Knowledge (XXG)

Ordered pair

Source 📝

20: 8245: 8315: 5927: 2336: 2119: 788:
Another way to rigorously deal with ordered pairs is to define them formally in the context of set theory. This can be done in several ways and has the advantage that existence and the characteristic property can be proven from the axioms that define the set theory. One of the most cited versions of
6193:
cf introduction to Wiener's paper in van Heijenoort 1967:224. van Heijenoort observes that the resulting set that represents the ordered pair "has a type higher by 2 than the elements (when they are of the same type)"; he offers references that show how, under certain circumstances, the type can be
4377: 4123: 1564: 925: 5253:
Early in the development of the set theory, before paradoxes were discovered, Cantor followed Frege by defining the ordered pair of two sets as the class of all relations that hold between these sets, assuming that the notion of relation is primitive:
5907: 499: 2331:{\displaystyle \pi _{2}(p)=\bigcup \left\{\left.a\in \bigcup p\,\right|\,\bigcup p\neq \bigcap p\rightarrow a\notin \bigcap p\right\}=\bigcup \left\{\left.a\in \{x,y\}\,\right|\,\{x,y\}\neq \{x\}\rightarrow a\notin \{x\}\right\}=\bigcup \{y\}=y.} 1692: 4842: 2025: 1903: 5653: 5338:
defined the ordered pair so that its projections could be proper classes as well as sets. (The Kuratowski definition does not allow this.) He first defined ordered pairs whose projections are sets in Kuratowski's manner. He then
772:
A more satisfactory approach is to observe that the characteristic property of ordered pairs given above is all that is required to understand the role of ordered pairs in mathematics. Hence the ordered pair can be taken as a
4238: 4017: 1408: 1337: 761:
must be different, but in an ordered pair they may be equal and that while the order of listing the elements of a set doesn't matter, in an ordered pair changing the order of distinct entries changes the ordered pair.
827: 2446: 6175:(pbk.). van Heijenoort states the simplification this way: "By giving a definition of the ordered pair of two elements in terms of class operations, the note reduced the theory of relations to that of classes". 4659: 5439: 2112: 5034: 5510: 4884: 5150: 2605: 2762: 2920: 1205: 4573: 1094: 2835: 5769: 367: 5208: 5225:, defined as a set of ordered pairs, to have a type only 1 higher than the type of its arguments. This definition works only if the set of natural numbers is infinite. This is the case in 4704: 1785: 4191: 1395: 4453: 1004: 813:
of some sort. Hence if the ordered pair is not taken as primitive, it must be defined as a set. Several set-theoretic definitions of the ordered pair are given below( see also ).
793:, published in 1970. Even those mathematical textbooks that give an informal definition of ordered pairs will often mention the formal definition of Kuratowski in an exercise. 5311: 612: 6624: 5521: 582:. In such situations, the context will usually make it clear which meaning is intended. For additional clarification, the ordered pair may be denoted by the variant notation 1572: 350: 304: 4233: 4012: 785:, published in 1954. However, this approach also has its drawbacks as both the existence of ordered pairs and their characteristic property must be axiomatically assumed. 6389: 6342: 4506: 2655: 8772: 7299: 6362: 4907: 4688: 4473: 2503: 2476: 4421: 4163: 4143: 2364: 6409: 5221:, the Quine–Rosser pair has the same type as its projections and hence is termed a "type-level" ordered pair. Hence this definition has the advantage of enabling a 1909: 5684: 2681: 2521:
The above Kuratowski definition of the ordered pair is "adequate" in that it satisfies the characteristic property that an ordered pair must satisfy, namely that
1793: 1210: 5764: 5744: 4401: 4211: 7382: 6523: 6163:
Wiener's paper "A Simplification of the logic of relations" is reprinted, together with a valuable commentary on pages 224ff in van Heijenoort, Jean (1967),
6135:
has argued that the set-theoretical implementations of the concept of the ordered pair is a paradigm for the clarification of philosophical ideas (see "
5918:
The definition helps to avoid so called accidental theorems like (a,a) = {{a}}, and {a} ∈ (a,b), if Kuratowski's definition (a,b) = {{a}, {a,b}} was used.
