 1099: 1090: 1078: 1072: 1060: 977: 971: 728:on the sets in the partition. 389: 383: 287: 281: 1: 7198:Expressible via specific sums 6337:Ramanujan's notebooks. Part I 6203:American Mathematical Monthly 3657:that are relatively prime to 3637:, the number of residues mod 3613:, with a period that divides 1351:), 14 two-dimensional faces ( 794:, count the partitions of an 735:, using an early form of the 6315:10.1016/0012-365X(80)90159-4 5851:10.1016/0012-365X(92)00570-H 5792:"The number of orderings of 5668:10.1016/0012-365X(84)90136-5 5619:10.1017/CBO9780511703706.026 4816:ordinary generating function 1996:ordinary generating function 8287:Multiplicative digital root 5266:(1982), "Races with ties", 4888:of opposite vertices of an 4484:{\displaystyle 60^{\circ }} 4289:. The reflection planes of 4161:{\displaystyle (n+1)^{n-1}} 3873:. On the other hand, for a 2147:{\displaystyle (2I-P)^{-1}} 373:, the ordered Bell numbers 328:: they can be ordered with 8799: 6003:Sloane, N. J. A. 5917:For the interpretation of 5375:Sloane, N. J. A. 4776:Ellison & Klein (2001) 3761:Velleman & Call (1995) 8783:Enumerative combinatorics 8747: 8730: 8716: 8694: 8680: 8658: 8644: 8622: 8608: 8581: 8568: 8364:Perfect digital invariant 8207: 8193: 8101: 8082: 7939:Superior highly composite 7825: 7808: 7736: 7723: 7691: 7678: 7566: 7555: 7258: 7245: 7203: 7192: 7155: 7144: 7092: 7078: 7041: 7030: 6983: 6968: 6886: 6872: 6698:The Journal of Philosophy 6643:10.1142/S1793042105000315 6575:10.1016/j.cie.2018.05.048 6471:10.1016/j.jnt.2016.09.032 6345:10.1007/978-1-4612-1088-7 6335:Berndt, Bruce C. (1985), 6258:Social Choice and Welfare 5980:-dimensional faces of an 5898:10.1016/j.aam.2006.11.002 5764:10.1142/S1793042105000315 5236:Those Fascinating Numbers 3686:Combinatorial enumeration 3285:: for sufficiently large 2618:{\displaystyle 1\pm o(1)} 1251:of the numbers from 1 to 877:) and, for each value of 672:Mor & Fraenkel (1984) 149:multiplicative partitions 50:enumerative combinatorics 7977:Euler's totient function 7761:Euler–Jacobi pseudoprime 7036:Other polynomial numbers 6457:Journal of Number Theory 6224:10.4169/000298910x474989 6216:10.4169/000298910X474989 5568:10.4169/002557010X529752 5560:10.4169/002557010X529752 4941:quasisymmetric functions 4324:The ordered Bell number 4258:The Coxeter complex for 4022:values that are at most 3793:multiplicative partition 3615:Euler's totient function 2858:gives the approximation 2536:Stirling's approximation 1998:to diverge; instead the 163:Definitions and examples 145:bijective correspondence 16:Number of weak orderings 7791:Somer–Lucas pseudoprime 7781:Lucas–Carmichael number 7616:Lazy caterer's sequence 6825:10.1109/ICDM.2004.10031 6101:th row of the triangle. 6007:"Sequence A019538" 5379:"Sequence A000670" 4851:and then multiplied by 4778:apply these numbers to 4426:{\displaystyle a(3)=13} 4387:{\displaystyle A_{n-1}} 3967:{\displaystyle 2^{n-1}} 3811:, etc.). An integer is 2954:{\displaystyle e^{x}=2} 1239:. A permutohedron is a 512:{\displaystyle 2^{n-1}} 107:. They are named after 105:William Allen Whitworth 7666:Wedderburn–Etherington 7066:Lucky numbers of Euler 6663:Meyles, Lucas Chaves; 6601:10.1098/rspa.2019.0366 6532:Journal of Linguistics 6095: 6075: 6055: 5994: 5974: 5954: 5710:Comtet, Louis (1974), 5606:Philosophical Magazine 5201: 5172: 5171:{\displaystyle W(1)=0} 5137: 5089: 5026: 4997: 4977: 4926: 4902: 4874: 4845: 4805:geometric distribution 4766: 4765:{\displaystyle x=f(x)} 4728: 4727:{\displaystyle x=f(y)} 4690: 4689:{\displaystyle y=f(x)} 4655: 4654:{\displaystyle a(n)=3} 4620: 4619:{\displaystyle y=f(x)} 4585: 4565: 4545: 4518: 4485: 4454: 4427: 4388: 4347: 4321: 4310: 4279: 4246: 4178:upper and lower bounds 4162: 4117: 4096: 4076: 4056: 4036: 4016: 3996: 3968: 3935: 3911: 3891: 3867: 3837: 3807:), or three divisors ( 3750: 3724: 3671: 3651: 3631: 3607: 3581: 3510: 3440: 3370: 3299: 3275: 3274:{\displaystyle a(0)=1} 3240: 3210: 3209:{\displaystyle a(n-i)} 3175: 3134: 3108: 3088: 3065: 3017: 2955: 2918: 2886: 2852: 2826: 2739: 2710: 2709:{\displaystyle a(n-1)} 2672: 2648: 2619: 2576: 2560:asymptotic equivalence 2552: 2538:to the factorial, the 2528: 2479: 2409: 2379: 2359: 2289: 2216: 2192: 2168: 2148: 2099: 2029: 1976: 1949: 1925: 1901: 1881: 1854: 1788: 1734: 1714: 1694: 1652: 1620: 1529: 1508: 1449: 1423: 1397: 1371: 1345: 1311: 1291: 1265: 1233: 1207: 1187: 1166: 1145: 1144:{\displaystyle n>0} 1119: 1040: 1003: 951: 928: 891: 871: 851: 828: 808: 788: 688: 668:lowest common ancestor 660: 640: 614: 594: 563: 543: 513: 480: 436: 396: 367: 314: 294: 265: 111:, who wrote about the 82: 41: 7954:Prime omega functions 7771:Frobenius pseudoprime 7561:Combinatorial numbers 7430:Centered dodecahedral 7223:Primary pseudoperfect 6271:10.1007/s003550050123 6096: 6076: 6056: 5995: 5975: 5955: 5460:Lectures on Polytopes 5202: 5173: 5138: 5063: 5032:is obtained from the 5027: 4998: 4978: 4927: 4903: 4875: 4846: 4767: 4729: 4691: 4656: 4621: 4586: 4566: 4546: 4519: 4486: 4455: 4453:{\displaystyle A_{2}} 4428: 4389: 4348: 4311: 4309:{\displaystyle A_{3}} 4280: 4278:{\displaystyle A_{3}} 4257: 4247: 4163: 4118: 4097: 4077: 4057: 4037: 4017: 3997: 3969: 3936: 3912: 3892: 3868: 3838: 3751: 3725: 3672: 3652: 3632: 3608: 3582: 3511: 3441: 3371: 3300: 3276: 3241: 3211: 3176: 3135: 3109: 3089: 3066: 2997: 2956: 2919: 2887: 2853: 2827: 2740: 2711: 2673: 2649: 2620: 2577: 2553: 2551:{\displaystyle \sim } 2529: 2480: 2410: 2380: 2378:{\displaystyle \log } 2360: 2266: 2217: 2193: 2169: 2149: 2100: 2009: 1977: 1975:{\displaystyle 2^{k}} 1950: 1926: 1902: 1882: 1880:{\displaystyle A_{n}} 1855: 1762: 1735: 1715: 1695: 1653: 1600: 1509: 1488: 1460:binomial coefficients 1450: 1424: 1398: 1372: 1346: 1312: 1292: 1266: 1234: 1208: 1188: 1157: 1146: 1120: 1041: 983: 952: 929: 892: 872: 852: 829: 809: 789: 689: 661: 641: 615: 595: 560: 544: 514: 481: 437: 397: 368: 315: 295: 266: 177:partially ordered set 137:binomial coefficients 83: 24: 8413:-composition related 8213:Arithmetic functions 7815:Arithmetic functions 7751:Elliptic pseudoprime 7435:Centered icosahedral 7415:Centered tetrahedral 6742:, pp. 243–254, 6302:Discrete Mathematics 6119:Mathematics Magazine 6085: 6065: 6022: 5984: 5964: 5921: 5837:Discrete Mathematics 5655:Discrete Mathematics 5537:Mathematics Magazine 5269:Mathematics Magazine 5200:{\displaystyle W(0)} 5182: 5147: 5039: 5025:{\displaystyle W(n)} 5007: 4987: 4976:{\displaystyle W(n)} 4958: 4937:noncommutative rings 4916: 4892: 4882:asymptotic expansion 4855: 4826: 4741: 4703: 4665: 4630: 4595: 4591:might take the form 4575: 4555: 4529: 4508: 4468: 4437: 4402: 4365: 4346:{\displaystyle a(n)} 4328: 4293: 4262: 4184: 4127: 4107: 4086: 4066: 4046: 4026: 4006: 3986: 3945: 3925: 3901: 3881: 3866:{\displaystyle a(n)} 3848: 3827: 3737: 3714: 3661: 3641: 3621: 3597: 3522: 3451: 3381: 3311: 3289: 3250: 3239:{\displaystyle a(n)} 3221: 3185: 3144: 3118: 3098: 3078: 2979: 2932: 2896: 2862: 2836: 2832:For example, taking 2749: 2738:{\displaystyle a(n)} 2720: 2685: 2662: 2656:decays exponentially 2647:{\displaystyle o(1)} 2629: 2594: 2566: 2542: 2489: 2419: 2393: 2369: 2233: 2206: 2182: 2158: 2113: 2006: 1959: 1939: 1915: 1891: 1864: 1744: 1724: 1704: 1667: 1470: 1433: 1407: 1403:), and 24 vertices ( 1381: 1355: 1329: 1323:truncated octahedron 1301: 1275: 1255: 1217: 1197: 1177: 1160:truncated octahedron 1158:A three-dimensional 1129: 1054: 965: 938: 901: 881: 861: 838: 818: 798: 761: 678: 650: 624: 604: 578: 527: 490: 470: 426: 395:{\displaystyle a(n)} 377: 351: 304: 293:{\displaystyle a(n)} 275: 255: 185:equivalence relation 72: 54:ordered Bell numbers 8339:Kaprekar's constant 7859:Colossally abundant 7746:Catalan pseudoprime 7646:Schröder–Hipparchus 7425:Centered octahedral 7301:Centered heptagonal 7291:Centered pentagonal 7281:Centered triangular 6881:and related numbers 6426:Fibonacci Quarterly 5804:Fibonacci Quarterly 5532:Pippenger, Nicholas 5034:recurrence equation 4886:resistance distance 4822:that (evaluated at 4544:{\displaystyle n=2} 4174:combinatorial proof 3821:2 · 2 · 5 3809:3 · 5 · 2 3133:{\displaystyle n-i} 2971:recurrence relation 2851:{\displaystyle n=5} 2408:{\displaystyle k=0} 2227:contour integration 1909:Eulerian polynomial 1448:{\displaystyle n=3} 1422:{\displaystyle k=3} 1396:{\displaystyle k=2} 1370:{\displaystyle k=1} 1344:{\displaystyle k=0} 1290:{\displaystyle n+1} 1232:{\displaystyle n-k} 722:partitions of a set 639:{\displaystyle i+1} 593:{\displaystyle n+1} 542:{\displaystyle n-1} 366:{\displaystyle n=0} 189:equivalence classes 141:recurrence relation 117:partitions of a set 8757:Mathematics portal 8699:Aronson's sequence 8445:Smarandache–Wellin 8202:-dependent numbers 7909:Primitive abundant 7796:Strong pseudoprime 7786:Perrin pseudoprime 7766:Fermat pseudoprime 7706:Wolstenholme prime 7530:Squared triangular 7316:Centered decagonal 7311:Centered nonagonal 7306:Centered octagonal 7296:Centered hexagonal 6595:(2230): 20190366, 6091: 6071: 6051: 6046: 5990: 5970: 5950: 5945: 5456:Ziegler, GĂĽnter M. 5264:Mendelson, Elliott 5197: 5168: 5133: 5022: 4993: 4983:for a sequence of 4973: 4935:In the algebra of 4922: 4898: 4870: 4868: 4841: 4839: 4762: 4724: 4686: 4651: 4616: 4581: 4561: 4541: 4514: 4481: 4450: 4423: 4384: 4357:associated with a 4343: 4322: 4316:cut the sphere in 4306: 4275: 4242: 4158: 4113: 4092: 4072: 4052: 4032: 4012: 3992: 3964: 3931: 3907: 3887: 3863: 3833: 3749:{\displaystyle n!} 3746: 3720: 3667: 3647: 3627: 3603: 3577: 3506: 3436: 3366: 3295: 3283:modular arithmetic 3271: 3236: 3206: 3171: 3169: 3130: 3104: 3084: 3061: 2951: 2914: 2882: 2848: 2822: 2767: 2735: 2706: 2668: 2644: 2615: 2572: 2548: 2524: 2516: 2475: 2405: 2375: 2355: 2212: 2188: 2164: 2144: 2095: 1972: 1945: 1921: 1897: 1877: 1850: 1819: 1730: 1710: 1690: 1685: 1648: 1445: 1419: 1393: 1367: 1341: 1307: 1287: 1261: 1229: 1203: 1183: 1167: 1141: 1115: 1036: 1030: 950:{\displaystyle k!} 947: 924: 919: 887: 867: 850:{\displaystyle k!} 847: 824: 814:-element set into 804: 784: 779: 684: 656: 636: 610: 590: 564: 539: 509: 476: 432: 392: 363: 310: 290: 261: 115:, which count the 78: 42: 8778:Integer sequences 8765: 8764: 8743: 8742: 8712: 8711: 8676: 8675: 8640: 8639: 8604: 8603: 8564: 8563: 8560: 8559: 8379: 8378: 8189: 8188: 8078: 8077: 8074: 8073: 8020:Aliquot sequences 7831:Divisor functions 7804: 7803: 7776:Lucas pseudoprime 7756:Euler pseudoprime 7741:Carmichael number 7719: 7718: 7674: 7673: 7551: 7550: 7547: 7546: 7543: 7542: 7504: 7503: 7392: 7391: 7349:Square triangular 7241: 7240: 7188: 7187: 7140: 7139: 7074: 7073: 7026: 7025: 6964: 6963: 6788:10.1137/140991364 6665:Harris, Pamela E. 6162:Shapiro, Louis W. 6094:{\displaystyle n} 6081:th number on the 6074:{\displaystyle k} 6044: 6016:, OEIS Foundation 5993:{\displaystyle n} 5973:{\displaystyle k} 5960:as the number of 5943: 5693:Choice and Chance 5388:, OEIS Foundation 5231:de Koninck, J. M. 5104: 4996:{\displaystyle n} 4925:{\displaystyle n} 4901:{\displaystyle n} 4867: 4838: 4788:natural languages 4780:optimality theory 4698:converse relation 4584:{\displaystyle y} 4564:{\displaystyle x} 4517:{\displaystyle n} 4116:{\displaystyle n} 4095:{\displaystyle n} 4075:{\displaystyle n} 4055:{\displaystyle n} 4035:{\displaystyle i} 4015:{\displaystyle i} 3995:{\displaystyle i} 3934:{\displaystyle n} 3910:{\displaystyle n} 3890:{\displaystyle n} 3836:{\displaystyle n} 3765:combination locks 3723:{\displaystyle n} 3670:{\displaystyle k} 3650:{\displaystyle k} 3630:{\displaystyle k} 3606:{\displaystyle k} 3298:{\displaystyle n} 3162: 3140:items. There are 3107:{\displaystyle i} 3087:{\displaystyle n} 3032: 2808: 2752: 2671:{\displaystyle n} 2584:little o notation 2575:{\displaystyle n} 2515: 2445: 2387:natural logarithm 2264: 2215:{\displaystyle P} 2200:Pascal's triangle 2191:{\displaystyle P} 2167:{\displaystyle I} 2090: 2062: 1948:{\displaystyle k} 1924:{\displaystyle n} 1900:{\displaystyle n} 1733:{\displaystyle k} 1713:{\displaystyle n} 1683: 1643: 1598: 1569: 1310:{\displaystyle n} 1264:{\displaystyle n} 1206:{\displaystyle k} 1186:{\displaystyle n} 917: 890:{\displaystyle k} 870:{\displaystyle k} 827:{\displaystyle k} 807:{\displaystyle n} 777: 687:{\displaystyle n} 659:{\displaystyle n} 613:{\displaystyle i} 479:{\displaystyle n} 435:{\displaystyle n} 313:{\displaystyle n} 264:{\displaystyle n} 194:ordered partition 81:{\displaystyle n} 8790: 8755: 8718: 8687:Natural language 8682: 8646: 8614:Generated via a 8610: 8570: 8475:Digit-reassembly 8440:Self-descriptive 8244: 8209: 8195: 8146:Lucas–Carmichael 8136:Harmonic divisor 8084: 8010:Sparsely totient 7985:Highly cototient 7894:Multiply perfect 7884:Highly composite 7827: 7810: 7725: 7680: 7661:Telephone number 7557: 7515: 7496:Square pyramidal 7478:Stella octangula 7403: 7269: 7260: 7252:Figurate numbers 7247: 7194: 7146: 7080: 7032: 6970: 6874: 6858: 6851: 6844: 6835: 6828: 6827: 6814: 6805: 6799: 6798: 6781: 6772:(4): 2284–2311, 6759: 6753: 6752: 6751: 6737: 6728: 6722: 6721: 6689: 6683: 6681: 6680: 6660: 6654: 6653: 6620: 6614: 6613: 6612: 6584: 6578: 6577: 6554: 6548: 6547: 6522: 6513: 6512: 6489: 6483: 6482: 6473: 6448: 6442: 6441: 6417: 6411: 6409: 6372: 6366: 6365: 6332: 6326: 6325: 6296: 6290: 6289: 6252: 6243: 6242: 6197: 6191: 6190: 6157: 6151: 6150: 6113: 6102: 6100: 6098: 6097: 6092: 6080: 6078: 6077: 6072: 6060: 6058: 6057: 6052: 6047: 6045: 6017: 5999: 5997: 5996: 5991: 5979: 5977: 5976: 5971: 5959: 5957: 5956: 5951: 5946: 5944: 5915: 5909: 5908: 5891: 5869: 5863: 5862: 5853: 5844:(1–3): 267–290, 5831: 5820: 5819: 5800: 5795: 5784: 5775: 5774: 5745: 5734: 5733: 5732: 5731: 5725: 5718: 5707: 5701: 5699:Pippenger (2010) 5696: 5689:Whitworth, W. A. 5685: 5679: 5678: 5645: 5639: 5631: 5613:(121): 374–378, 5593: 5587: 5586: 5553: 5528: 5511: 5510: 5470: 5464: 5463: 5452: 5446: 5445: 5428: 5403: 5390: 5389: 5371: 5352: 5351: 5314: 5301: 5300: 5260: 5251: 5249: 5227: 5206: 5204: 5203: 5198: 5177: 5175: 5174: 5169: 5142: 5140: 5139: 5134: 5111: 5110: 5109: 5096: 5088: 5077: 5031: 5029: 5028: 5023: 5002: 5000: 4999: 4994: 4982: 4980: 4979: 4974: 4931: 4929: 4928: 4923: 4907: 4905: 4904: 4899: 4879: 4877: 4876: 4871: 4869: 4860: 4850: 4848: 4847: 4842: 4840: 4831: 4771: 4769: 4768: 4763: 4733: 4731: 4730: 4725: 4695: 4693: 4692: 4687: 4660: 4658: 4657: 4652: 4625: 4623: 4622: 4617: 4590: 4588: 4587: 4582: 4570: 4568: 4567: 4562: 4550: 4548: 4547: 4542: 4523: 4521: 4520: 4515: 4501: 4490: 4488: 4487: 4482: 4480: 4479: 4459: 4457: 4456: 4451: 4449: 4448: 4432: 4430: 4429: 4424: 4393: 4391: 4390: 4385: 4383: 4382: 4352: 4350: 4349: 4344: 4315: 4313: 4312: 4307: 4305: 4304: 4284: 4282: 4281: 4276: 4274: 4273: 4251: 4249: 4248: 4243: 4238: 4237: 4167: 4165: 4164: 4159: 4157: 4156: 4122: 4120: 4119: 4114: 4101: 4099: 4098: 4093: 4081: 4079: 4078: 4073: 4061: 4059: 4058: 4053: 4041: 4039: 4038: 4033: 4021: 4019: 4018: 4013: 4001: 3999: 3998: 3993: 3980:parking function 3973: 3971: 3970: 3965: 3963: 3962: 3940: 3938: 3937: 3932: 3916: 3914: 3913: 3908: 3896: 3894: 3893: 3888: 3872: 3870: 3869: 3864: 3842: 3840: 3839: 3834: 3822: 3810: 3806: 3797:positive integer 3755: 3753: 3752: 3747: 3732:factorial number 3729: 3727: 3726: 3721: 3676: 3674: 3673: 3668: 3656: 3654: 3653: 3648: 3636: 3634: 3633: 3628: 3612: 3610: 3609: 3604: 3586: 3584: 3583: 3578: 3573: 3515: 3513: 3512: 3507: 3502: 3445: 3443: 3442: 3437: 3432: 3375: 3373: 3372: 3367: 3362: 3304: 3302: 3301: 3296: 3280: 3278: 3277: 3272: 3245: 3243: 3242: 3237: 3215: 3213: 3212: 3207: 3180: 3178: 3177: 3172: 3170: 3168: 3167: 3154: 3139: 3137: 3136: 3131: 3113: 3111: 3110: 3105: 3093: 3091: 3090: 3085: 3070: 3068: 3067: 3062: 3039: 3038: 3037: 3024: 3016: 3011: 2960: 2958: 2957: 2952: 2944: 2943: 2923: 2921: 2920: 2915: 2891: 2889: 2888: 2883: 2872: 2857: 2855: 2854: 2849: 2831: 2829: 2828: 2823: 2809: 2807: 2793: 2769: 2766: 2744: 2742: 2741: 2736: 2715: 2713: 2712: 2707: 2677: 2675: 2674: 2669: 2653: 2651: 2650: 2645: 2624: 2622: 2621: 2616: 2581: 2579: 2578: 2573: 2557: 2555: 2554: 2549: 2533: 2531: 2530: 2525: 2517: 2514: 2500: 2484: 2482: 2481: 2476: 2471: 2470: 2454: 2446: 2438: 2414: 2412: 2411: 2406: 2384: 2382: 2381: 2376: 2364: 2362: 2361: 2356: 2341: 2340: 2288: 2283: 2265: 2260: 2252: 2221: 2219: 2218: 2213: 2197: 2195: 2194: 2189: 2173: 2171: 2170: 2165: 2153: 2151: 2150: 2145: 2143: 2142: 2104: 2102: 2101: 2096: 2091: 2089: 2088: 2087: 2068: 2063: 2061: 2053: 2052: 2043: 2028: 2023: 1981: 1979: 1978: 1973: 1971: 1970: 1954: 1952: 1951: 1946: 1930: 1928: 1927: 1922: 1906: 1904: 1903: 1898: 1886: 1884: 1883: 1878: 1876: 1875: 1859: 1857: 1856: 1851: 1837: 1836: 1824: 1820: 1798: 1797: 1787: 1776: 1739: 1737: 1736: 1731: 1719: 1717: 1716: 1711: 1699: 1697: 1696: 1691: 1686: 1684: 1662:Eulerian numbers 1657: 1655: 1654: 1649: 1644: 1642: 1641: 1632: 1631: 1622: 1619: 1614: 1599: 1591: 1586: 1585: 1576: 1575: 1574: 1561: 1554: 1553: 1528: 1523: 1507: 1502: 1454: 1452: 1451: 1446: 1428: 1426: 1425: 1420: 1402: 1400: 1399: 1394: 1376: 1374: 1373: 1368: 1350: 1348: 1347: 1342: 1316: 1314: 1313: 1308: 1296: 1294: 1293: 1288: 1270: 1268: 1267: 1262: 1238: 1236: 1235: 1230: 1212: 1210: 1209: 1204: 1192: 1190: 1189: 1184: 1150: 1148: 1147: 1142: 1124: 1122: 1121: 1116: 1114: 1113: 1045: 1043: 1042: 1037: 1035: 1031: 1002: 997: 957:. That is, as a 956: 954: 953: 948: 933: 931: 930: 925: 920: 918: 896: 894: 893: 888: 876: 874: 873: 868: 856: 854: 853: 848: 833: 831: 830: 825: 813: 811: 810: 805: 793: 791: 790: 785: 780: 778: 718:Eric Temple Bell 706:Fubini's theorem 702:Whitworth (1886) 698:Pippenger (2010) 693: 691: 690: 685: 665: 663: 662: 657: 645: 643: 642: 637: 619: 617: 616: 611: 599: 597: 596: 591: 548: 546: 545: 540: 518: 516: 515: 510: 508: 507: 485: 483: 482: 477: 441: 439: 438: 433: 410: 401: 399: 398: 393: 372: 370: 369: 364: 319: 317: 316: 311: 299: 297: 296: 291: 270: 268: 267: 262: 139:, or by using a 129:Fubini's theorem 109:Eric Temple Bell 87: 85: 84: 79: 39: 8798: 8797: 8793: 8792: 8791: 8789: 8788: 8787: 8768: 8767: 8766: 8761: 8739: 8735:Strobogrammatic 8726: 8708: 8690: 8672: 8654: 8636: 8618: 8600: 8577: 8556: 8540: 8499:Divisor-related 8494: 8454: 8405: 8375: 8312: 8296: 8275: 8242: 8215: 8203: 8185: 8097: 8096:related numbers 8070: 8047: 8014: 8005:Perfect totient 7971: 7948: 7879:Highly abundant 7821: 7800: 7732: 7715: 7687: 7670: 7656:Stirling second 7562: 7539: 7500: 7482: 7439: 7388: 7325: 7286:Centered square 7254: 7237: 7199: 7184: 7151: 7136: 7088: 7087:defined numbers 7070: 7037: 7022: 6993:Double Mersenne 6979: 6960: 6882: 6868: 6866:natural numbers 6862: 6832: 6831: 6812: 6807: 6806: 6802: 6761: 6760: 6756: 6735: 6730: 6729: 6725: 6711:10.2307/2022697 6705:(24): 722–733, 6693:Kemeny, John G. 6691: 6690: 6686: 6662: 6661: 6657: 6622: 6621: 6617: 6586: 6585: 6581: 6556: 6555: 6551: 6524: 6523: 6516: 6510: 6491: 6490: 6486: 6450: 6449: 6445: 6419: 6418: 6414: 6391:10.2307/2312790 6374: 6373: 6369: 6355: 6334: 6333: 6329: 6298: 6297: 6293: 6254: 6253: 6246: 6199: 6198: 6194: 6180:10.1137/0405040 6159: 6158: 6154: 6132:10.2307/2690567 6115: 6114: 6105: 6083: 6082: 6063: 6062: 6020: 6019: 6001: 5982: 5981: 5962: 5961: 5919: 5918: 5916: 5912: 5871: 5870: 5866: 5833: 5832: 5823: 5798: 5793: 5786: 5785: 5778: 5747: 5746: 5737: 5729: 5727: 5723: 5716: 5709: 5708: 5704: 5687: 5686: 5682: 5650:Fraenkel, A. S. 5647: 5646: 5642: 5629: 5595: 5594: 5590: 5530: 5529: 5514: 5492:10.2307/1905751 5474:Luce, R. Duncan 5472: 5471: 5467: 5454: 5453: 5449: 5405: 5404: 5393: 5373: 5372: 5355: 5333:10.2307/2312725 5316: 5315: 5304: 5282:10.2307/2690085 5262: 5261: 5254: 5247: 5229: 5228: 5219: 5214: 5180: 5179: 5145: 5144: 5143:with base case 5091: 5037: 5036: 5005: 5004: 4985: 4984: 4956: 4955: 4914: 4913: 4910:hypercube graph 4890: 4889: 4853: 4852: 4824: 4823: 4801: 4739: 4738: 4701: 4700: 4663: 4662: 4628: 4627: 4593: 4592: 4573: 4572: 4553: 4552: 4527: 4526: 4506: 4505: 4499: 4471: 4466: 4465: 4462:Euclidean plane 4440: 4435: 4434: 4433:corresponds to 4400: 4399: 4396:Euclidean space 4368: 4363: 4362: 4355:Coxeter complex 4326: 4325: 4296: 4291: 4290: 4265: 4260: 4259: 4223: 4182: 4181: 4142: 4125: 4124: 4105: 4104: 4084: 4083: 4064: 4063: 4044: 4043: 4024: 4023: 4004: 4003: 3984: 3983: 3948: 3943: 3942: 3923: 3922: 3899: 3898: 3879: 3878: 3846: 3845: 3825: 3824: 3820: 3808: 3804: 3735: 3734: 3712: 3711: 3688: 3683: 3659: 3658: 3639: 3638: 3619: 3618: 3595: 3594: 3587: 3520: 3519: 3517: 3449: 3448: 3446: 3379: 3378: 3376: 3309: 3308: 3287: 3286: 3248: 3247: 3219: 3218: 3183: 3182: 3149: 3142: 3141: 3116: 3115: 3096: 3095: 3076: 3075: 3019: 2977: 2976: 2967: 2935: 2930: 2929: 2894: 2893: 2860: 2859: 2834: 2833: 2794: 2770: 2747: 2746: 2718: 2717: 2683: 2682: 2660: 2659: 2627: 2626: 2592: 2591: 2564: 2563: 2540: 2539: 2504: 2487: 2486: 2456: 2417: 2416: 2391: 2390: 2385:stands for the 2367: 2366: 2317: 2253: 2231: 2230: 2204: 2203: 2180: 2179: 2176:identity matrix 2156: 2155: 2131: 2111: 2110: 2108:infinite matrix 2079: 2072: 2054: 2044: 2004: 2003: 1988: 1962: 1957: 1956: 1937: 1936: 1913: 1912: 1889: 1888: 1867: 1862: 1861: 1828: 1818: 1817: 1811: 1810: 1799: 1789: 1742: 1741: 1722: 1721: 1720:items in which 1702: 1701: 1665: 1664: 1633: 1623: 1577: 1556: 1539: 1468: 1467: 1464:infinite series 1431: 1430: 1405: 1404: 1379: 1378: 1353: 1352: 1327: 1326: 1319:affine subspace 1299: 1298: 1273: 1272: 1253: 1252: 1241:convex polytope 1215: 1214: 1195: 1194: 1175: 1174: 1127: 1126: 1105: 1052: 1051: 1029: 1028: 1022: 1021: 1010: 963: 962: 936: 935: 899: 898: 879: 878: 859: 858: 836: 835: 816: 815: 796: 795: 759: 758: 750: 745: 676: 675: 648: 647: 622: 621: 602: 601: 576: 575: 555: 525: 524: 493: 488: 487: 468: 467: 424: 423: 416: 406: 375: 374: 349: 348: 302: 301: 273: 272: 253: 252: 181:incomparability 165: 70: 69: 26: 17: 12: 11: 5: 8796: 8794: 8786: 8785: 8780: 8770: 8769: 8763: 8762: 8760: 8759: 8748: 8745: 8744: 8741: 8740: 8738: 8737: 8731: 8728: 8727: 8721: 8714: 8713: 8710: 8709: 8707: 8706: 8701: 8695: 8692: 8691: 8685: 8678: 8677: 8674: 8673: 8671: 8670: 8668:Sorting number 8665: 8663:Pancake number 8659: 8656: 8655: 8649: 8642: 8641: 8638: 8637: 8635: 8634: 8629: 8623: 8620: 8619: 8613: 8606: 8605: 8602: 8601: 8599: 8598: 8593: 8588: 8582: 8579: 8578: 8575:Binary numbers 8573: 8566: 8565: 8562: 8561: 8558: 8557: 8555: 8554: 8548: 8546: 8542: 8541: 8539: 8538: 8533: 8528: 8523: 8518: 8513: 8508: 8502: 8500: 8496: 8495: 8493: 8492: 8487: 8482: 8477: 8472: 8466: 8464: 8456: 8455: 8453: 8452: 8447: 8442: 8437: 8432: 8427: 8422: 8416: 8414: 8407: 8406: 8404: 8403: 8402: 8401: 8390: 8388: 8385:P-adic numbers 8381: 8380: 8377: 8376: 8374: 8373: 8372: 8371: 8361: 8356: 8351: 8346: 8341: 8336: 8331: 8326: 8320: 8318: 8314: 8313: 8311: 8310: 8304: 8302: 8301:Coding-related 8298: 8297: 8295: 8294: 8289: 8283: 8281: 8277: 8276: 8274: 8273: 8268: 8263: 8258: 8252: 8250: 8241: 8240: 8239: 8238: 8236:Multiplicative 8233: 8222: 8220: 8205: 8204: 8200:Numeral system 8198: 8191: 8190: 8187: 8186: 8184: 8183: 8178: 8173: 8168: 8163: 8158: 8153: 8148: 8143: 8138: 8133: 8128: 8123: 8118: 8113: 8108: 8102: 8099: 8098: 8087: 8080: 8079: 8076: 8075: 8072: 8071: 8069: 8068: 8063: 8057: 8055: 8049: 8048: 8046: 8045: 8040: 8035: 8030: 8024: 8022: 8016: 8015: 8013: 8012: 8007: 8002: 7997: 7992: 7990:Highly totient 7987: 7981: 7979: 7973: 7972: 7970: 7969: 7964: 7958: 7956: 7950: 7949: 7947: 7946: 7941: 7936: 7931: 7926: 7921: 7916: 7911: 7906: 7901: 7896: 7891: 7886: 7881: 7876: 7871: 7866: 7861: 7856: 7851: 7846: 7844:Almost perfect 7841: 7835: 7833: 7823: 7822: 7813: 7806: 7805: 7802: 7801: 7799: 7798: 7793: 7788: 7783: 7778: 7773: 7768: 7763: 7758: 7753: 7748: 7743: 7737: 7734: 7733: 7728: 7721: 7720: 7717: 7716: 7714: 7713: 7708: 7703: 7698: 7692: 7689: 7688: 7683: 7676: 7675: 7672: 7671: 7669: 7668: 7663: 7658: 7653: 7651:Stirling first 7648: 7643: 7638: 7633: 7628: 7623: 7618: 7613: 7608: 7603: 7598: 7593: 7588: 7583: 7578: 7573: 7567: 7564: 7563: 7560: 7553: 7552: 7549: 7548: 7545: 7544: 7541: 7540: 7538: 7537: 7532: 7527: 7521: 7519: 7512: 7506: 7505: 7502: 7501: 7499: 7498: 7492: 7490: 7484: 7483: 7481: 7480: 7475: 7470: 7465: 7460: 7455: 7449: 7447: 7441: 7440: 7438: 7437: 7432: 7427: 7422: 7417: 7411: 7409: 7400: 7394: 7393: 7390: 7389: 7387: 7386: 7381: 7376: 7371: 7366: 7361: 7356: 7351: 7346: 7341: 7335: 7333: 7327: 7326: 7324: 7323: 7318: 7313: 7308: 7303: 7298: 7293: 7288: 7283: 7277: 7275: 7266: 7256: 7255: 7250: 7243: 7242: 7239: 7238: 7236: 7235: 7230: 7225: 7220: 7215: 7210: 7204: 7201: 7200: 7197: 7190: 7189: 7186: 7185: 7183: 7182: 7177: 7172: 7167: 7162: 7156: 7153: 7152: 7149: 7142: 7141: 7138: 7137: 7135: 7134: 7129: 7124: 7119: 7114: 7109: 7104: 7099: 7093: 7090: 7089: 7083: 7076: 7075: 7072: 7071: 7069: 7068: 7063: 7058: 7053: 7048: 7042: 7039: 7038: 7035: 7028: 7027: 7024: 7023: 7021: 7020: 7015: 7010: 7005: 7000: 6995: 6990: 6984: 6981: 6980: 6973: 6966: 6965: 6962: 6961: 6959: 6958: 6953: 6948: 6943: 6938: 6933: 6928: 6923: 6918: 6913: 6908: 6903: 6898: 6893: 6887: 6884: 6883: 6877: 6870: 6869: 6863: 6861: 6860: 6853: 6846: 6838: 6830: 6829: 6800: 6754: 6723: 6684: 6655: 6637:(4): 563–581, 6615: 6579: 6549: 6539:(1): 127–143, 6514: 6508: 6484: 6443: 6412: 6367: 6353: 6327: 6309:(3): 311–313, 6291: 6265:(4): 559–562, 6244: 6192: 6174:(4): 497–499, 6160:Getu, Seyoum; 6152: 6126:(4): 243–253, 6103: 6090: 6070: 6050: 6043: 6040: 6033: 6030: 6027: 5989: 5969: 5949: 5942: 5939: 5932: 5929: 5926: 5910: 5882:(4): 453–476, 5864: 5821: 5776: 5758:(4): 563–581, 5735: 5702: 5697:, as cited by 5680: 5662:(1): 101–112, 5640: 5627: 5588: 5544:(5): 331–346, 5512: 5465: 5447: 5419:(5): 701–705, 5391: 5353: 5302: 5276:(3): 170–175, 5252: 5245: 5216: 5215: 5213: 5210: 5196: 5193: 5190: 5187: 5167: 5164: 5161: 5158: 5155: 5152: 5132: 5129: 5126: 5123: 5120: 5117: 5114: 5108: 5103: 5100: 5095: 5087: 5084: 5081: 5076: 5073: 5070: 5066: 5062: 5059: 5056: 5053: 5050: 5047: 5044: 5021: 5018: 5015: 5012: 4992: 4972: 4969: 4966: 4963: 4952:spam filtering 4945:graded algebra 4921: 4897: 4880:) provides an 4866: 4863: 4837: 4834: 4800: 4797: 4761: 4758: 4755: 4752: 4749: 4746: 4736:unary relation 4723: 4720: 4717: 4714: 4711: 4708: 4685: 4682: 4679: 4676: 4673: 4670: 4650: 4647: 4644: 4641: 4638: 4635: 4615: 4612: 4609: 4606: 4603: 4600: 4580: 4560: 4540: 4537: 4534: 4513: 4502:-ary relations 4478: 4474: 4447: 4443: 4422: 4419: 4416: 4413: 4410: 4407: 4381: 4378: 4375: 4371: 4342: 4339: 4336: 4333: 4303: 4299: 4272: 4268: 4241: 4236: 4233: 4230: 4226: 4222: 4219: 4216: 4213: 4210: 4207: 4204: 4201: 4198: 4195: 4192: 4189: 4155: 4152: 4149: 4145: 4141: 4138: 4135: 4132: 4112: 4091: 4071: 4051: 4031: 4011: 3991: 3961: 3958: 3955: 3951: 3930: 3906: 3886: 3877:with exponent 3862: 3859: 3856: 3853: 3832: 3782:crease pattern 3774:assembly lines 3745: 3742: 3719: 3700:photo finishes 3687: 3684: 3682: 3679: 3666: 3646: 3626: 3602: 3576: 3572: 3569: 3565: 3562: 3557: 3554: 3551: 3548: 3545: 3542: 3539: 3536: 3533: 3530: 3527: 3518: 3505: 3501: 3498: 3494: 3491: 3486: 3483: 3480: 3477: 3474: 3471: 3468: 3465: 3462: 3459: 3456: 3447: 3435: 3431: 3428: 3424: 3421: 3416: 3413: 3410: 3407: 3404: 3401: 3398: 3395: 3392: 3389: 3386: 3377: 3365: 3361: 3358: 3354: 3351: 3346: 3343: 3340: 3337: 3334: 3331: 3328: 3325: 3322: 3319: 3316: 3307: 3294: 3270: 3267: 3264: 3261: 3258: 3255: 3235: 3232: 3229: 3226: 3205: 3202: 3199: 3196: 3193: 3190: 3166: 3161: 3158: 3153: 3129: 3126: 3123: 3103: 3083: 3072: 3071: 3060: 3057: 3054: 3051: 3048: 3045: 3042: 3036: 3031: 3028: 3023: 3015: 3010: 3007: 3004: 3000: 2996: 2993: 2990: 2987: 2984: 2966: 2963: 2950: 2947: 2942: 2938: 2913: 2910: 2907: 2904: 2901: 2881: 2878: 2875: 2871: 2867: 2847: 2844: 2841: 2821: 2818: 2815: 2812: 2806: 2803: 2800: 2797: 2792: 2789: 2786: 2783: 2780: 2777: 2773: 2765: 2762: 2759: 2755: 2734: 2731: 2728: 2725: 2705: 2702: 2699: 2696: 2693: 2690: 2667: 2643: 2640: 2637: 2634: 2614: 2611: 2608: 2605: 2602: 2599: 2588:relative error 2571: 2547: 2523: 2520: 2513: 2510: 2507: 2503: 2497: 2494: 2474: 2469: 2466: 2463: 2459: 2453: 2450: 2444: 2441: 2436: 2433: 2430: 2427: 2424: 2404: 2401: 2398: 2374: 2354: 2351: 2348: 2344: 2339: 2336: 2333: 2330: 2327: 2324: 2320: 2316: 2313: 2310: 2307: 2304: 2301: 2298: 2295: 2292: 2287: 2282: 2279: 2276: 2273: 2269: 2263: 2259: 2256: 2250: 2247: 2244: 2241: 2238: 2211: 2202:. Each row of 2187: 2163: 2141: 2138: 2134: 2130: 2127: 2124: 2121: 2118: 2094: 2086: 2082: 2078: 2075: 2071: 2066: 2060: 2057: 2051: 2047: 2041: 2038: 2035: 2032: 2027: 2022: 2019: 2016: 2012: 1987: 1984: 1969: 1965: 1944: 1920: 1896: 1874: 1870: 1849: 1846: 1843: 1840: 1835: 1831: 1827: 1823: 1816: 1813: 1812: 1809: 1806: 1805: 1802: 1796: 1792: 1786: 1783: 1780: 1775: 1772: 1769: 1765: 1761: 1758: 1755: 1752: 1749: 1729: 1709: 1689: 1682: 1679: 1672: 1647: 1640: 1636: 1630: 1626: 1618: 1613: 1610: 1607: 1603: 1597: 1594: 1589: 1584: 1580: 1573: 1568: 1565: 1560: 1552: 1549: 1546: 1542: 1538: 1535: 1532: 1527: 1522: 1519: 1516: 1512: 1506: 1501: 1498: 1495: 1491: 1487: 1484: 1481: 1478: 1475: 1444: 1441: 1438: 1418: 1415: 1412: 1392: 1389: 1386: 1366: 1363: 1360: 1340: 1337: 1334: 1306: 1286: 1283: 1280: 1260: 1228: 1225: 1222: 1202: 1182: 1140: 1137: 1134: 1112: 1108: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1034: 1027: 1024: 1023: 1020: 1017: 1016: 1013: 1009: 1006: 1001: 996: 993: 990: 986: 982: 979: 976: 973: 970: 946: 943: 923: 916: 913: 906: 886: 866: 846: 843: 823: 803: 783: 776: 773: 766: 749: 746: 744: 741: 716:, named after 683: 655: 635: 632: 629: 609: 589: 586: 583: 554: 551: 538: 535: 532: 506: 503: 500: 496: 475: 431: 404: 391: 388: 385: 382: 362: 359: 356: 347:Starting from 309: 289: 286: 283: 280: 260: 164: 161: 77: 62:weak orderings 58:Fubini numbers 15: 13: 10: 9: 6: 4: 3: 2: 8795: 8784: 8781: 8779: 8776: 8775: 8773: 8758: 8754: 8750: 8749: 8746: 8736: 8733: 8732: 8729: 8724: 8719: 8715: 8705: 8702: 8700: 8697: 8696: 8693: 8688: 8683: 8679: 8669: 8666: 8664: 8661: 8660: 8657: 8652: 8647: 8643: 8633: 8630: 8628: 8625: 8624: 8621: 8617: 8611: 8607: 8597: 8594: 8592: 8589: 8587: 8584: 8583: 8580: 8576: 8571: 8567: 8553: 8550: 8549: 8547: 8543: 8537: 8534: 8532: 8529: 8527: 8526:Polydivisible 8524: 8522: 8519: 8517: 8514: 8512: 8509: 8507: 8504: 8503: 8501: 8497: 8491: 8488: 8486: 8483: 8481: 8478: 8476: 8473: 8471: 8468: 8467: 8465: 8462: 8457: 8451: 8448: 8446: 8443: 8441: 8438: 8436: 8433: 8431: 8428: 8426: 8423: 8421: 8418: 8417: 8415: 8412: 8408: 8400: 8397: 8396: 8395: 8392: 8391: 8389: 8386: 8382: 8370: 8367: 8366: 8365: 8362: 8360: 8357: 8355: 8352: 8350: 8347: 8345: 8342: 8340: 8337: 8335: 8332: 8330: 8327: 8325: 8322: 8321: 8319: 8315: 8309: 8306: 8305: 8303: 8299: 8293: 8290: 8288: 8285: 8284: 8282: 8280:Digit product 8278: 8272: 8269: 8267: 8264: 8262: 8259: 8257: 8254: 8253: 8251: 8249: 8245: 8237: 8234: 8232: 8229: 8228: 8227: 8224: 8223: 8221: 8219: 8214: 8210: 8206: 8201: 8196: 8192: 8182: 8179: 8177: 8174: 8172: 8169: 8167: 8164: 8162: 8159: 8157: 8154: 8152: 8149: 8147: 8144: 8142: 8139: 8137: 8134: 8132: 8129: 8127: 8124: 8122: 8119: 8117: 8116:ErdĹ‘s–Nicolas 8114: 8112: 8109: 8107: 8104: 8103: 8100: 8095: 8091: 8085: 8081: 8067: 8064: 8062: 8059: 8058: 8056: 8054: 8050: 8044: 8041: 8039: 8036: 8034: 8031: 8029: 8026: 8025: 8023: 8021: 8017: 8011: 8008: 8006: 8003: 8001: 7998: 7996: 7993: 7991: 7988: 7986: 7983: 7982: 7980: 7978: 7974: 7968: 7965: 7963: 7960: 7959: 7957: 7955: 7951: 7945: 7942: 7940: 7937: 7935: 7934:Superabundant 7932: 7930: 7927: 7925: 7922: 7920: 7917: 7915: 7912: 7910: 7907: 7905: 7902: 7900: 7897: 7895: 7892: 7890: 7887: 7885: 7882: 7880: 7877: 7875: 7872: 7870: 7867: 7865: 7862: 7860: 7857: 7855: 7852: 7850: 7847: 7845: 7842: 7840: 7837: 7836: 7834: 7832: 7828: 7824: 7820: 7816: 7811: 7807: 7797: 7794: 7792: 7789: 7787: 7784: 7782: 7779: 7777: 7774: 7772: 7769: 7767: 7764: 7762: 7759: 7757: 7754: 7752: 7749: 7747: 7744: 7742: 7739: 7738: 7735: 7731: 7726: 7722: 7712: 7709: 7707: 7704: 7702: 7699: 7697: 7694: 7693: 7690: 7686: 7681: 7677: 7667: 7664: 7662: 7659: 7657: 7654: 7652: 7649: 7647: 7644: 7642: 7639: 7637: 7634: 7632: 7629: 7627: 7624: 7622: 7619: 7617: 7614: 7612: 7609: 7607: 7604: 7602: 7599: 7597: 7594: 7592: 7589: 7587: 7584: 7582: 7579: 7577: 7574: 7572: 7569: 7568: 7565: 7558: 7554: 7536: 7533: 7531: 7528: 7526: 7523: 7522: 7520: 7516: 7513: 7511: 7510:4-dimensional 7507: 7497: 7494: 7493: 7491: 7489: 7485: 7479: 7476: 7474: 7471: 7469: 7466: 7464: 7461: 7459: 7456: 7454: 7451: 7450: 7448: 7446: 7442: 7436: 7433: 7431: 7428: 7426: 7423: 7421: 7420:Centered cube 7418: 7416: 7413: 7412: 7410: 7408: 7404: 7401: 7399: 7398:3-dimensional 7395: 7385: 7382: 7380: 7377: 7375: 7372: 7370: 7367: 7365: 7362: 7360: 7357: 7355: 7352: 7350: 7347: 7345: 7342: 7340: 7337: 7336: 7334: 7332: 7328: 7322: 7319: 7317: 7314: 7312: 7309: 7307: 7304: 7302: 7299: 7297: 7294: 7292: 7289: 7287: 7284: 7282: 7279: 7278: 7276: 7274: 7270: 7267: 7265: 7264:2-dimensional 7261: 7257: 7253: 7248: 7244: 7234: 7231: 7229: 7226: 7224: 7221: 7219: 7216: 7214: 7211: 7209: 7208:Nonhypotenuse 7206: 7205: 7202: 7195: 7191: 7181: 7178: 7176: 7173: 7171: 7168: 7166: 7163: 7161: 7158: 7157: 7154: 7147: 7143: 7133: 7130: 7128: 7125: 7123: 7120: 7118: 7115: 7113: 7110: 7108: 7105: 7103: 7100: 7098: 7095: 7094: 7091: 7086: 7081: 7077: 7067: 7064: 7062: 7059: 7057: 7054: 7052: 7049: 7047: 7044: 7043: 7040: 7033: 7029: 7019: 7016: 7014: 7011: 7009: 7006: 7004: 7001: 6999: 6996: 6994: 6991: 6989: 6986: 6985: 6982: 6977: 6971: 6967: 6957: 6954: 6952: 6949: 6947: 6946:Perfect power 6944: 6942: 6939: 6937: 6936:Seventh power 6934: 6932: 6929: 6927: 6924: 6922: 6919: 6917: 6914: 6912: 6909: 6907: 6904: 6902: 6899: 6897: 6894: 6892: 6889: 6888: 6885: 6880: 6875: 6871: 6867: 6859: 6854: 6852: 6847: 6845: 6840: 6839: 6836: 6826: 6822: 6818: 6811: 6804: 6801: 6797: 6793: 6789: 6785: 6780: 6775: 6771: 6767: 6766: 6758: 6755: 6750: 6745: 6741: 6734: 6727: 6724: 6720: 6716: 6712: 6708: 6704: 6700: 6699: 6694: 6688: 6685: 6679: 6674: 6670: 6666: 6659: 6656: 6652: 6648: 6644: 6640: 6636: 6632: 6631: 6626: 6619: 6616: 6611: 6606: 6602: 6598: 6594: 6590: 6583: 6580: 6576: 6572: 6568: 6564: 6560: 6553: 6550: 6546: 6542: 6538: 6534: 6533: 6528: 6521: 6519: 6515: 6511: 6509:9780387797106 6505: 6501: 6497: 6496: 6488: 6485: 6481: 6477: 6472: 6467: 6463: 6459: 6458: 6453: 6452:Diagana, Toka 6447: 6444: 6440: 6436: 6432: 6428: 6427: 6422: 6421:Poonen, Bjorn 6416: 6413: 6408: 6404: 6400: 6396: 6392: 6388: 6384: 6380: 6379: 6371: 6368: 6364: 6360: 6356: 6354:0-387-96110-0 6350: 6346: 6342: 6338: 6331: 6328: 6324: 6320: 6316: 6312: 6308: 6304: 6303: 6295: 6292: 6288: 6284: 6280: 6276: 6272: 6268: 6264: 6260: 6259: 6251: 6249: 6245: 6241: 6237: 6233: 6229: 6225: 6221: 6217: 6213: 6209: 6205: 6204: 6196: 6193: 6189: 6185: 6181: 6177: 6173: 6169: 6168: 6163: 6156: 6153: 6149: 6145: 6141: 6137: 6133: 6129: 6125: 6121: 6120: 6112: 6110: 6108: 6104: 6088: 6068: 6041: 6038: 6028: 6025: 6015: 6014: 6008: 6004: 5987: 5967: 5940: 5937: 5927: 5924: 5914: 5911: 5907: 5903: 5899: 5895: 5890: 5885: 5881: 5877: 5876: 5868: 5865: 5861: 5857: 5852: 5847: 5843: 5839: 5838: 5830: 5828: 5826: 5822: 5818: 5814: 5810: 5806: 5805: 5797: 5789: 5783: 5781: 5777: 5773: 5769: 5765: 5761: 5757: 5753: 5752: 5744: 5742: 5740: 5736: 5726:on 2014-07-04 5722: 5715: 5714: 5706: 5703: 5700: 5694: 5690: 5684: 5681: 5677: 5673: 5669: 5665: 5661: 5657: 5656: 5651: 5644: 5641: 5638: 5636: 5630: 5628:9781108004961 5624: 5620: 5616: 5612: 5609:, Series IV, 5608: 5607: 5602: 5598: 5592: 5589: 5585: 5581: 5577: 5573: 5569: 5565: 5561: 5557: 5552: 5547: 5543: 5539: 5538: 5533: 5527: 5525: 5523: 5521: 5519: 5517: 5513: 5509: 5505: 5501: 5497: 5493: 5489: 5485: 5481: 5480: 5475: 5469: 5466: 5461: 5457: 5451: 5448: 5444: 5440: 5436: 5432: 5427: 5422: 5418: 5414: 5413: 5408: 5402: 5400: 5398: 5396: 5392: 5387: 5386: 5380: 5376: 5370: 5368: 5366: 5364: 5362: 5360: 5358: 5354: 5350: 5346: 5342: 5338: 5334: 5330: 5326: 5322: 5321: 5313: 5311: 5309: 5307: 5303: 5299: 5295: 5291: 5287: 5283: 5279: 5275: 5271: 5270: 5265: 5259: 5257: 5253: 5248: 5246:9780821886311 5242: 5238: 5237: 5232: 5226: 5224: 5222: 5218: 5211: 5209: 5191: 5185: 5165: 5162: 5156: 5150: 5130: 5124: 5121: 5118: 5112: 5101: 5098: 5085: 5082: 5079: 5074: 5071: 5068: 5064: 5060: 5057: 5054: 5048: 5042: 5035: 5016: 5010: 5003:words, where 4990: 4967: 4961: 4953: 4948: 4946: 4942: 4938: 4933: 4919: 4911: 4908:-dimensional 4895: 4887: 4883: 4864: 4861: 4835: 4832: 4821: 4817: 4814:Although the 4812: 4810: 4806: 4798: 4796: 4794: 4789: 4785: 4781: 4777: 4773: 4756: 4750: 4747: 4744: 4737: 4718: 4712: 4709: 4706: 4699: 4680: 4674: 4671: 4668: 4648: 4645: 4639: 4633: 4610: 4604: 4601: 4598: 4578: 4558: 4538: 4535: 4532: 4511: 4503: 4496: 4495:Kemeny (1956) 4492: 4476: 4472: 4463: 4445: 4441: 4420: 4417: 4411: 4405: 4397: 4379: 4376: 4373: 4369: 4360: 4359:Coxeter group 4356: 4337: 4331: 4319: 4318:great circles 4301: 4297: 4288: 4270: 4266: 4256: 4252: 4239: 4234: 4231: 4228: 4220: 4217: 4214: 4208: 4202: 4196: 4193: 4190: 4187: 4179: 4175: 4171: 4153: 4150: 4147: 4139: 4136: 4133: 4110: 4089: 4069: 4049: 4029: 4009: 3989: 3981: 3976: 3959: 3956: 3953: 3949: 3928: 3920: 3904: 3884: 3876: 3857: 3851: 3830: 3818: 3817:prime numbers 3814: 3802: 3798: 3794: 3791:, an ordered 3790: 3789:number theory 3785: 3783: 3779: 3775: 3771: 3766: 3762: 3757: 3743: 3740: 3733: 3717: 3709: 3705: 3701: 3697: 3693: 3692:permutohedron 3685: 3680: 3678: 3664: 3644: 3624: 3616: 3600: 3592: 3574: 3567: 3563: 3552: 3546: 3543: 3537: 3534: 3531: 3525: 3503: 3496: 3492: 3481: 3475: 3472: 3466: 3463: 3460: 3454: 3433: 3426: 3422: 3411: 3405: 3402: 3396: 3393: 3390: 3384: 3363: 3356: 3352: 3341: 3335: 3332: 3326: 3323: 3320: 3314: 3306: 3292: 3284: 3268: 3265: 3259: 3253: 3230: 3224: 3200: 3197: 3194: 3188: 3159: 3156: 3127: 3124: 3121: 3101: 3081: 3058: 3052: 3049: 3046: 3040: 3029: 3026: 3013: 3008: 3005: 3002: 2998: 2994: 2988: 2982: 2975: 2974: 2973: 2972: 2964: 2962: 2948: 2945: 2940: 2936: 2927: 2911: 2908: 2905: 2902: 2899: 2879: 2876: 2873: 2869: 2865: 2845: 2842: 2839: 2819: 2816: 2813: 2810: 2801: 2795: 2787: 2784: 2781: 2775: 2771: 2757: 2729: 2723: 2700: 2697: 2694: 2688: 2679: 2665: 2657: 2638: 2632: 2609: 2603: 2600: 2597: 2589: 2585: 2569: 2561: 2545: 2537: 2521: 2518: 2511: 2508: 2505: 2501: 2495: 2492: 2472: 2467: 2464: 2461: 2457: 2451: 2448: 2442: 2439: 2434: 2428: 2422: 2402: 2399: 2396: 2388: 2372: 2352: 2349: 2346: 2342: 2334: 2331: 2328: 2322: 2314: 2311: 2308: 2305: 2302: 2299: 2296: 2293: 2277: 2274: 2271: 2267: 2261: 2257: 2254: 2248: 2242: 2236: 2228: 2223: 2209: 2201: 2185: 2177: 2161: 2139: 2136: 2128: 2125: 2122: 2119: 2109: 2092: 2084: 2080: 2076: 2073: 2069: 2064: 2058: 2055: 2049: 2045: 2036: 2030: 2020: 2017: 2014: 2010: 2001: 1997: 1993: 1985: 1983: 1967: 1963: 1942: 1934: 1918: 1910: 1894: 1872: 1868: 1847: 1841: 1833: 1829: 1825: 1821: 1814: 1807: 1800: 1794: 1790: 1784: 1781: 1778: 1773: 1770: 1767: 1763: 1759: 1753: 1747: 1727: 1707: 1680: 1677: 1663: 1658: 1645: 1638: 1634: 1628: 1624: 1611: 1608: 1605: 1601: 1595: 1592: 1587: 1582: 1578: 1566: 1563: 1550: 1547: 1544: 1536: 1533: 1525: 1520: 1517: 1514: 1510: 1504: 1499: 1496: 1493: 1489: 1485: 1479: 1473: 1465: 1461: 1456: 1442: 1439: 1436: 1416: 1413: 1410: 1390: 1387: 1384: 1377:), 36 edges ( 1364: 1361: 1358: 1338: 1335: 1332: 1324: 1320: 1317:-dimensional 1304: 1284: 1281: 1278: 1258: 1250: 1246: 1242: 1226: 1223: 1220: 1200: 1180: 1173:of dimension 1172: 1171:permutohedron 1165: 1164:permutohedron 1161: 1156: 1152: 1138: 1135: 1132: 1110: 1102: 1096: 1093: 1087: 1084: 1081: 1075: 1069: 1066: 1063: 1057: 1049: 1032: 1025: 1018: 1011: 1007: 1004: 999: 994: 991: 988: 984: 980: 974: 968: 960: 944: 941: 914: 911: 884: 864: 844: 841: 821: 801: 774: 771: 756: 747: 742: 740: 738: 734: 729: 727: 723: 719: 715: 711: 707: 703: 699: 695: 681: 673: 669: 653: 633: 630: 627: 607: 587: 584: 581: 573: 569: 568:Cayley (1859) 559: 552: 550: 536: 533: 530: 522: 504: 501: 498: 494: 473: 465: 461: 457: 453: 449: 445: 429: 421: 414: 409: 403: 386: 380: 360: 357: 354: 345: 343: 339: 335: 331: 327: 323: 307: 284: 278: 258: 249: 247: 243: 239: 236:is less than 235: 231: 227: 223: 219: 215: 211: 207: 203: 199: 195: 190: 186: 182: 178: 174: 170: 162: 160: 158: 157:permutohedron 154: 150: 146: 142: 138: 133: 130: 126: 122: 118: 114: 110: 106: 102: 101:Arthur Cayley 97: 95: 91: 75: 67: 63: 59: 55: 51: 47: 46:number theory 38: 34: 30: 23: 19: 8490:Transposable 8354:Narcissistic 8261:Digital root 8181:Super-Poulet 8141:Jordan–PĂłlya 8090:prime factor 7995:Noncototient 7962:Almost prime 7944:Superperfect 7919:Refactorable 7914:Quasiperfect 7889:Hyperperfect 7730:Pseudoprimes 7701:Wall–Sun–Sun 7636:Ordered Bell 7635: 7606:Fuss–Catalan 7518:non-centered 7468:Dodecahedral 7445:non-centered 7331:non-centered 7233:Wolstenholme 6978:× 2 ± 1 6975: 6974:Of the form 6941:Eighth power 6921:Fourth power 6816: 6803: 6769: 6763: 6757: 6749:math/0605061 6739: 6726: 6702: 6696: 6687: 6668: 6658: 6634: 6628: 6618: 6592: 6588: 6582: 6566: 6562: 6558: 6552: 6536: 6530: 6526: 6494: 6487: 6461: 6455: 6446: 6433:(1): 70–76, 6430: 6424: 6415: 6382: 6376: 6370: 6336: 6330: 6306: 6300: 6294: 6262: 6256: 6210:(1): 50–66, 6207: 6201: 6195: 6171: 6165: 6155: 6123: 6117: 6010: 5913: 5889:math/0602672 5879: 5873: 5867: 5841: 5835: 5808: 5802: 5755: 5749: 5728:, retrieved 5721:the original 5712: 5705: 5692: 5683: 5659: 5653: 5643: 5634: 5610: 5604: 5591: 5541: 5535: 5483: 5479:Econometrica 5477: 5468: 5459: 5450: 5416: 5410: 5382: 5324: 5318: 5273: 5267: 5235: 4949: 4934: 4820:power series 4813: 4802: 4774: 4493: 4323: 4170:permutations 3977: 3786: 3769: 3758: 3696:horse racing 3689: 3681:Applications 3588: 3073: 2968: 2680: 2224: 1992:power series 1989: 1933:permutations 1659: 1457: 1249:permutations 1168: 751: 733:Donald Knuth 730: 720:, count the 714:Bell numbers 710:Guido Fubini 696: 565: 521:partial sums 463: 459: 455: 451: 447: 443: 417: 346: 341: 337: 333: 329: 325: 321: 250: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 201: 166: 134: 125:Guido Fubini 113:Bell numbers 98: 57: 53: 43: 36: 32: 28: 18: 8511:Extravagant 8506:Equidigital 8461:permutation 8420:Palindromic 8394:Automorphic 8292:Sum-product 8271:Sum-product 8226:Persistence 8121:ErdĹ‘s–Woods 8043:Untouchable 7924:Semiperfect 7874:Hemiperfect 7535:Tesseractic 7473:Icosahedral 7453:Tetrahedral 7384:Dodecagonal 7085:Recursively 6956:Prime power 6931:Sixth power 6926:Fifth power 6906:Power of 10 6864:Classes of 6569:: 318–325, 6464:: 547–569, 5788:Good, I. J. 5486:: 178–191, 4943:produces a 4784:linguistics 4287:unit sphere 4123:is exactly 3919:composition 3875:prime power 3730:items is a 3591:prime power 2745:shows that 2654:error term 2225:Based on a 1245:convex hull 1193:, with the 757:, denoted 726:total order 572:plane trees 486:is exactly 420:composition 198:total order 173:horse races 121:total order 8772:Categories 8723:Graphemics 8596:Pernicious 8450:Undulating 8425:Pandigital 8399:Trimorphic 8000:Nontotient 7849:Arithmetic 7463:Octahedral 7364:Heptagonal 7354:Pentagonal 7339:Triangular 7180:SierpiĹ„ski 7102:Jacobsthal 6901:Power of 3 6896:Power of 2 6678:2305.15554 5730:2013-03-12 5597:Cayley, A. 5407:Sklar, Abe 5327:(1): 4–8, 5212:References 4793:factorials 3813:squarefree 3805:6 · 5 3704:dead heats 2625:, and the 2558:indicates 1048:log-convex 179:for which 153:squarefree 94:horse race 60:count the 8480:Parasitic 8329:Factorion 8256:Digit sum 8248:Digit sum 8066:Fortunate 8053:Primorial 7967:Semiprime 7904:Practical 7869:Descartes 7864:Deficient 7854:Betrothed 7696:Wieferich 7525:Pentatope 7488:pyramidal 7379:Decagonal 7374:Nonagonal 7369:Octagonal 7359:Hexagonal 7218:Practical 7165:Congruent 7097:Fibonacci 7061:Loeschian 6779:1410.1772 6385:(1): 62, 6287:120845059 6240:207520945 5811:: 11–18, 5648:Mor, M.; 5551:0904.1757 5122:− 5083:− 5065:∑ 4477:∘ 4377:− 4232:− 4209:≤ 4194:≤ 4151:− 3957:− 3763:consider 3544:≡ 3473:≡ 3403:≡ 3333:≡ 3198:− 3125:− 3050:− 2999:∑ 2926:Ramanujan 2909:≈ 2903:⁡ 2877:≈ 2817:⁡ 2785:− 2764:∞ 2761:→ 2698:− 2601:± 2546:∼ 2519:≈ 2509:⁡ 2435:∼ 2350:≥ 2323:− 2309:π 2297:⁡ 2286:∞ 2281:∞ 2278:− 2268:∑ 2137:− 2126:− 2077:− 2026:∞ 2011:∑ 1782:− 1764:∑ 1688:⟩ 1671:⟨ 1617:∞ 1602:∑ 1548:− 1534:− 1511:∑ 1490:∑ 1224:− 1094:≥ 1067:− 985:∑ 961:formula: 959:summation 748:Summation 534:− 502:− 8552:Friedman 8485:Primeval 8430:Repdigit 8387:-related 8334:Kaprekar 8308:Meertens 8231:Additive 8218:dynamics 8126:Friendly 8038:Sociable 8028:Amicable 7839:Abundant 7819:dynamics 7641:Schröder 7631:Narayana 7601:Eulerian 7591:Delannoy 7586:Dedekind 7407:centered 7273:centered 7160:Amenable 7117:Narayana 7107:Leonardo 7003:Mersenne 6951:Powerful 6891:Achilles 5790:(1975), 5691:(1886), 5637:, p. 113 5599:(1859), 5584:17260512 5458:(1995), 5233:(2009), 4884:for the 4361:of type 3801:divisors 3708:baseball 2912:0.693145 2880:0.693161 1822:⟩ 1801:⟨ 1125:for all 743:Formulas 562:numbers. 8725:related 8689:related 8653:related 8651:Sorting 8536:Vampire 8521:Harshad 8463:related 8435:Repunit 8349:Lychrel 8324:Dudeney 8176:Størmer 8171:Sphenic 8156:Regular 8094:divisor 8033:Perfect 7929:Sublime 7899:Perfect 7626:Motzkin 7581:Catalan 7122:Padovan 7056:Leyland 7051:Idoneal 7046:Hilbert 7018:Woodall 6796:3427040 6719:2022697 6651:2196796 6610:6834023 6545:4176645 6480:3581932 6439:0931425 6407:0144827 6399:2312790 6363:0781125 6323:0560774 6279:1647055 6232:2599467 6188:1186818 6148:1363707 6140:2690567 6061:as the 6005:(ed.), 5906:2356431 5860:1297386 5817:0376367 5772:2196796 5676:0732206 5576:2762645 5508:0078632 5500:1905751 5443:0050620 5435:2032169 5377:(ed.), 5349:0130837 5341:2312725 5298:0653432 5290:2690085 4809:moments 3778:origami 2678:grows. 2174:is the 2154:. Here 1887:is the 553:History 411:in the 408:A000670 340:before 336:, with 332:before 8591:Odious 8516:Frugal 8470:Cyclic 8459:Digit- 8166:Smooth 8151:Pronic 8111:Cyclic 8088:Other 8061:Euclid 7711:Wilson 7685:Primes 7344:Square 7213:Polite 7175:Riesel 7170:Knödel 7132:Perrin 7013:Thabit 6998:Fermat 6988:Cullen 6911:Square 6879:Powers 6794:  6717:  6649:  6607:  6543:  6506:  6478:  6437:  6405:  6397:  6361:  6351:  6321:  6285:  6277:  6238:  6230:  6222:  6186:  6146:  6138:  5904:  5858:  5815:  5770:  5674:  5625:  5582:  5574:  5566:  5506:  5498:  5441:  5433:  5347:  5339:  5296:  5288:  5243:  4807:. The 4696:, the 2586:, the 2522:1.4427 2485:where 2365:Here, 1860:where 1243:, the 712:. The 244:, and 187:. The 183:is an 52:, the 8632:Prime 8627:Lucky 8616:sieve 8545:Other 8531:Smith 8411:Digit 8369:Happy 8344:Keith 8317:Other 8161:Rough 8131:Giuga 7596:Euler 7458:Cubic 7112:Lucas 7008:Proth 6813:(PDF) 6774:arXiv 6744:arXiv 6736:(PDF) 6715:JSTOR 6673:arXiv 6541:JSTOR 6395:JSTOR 6283:S2CID 6236:S2CID 6220:JSTOR 6136:JSTOR 5884:arXiv 5799:(PDF) 5724:(PDF) 5717:(PDF) 5632:, in 5580:S2CID 5564:JSTOR 5546:arXiv 5496:JSTOR 5431:JSTOR 5337:JSTOR 5286:JSTOR 4799:Other 3795:of a 3568:10000 574:with 151:of a 64:on a 8586:Evil 8266:Self 8216:and 8106:Blum 7817:and 7621:Lobb 7576:Cake 7571:Bell 7321:Star 7228:Ulam 7127:Pell 6916:Cube 6559:Seru 6504:ISBN 6349:ISBN 6011:The 5623:ISBN 5383:The 5241:ISBN 4571:and 4176:for 3770:seru 3497:1000 2716:and 2590:is 2178:and 1136:> 413:OEIS 402:are 324:and 251:The 228:and 169:ties 127:and 103:and 90:ties 48:and 8704:Ban 8092:or 7611:Lah 6821:doi 6784:doi 6707:doi 6639:doi 6605:PMC 6597:doi 6593:475 6571:doi 6567:122 6466:doi 6462:173 6387:doi 6341:doi 6311:doi 6267:doi 6212:doi 6208:117 6176:doi 6128:doi 5894:doi 5846:doi 5842:132 5760:doi 5664:doi 5615:doi 5556:doi 5488:doi 5421:doi 5329:doi 5278:doi 4950:In 4782:in 3921:of 3787:In 3617:of 3564:mod 3538:500 3516:and 3493:mod 3467:100 3427:100 3423:mod 3353:mod 2961:). 2900:log 2892:to 2874:541 2866:375 2814:log 2754:lim 2658:as 2506:log 2373:log 2294:log 1931:to 1907:th 454:},{ 450:},{ 212:},{ 208:},{ 68:of 66:set 56:or 44:In 8774:: 6815:, 6792:MR 6790:, 6782:, 6770:29 6768:, 6738:, 6713:, 6703:52 6701:, 6671:, 6647:MR 6645:, 6633:, 6627:, 6603:, 6591:, 6565:, 6537:37 6535:, 6517:^ 6498:, 6476:MR 6474:, 6460:, 6435:MR 6431:26 6429:, 6403:MR 6401:, 6393:, 6383:70 6381:, 6359:MR 6357:, 6347:, 6319:MR 6317:, 6307:29 6305:, 6281:, 6275:MR 6273:, 6263:15 6261:, 6247:^ 6234:, 6228:MR 6226:, 6218:, 6206:, 6184:MR 6182:, 6170:, 6144:MR 6142:, 6134:, 6124:68 6122:, 6106:^ 6009:, 5902:MR 5900:, 5892:, 5880:39 5878:, 5856:MR 5854:, 5840:, 5824:^ 5813:MR 5809:13 5807:, 5801:, 5779:^ 5768:MR 5766:, 5754:, 5738:^ 5672:MR 5670:, 5660:48 5658:, 5621:, 5611:18 5603:, 5578:, 5572:MR 5570:, 5562:, 5554:, 5542:83 5540:, 5515:^ 5504:MR 5502:, 5494:, 5484:24 5482:, 5439:MR 5437:, 5429:, 5415:, 5394:^ 5381:, 5356:^ 5345:MR 5343:, 5335:, 5325:69 5323:, 5305:^ 5294:MR 5292:, 5284:, 5274:55 5272:, 5255:^ 5220:^ 4473:60 4421:13 3978:A 3698:, 3677:. 3397:20 3357:10 3305:, 2820:2. 2353:1. 1466:: 1455:. 1151:. 549:. 415:). 240:, 159:. 96:. 35:, 31:, 6976:a 6857:e 6850:t 6843:v 6823:: 6786:: 6776:: 6746:: 6709:: 6675:: 6641:: 6635:1 6599:: 6573:: 6468:: 6410:. 6389:: 6343:: 6313:: 6269:: 6214:: 6178:: 6172:5 6130:: 6089:n 6069:k 6049:} 6042:k 6039:n 6032:{ 6029:! 6026:k 5988:n 5968:k 5948:} 5941:k 5938:n 5931:{ 5928:! 5925:k 5896:: 5886:: 5848:: 5794:n 5762:: 5756:1 5666:: 5617:: 5558:: 5548:: 5490:: 5423:: 5417:3 5331:: 5280:: 5195:) 5192:0 5189:( 5186:W 5166:0 5163:= 5160:) 5157:1 5154:( 5151:W 5131:, 5128:) 5125:1 5119:n 5116:( 5113:W 5107:) 5102:k 5099:n 5094:( 5086:1 5080:n 5075:1 5072:= 5069:k 5061:+ 5058:1 5055:= 5052:) 5049:n 5046:( 5043:W 5020:) 5017:n 5014:( 5011:W 4991:n 4971:) 4968:n 4965:( 4962:W 4920:n 4896:n 4865:n 4862:2 4836:n 4833:1 4760:) 4757:x 4754:( 4751:f 4748:= 4745:x 4722:) 4719:y 4716:( 4713:f 4710:= 4707:x 4684:) 4681:x 4678:( 4675:f 4672:= 4669:y 4649:3 4646:= 4643:) 4640:n 4637:( 4634:a 4614:) 4611:x 4608:( 4605:f 4602:= 4599:y 4579:y 4559:x 4539:2 4536:= 4533:n 4512:n 4500:n 4446:2 4442:A 4418:= 4415:) 4412:3 4409:( 4406:a 4380:1 4374:n 4370:A 4341:) 4338:n 4335:( 4332:a 4302:3 4298:A 4271:3 4267:A 4240:. 4235:1 4229:n 4225:) 4221:1 4218:+ 4215:n 4212:( 4206:) 4203:n 4200:( 4197:a 4191:! 4188:n 4154:1 4148:n 4144:) 4140:1 4137:+ 4134:n 4131:( 4111:n 4090:n 4070:n 4050:n 4030:i 4010:i 3990:i 3960:1 3954:n 3950:2 3929:n 3905:n 3885:n 3861:) 3858:n 3855:( 3852:a 3831:n 3744:! 3741:n 3718:n 3665:k 3645:k 3625:k 3601:k 3575:. 3571:) 3561:( 3556:) 3553:n 3550:( 3547:a 3541:) 3535:+ 3532:n 3529:( 3526:a 3504:, 3500:) 3490:( 3485:) 3482:n 3479:( 3476:a 3470:) 3464:+ 3461:n 3458:( 3455:a 3434:, 3430:) 3420:( 3415:) 3412:n 3409:( 3406:a 3400:) 3394:+ 3391:n 3388:( 3385:a 3364:, 3360:) 3350:( 3345:) 3342:n 3339:( 3336:a 3330:) 3327:4 3324:+ 3321:n 3318:( 3315:a 3293:n 3269:1 3266:= 3263:) 3260:0 3257:( 3254:a 3234:) 3231:n 3228:( 3225:a 3204:) 3201:i 3195:n 3192:( 3189:a 3165:) 3160:i 3157:n 3152:( 3128:i 3122:n 3102:i 3082:n 3059:. 3056:) 3053:i 3047:n 3044:( 3041:a 3035:) 3030:i 3027:n 3022:( 3014:n 3009:1 3006:= 3003:i 2995:= 2992:) 2989:n 2986:( 2983:a 2949:2 2946:= 2941:x 2937:e 2906:2 2870:/ 2846:5 2843:= 2840:n 2811:= 2805:) 2802:n 2799:( 2796:a 2791:) 2788:1 2782:n 2779:( 2776:a 2772:n 2758:n 2733:) 2730:n 2727:( 2724:a 2704:) 2701:1 2695:n 2692:( 2689:a 2666:n 2642:) 2639:1 2636:( 2633:o 2613:) 2610:1 2607:( 2604:o 2598:1 2570:n 2512:2 2502:1 2496:= 2493:c 2473:, 2468:1 2465:+ 2462:n 2458:c 2452:! 2449:n 2443:2 2440:1 2432:) 2429:n 2426:( 2423:a 2403:0 2400:= 2397:k 2347:n 2343:, 2338:) 2335:1 2332:+ 2329:n 2326:( 2319:) 2315:k 2312:i 2306:2 2303:+ 2300:2 2291:( 2275:= 2272:k 2262:2 2258:! 2255:n 2249:= 2246:) 2243:n 2240:( 2237:a 2210:P 2186:P 2162:I 2140:1 2133:) 2129:P 2123:I 2120:2 2117:( 2093:. 2085:x 2081:e 2074:2 2070:1 2065:= 2059:! 2056:n 2050:n 2046:x 2040:) 2037:n 2034:( 2031:a 2021:0 2018:= 2015:n 1968:k 1964:2 1943:k 1919:n 1895:n 1873:n 1869:A 1848:, 1845:) 1842:2 1839:( 1834:n 1830:A 1826:= 1815:k 1808:n 1795:k 1791:2 1785:1 1779:n 1774:0 1771:= 1768:k 1760:= 1757:) 1754:n 1751:( 1748:a 1728:k 1708:n 1681:k 1678:n 1646:. 1639:m 1635:2 1629:n 1625:m 1612:0 1609:= 1606:m 1596:2 1593:1 1588:= 1583:n 1579:j 1572:) 1567:j 1564:k 1559:( 1551:j 1545:k 1541:) 1537:1 1531:( 1526:k 1521:0 1518:= 1515:j 1505:n 1500:0 1497:= 1494:k 1486:= 1483:) 1480:n 1477:( 1474:a 1443:3 1440:= 1437:n 1417:3 1414:= 1411:k 1391:2 1388:= 1385:k 1365:1 1362:= 1359:k 1339:0 1336:= 1333:k 1305:n 1285:1 1282:+ 1279:n 1259:n 1227:k 1221:n 1201:k 1181:n 1139:0 1133:n 1111:2 1107:) 1103:n 1100:( 1097:a 1091:) 1088:1 1085:+ 1082:n 1079:( 1076:a 1073:) 1070:1 1064:n 1061:( 1058:a 1033:} 1026:k 1019:n 1012:{ 1008:! 1005:k 1000:n 995:0 992:= 989:k 981:= 978:) 975:n 972:( 969:a 945:! 942:k 922:} 915:k 912:n 905:{ 885:k 865:k 845:! 842:k 822:k 802:n 782:} 775:k 772:n 765:{ 682:n 654:n 634:1 631:+ 628:i 608:i 588:1 585:+ 582:n 537:1 531:n 505:1 499:n 495:2 474:n 464:f 462:, 460:e 458:, 456:d 452:c 448:b 446:, 444:a 430:n 390:) 387:n 384:( 381:a 361:0 358:= 355:n 342:a 338:b 334:b 330:a 326:b 322:a 308:n 288:) 285:n 282:( 279:a 259:n 246:f 242:e 238:d 234:c 230:b 226:a 222:f 220:, 218:e 216:, 214:d 210:c 206:b 204:, 202:a 76:n 40:} 37:c 33:b 29:a 27:{

Index


number theory
enumerative combinatorics
weak orderings
set
ties
horse race
Arthur Cayley
William Allen Whitworth
Eric Temple Bell
Bell numbers
partitions of a set
total order
Guido Fubini
Fubini's theorem
binomial coefficients
recurrence relation
bijective correspondence
multiplicative partitions
squarefree
permutohedron
ties
horse races
partially ordered set
incomparability
equivalence relation
equivalence classes
ordered partition
total order
A000670

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