4578: 769:. However, as is sometimes pointed out, no harm will come from relying on this description and almost everyone thinks of ordered pairs in this manner. 5346: 2045: 6139:", section 53). The general notion of such definitions or implementations are discussed in Thomas Forster "Reasoning about theoretical entities". 5444: 7696: 8922: 7854: 6313: 6094: 6067: 6043: 1119: 6642: 4519: 8461: 8281: 7709: 7032: 4372:{\displaystyle \varphi (x):=\sigma =\{\sigma (\alpha )\mid \alpha \in x\}=(x\setminus \mathbb {N} )\cup \{n+1:n\in (x\cap \mathbb {N} )\}.} 1021: 2369: 8789: 7294: 6004: 4118:{\displaystyle \sigma (x):={\begin{cases}x,&{\text{if }}x\notin \mathbb {N} ,\\x+1,&{\text{if }}x\in \mathbb {N} .\end{cases}}} 7714: 7704: 7441: 6647: 7192: 6638: 4145:
increments its argument if it is a natural number and leaves it as is otherwise; the number 0 does not appear as functional value of
1559:{\displaystyle (\exists Y\in p:x\in Y)\land (\forall Y_{1},Y_{2}\in p:Y_{1}\neq Y_{2}\rightarrow (x\notin Y_{1}\lor x\notin Y_{2})).} 7850: 6172: 6118: 4923: 6425: 7947: 7691: 6516: 5039: 2524: 149: 8767: 7252: 6945: 6686: 5723: 2942: 2689: 920:{\displaystyle \left(a,b\right):=\left\{\left\{\left\{a\right\},\,\emptyset \right\},\,\left\{\left\{b\right\}\right\}\right\}.} 2929:
definition is merely a trivial variant of the Kuratowski definition, and as such is of no independent interest. The definition
19: 8208: 7910: 7673: 7668: 7493: 6914: 6598: 2841: 1356: 8541: 8420: 8203: 7986: 7903: 7616: 7547: 7424: 6666: 2768: 8784: 7274: 8128: 7954: 7640: 6873: 8777: 7279: 5327: 5315:
This definition is inadmissible in most modern formalized set theories and is methodologically similar to defining the
8415: 8378: 7611: 7350: 6608: 6509: 5257: 2984:
version keeps having cardinality 2, which is something one might expect of any "pair", including any "ordered pair".)
8006: 8001: 5241:
showed that the existence of such a type-level ordered pair (or even a "type-raising by 1" ordered pair) implies the
5155: 7935: 7525: 6919: 6887: 6578: 806: 717:
In some introductory mathematics textbooks an informal (or intuitive) definition of ordered pair is given, such as
6652: 8466: 8358: 8346: 8341: 8225: 8174: 8071: 7569: 7530: 7007: 5952: 5514:
This renders possible pairs whose projections are proper classes. The Quine–Rosser definition above also admits
2035: 2031: 789:
this definition is due to Kuratowski (see below) and his definition was used in the second edition of Bourbaki's
765:
This "definition" is unsatisfactory because it is only descriptive and is based on an intuitive understanding of
8066: 6681: 8274: 7996: 7535: 7387: 7370: 7093: 6573: 5714:. Ordered triples which are defined as ordered pairs do not have this property with respect to ordered pairs. 1716: 6433:. Academia-Bruylant. The publisher has graciously consented to permit diffusion of this monograph via the web. 4847: 5245:. For an extensive discussion of the ordered pair in the context of Quinian set theories, see Holmes (1998). 4168: 8886: 8804: 8679: 8631: 8445: 8368: 7898: 7875: 7836: 7722: 7663: 7309: 7229: 7073: 7017: 6630: 6213: 6132: 3985: 5902:{\displaystyle f(a_{1},b_{1})=f(a_{2},b_{2}){\text{ if and only if }}a_{1}=a_{2}{\text{ and }}b_{1}=b_{2}.} 494:{\displaystyle (a_{1},b_{1})=(a_{2},b_{2}){\text{ if and only if }}a_{1}=a_{2}{\text{ and }}b_{1}=b_{2}.} 8838: 8719: 8531: 8351: 8188: 7915: 7893: 7860: 7753: 7599: 7584: 7557: 7508: 7392: 7327: 7152: 7118: 7113: 6987: 6818: 6795: 5912: 5222: 3762:
is in the left hand side, and thus in the right hand side. Because equal sets have equal elements, one of
2506: 971: 942: 249: 8927: 8754: 8668: 8588: 8568: 8546: 8118: 7971: 7763: 7481: 7217: 7123: 6982: 6967: 6848: 6823: 933: 8244: 6241:
This differs from Hausdorff's definition in not requiring the two elements 0 and 1 to be distinct from
1687:{\displaystyle (\forall Y_{1},Y_{2}\in p:Y_{1}\neq Y_{2}\rightarrow (x\notin Y_{1}\lor x\notin Y_{2}))} 6444: 4837:{\displaystyle (A,B):=\varphi \cup \psi =\{\varphi (a):a\in A\}\cup \{\varphi (b)\cup \{0\}:b\in B\}.} 8932: 8828: 8818: 8652: 8583: 8536: 8476: 8363: 8091: 8053: 7930: 7734: 7574: 7498: 7476: 7304: 7262: 7161: 7128: 6992: 6780: 6691: 6204: 5987: 2934: 1105: 585: 161: 145: 4041: 8823: 8734: 8647: 8642: 8637: 8451: 8393: 8331: 8267: 8220: 8111: 8096: 8076: 8033: 7920: 7870: 7796: 7741: 7678: 7471: 7466: 7414: 7182: 7171: 6843: 6743: 6671: 6662: 6658: 6593: 6588: 5930: 4424: 4380: 2949: 2945: 309: 263: 4216: 3995: 8746: 8741: 8526: 8481: 8388: 8249: 8018: 7981: 7966: 7959: 7942: 7728: 7594: 7520: 7503: 7456: 7269: 7178: 7012: 6997: 6957: 6909: 6894: 6882: 6838: 6813: 6583: 6532: 6367: 6320: 5975: 4482: 2952:, then 2 is defined as the set {0, 1} = {0, {0}}, which is indistinguishable from the pair (0, 0) 2610: 2039: 7746: 7202: 6151:"Set-Theoretical Representations of Ordered Pairs and Their Adequacy for the Logic of Relations" 4430: 8603: 8440: 8432: 8403: 8373: 8304: 8184: 7991: 7801: 7791: 7683: 7564: 7399: 7375: 7156: 7140: 7045: 7022: 6899: 6868: 6833: 6728: 6563: 6347: 6292: 6168: 6114: 6090: 6063: 6039: 5999: 5242: 5238: 4892: 4664: 4458: 3981: 2481: 2454: 2020:{\displaystyle \bigcup p=\bigcup {\bigg \{}\{x\},\{x,y\}{\bigg \}}=\{x\}\cup \{x,y\}=\{x,y\}.} 810: 753:
This is usually followed by a comparison to a set of two elements; pointing out that in a set
516: 504: 241: 23: 4406: 4148: 4128: 2343: 8891: 8881: 8866: 8861: 8729: 8383: 8198: 8193: 8086: 8043: 7865: 7826: 7821: 7806: 7632: 7589: 7486: 7284: 7234: 6808: 6770: 6222: 5963: 2683:. There are other definitions, of similar or lesser complexity, that are equally adequate: 1898:{\displaystyle \bigcap p=\bigcap {\bigg \{}\{x\},\{x,y\}{\bigg \}}=\{x\}\cap \{x,y\}=\{x\},} 946: 778: 777:, whose associated axiom is the characteristic property. This was the approach taken by the 774: 579: 6394: 8760: 8698: 8516: 8336: 8179: 8169: 8123: 8106: 8061: 8023: 7925: 7845: 7652: 7579: 7552: 7540: 7446: 7360: 7334: 7289: 7257: 7058: 6860: 6803: 6753: 6718: 6676: 6429: 6136: 5660: 5234: 5226: 5218: 1015: 536: 245: 27: 6010: 2660: 5648:{\displaystyle (x,y,z)=(\{0\}\times s(x))\cup (\{1\}\times s(y))\cup (\{2\}\times s(z))} 8896: 8693: 8674: 8578: 8563: 8520: 8456: 8398: 8164: 8143: 8101: 8081: 7976: 7831: 7429: 7419: 7409: 7404: 7338: 7212: 7088: 6977: 6972: 6950: 6551: 5749: 5729: 4386: 4196: 3989: 3009: 2510: 821: 113: 5926: 5686:
which has an inserted empty set allows tuples to have the uniqueness property that if
8916: 8901: 8871: 8703: 8617: 8612: 8138: 7816: 7323: 7108: 7098: 7068: 7053: 6723: 6422: 5335: 575: 8851: 8846: 8664: 8593: 8410: 8314: 8038: 7885: 7786: 7778: 7658: 7606: 7515: 7451: 7434: 7365: 7224: 7083: 6785: 6568: 6486: 5515: 5331: 157: 1207:
When the first and the second coordinates are identical, the definition obtains:
8876: 8511: 8148: 8028: 7207: 7197: 7144: 6828: 6748: 6733: 6613: 6558: 5316: 5230: 5214: 961: 928: 153: 72: 144:(sometimes, lists in a computer science context) of length 2. Ordered pairs of 87:), is a pair of objects in which their order is significant. The ordered pair ( 8856: 8724: 8627: 8290: 7078: 6933: 6904: 6710: 5441:
where the component Cartesian products are Kuratowski pairs of sets and where
802: 6280: 8659: 8622: 8573: 8471: 8230: 8133: 7186: 7103: 7063: 7027: 6963: 6775: 6765: 6738: 5974:. In this context the characteristic property above is a consequence of the 6227: 6208: 1332:{\displaystyle (x,\ x)_{K}=\{\{x\},\{x,\ x\}\}=\{\{x\},\ \{x\}\}=\{\{x\}\}} 824:
proposed the first set theoretical definition of the ordered pair in 1914:
160:.) The entries of an ordered pair can be other ordered pairs, enabling the 4889:
Extracting all the elements of the pair that do not contain 0 and undoing
8215: 8013: 7461: 7166: 6760: 6272: 5518:
as projections. Similarly the triple is defined as a 3-tuple as follows:
1567: 1566:
In the case that the left and right coordinates are identical, the right
141: 5986:. While different objects may have the universal property, they are all 5966:
represents the set of ordered pairs, with the first element coming from
226:
of the pair. Alternatively, the objects are called the first and second
7811: 6603: 6464: 165: 31: 2448:, but the previous formula also takes into account the case when x=y) 8684: 8506: 6501: 2030:
This is how we can extract the first coordinate of a pair (using the
548: 6308: 2441:{\displaystyle \{y\}=\{\left.a\in \{x,y\}\,\right|\,a\notin \{x\}\}} 6165:
From Frege to Gödel: A Source Book in Mathematical Logic, 1979–1931
6060:
Sets, Functions and Logic / An Introduction to Abstract Mathematics
8556: 8323: 7355: 6701: 6546: 5925: 4917:
can be recovered from the elements of the pair that do contain 0.
4654:{\displaystyle \psi (x):=\sigma \cup \{0\}=\varphi (x)\cup \{0\}.} 574:
notation may be used for other purposes, most notably as denoting
137: 5319:
of a set as the class of all sets equipotent with the given set.
1096:"where 1 and 2 are two distinct objects different from a and b." 5911:
This definition is acceptable because this extension of ZF is a
3837:, and this combination contradicts the axiom of regularity, as { 2933:
is so-called because it requires two rather than three pairs of
927:
He observed that this definition made it possible to define the
8263: 6505: 5982:
can be identified with morphisms from 1 (a one element set) to
5434:{\displaystyle (x,y)=(\{0\}\times s(x))\cup (\{1\}\times s(y))} 2950:
von Neumann's set-theoretic construction of the natural numbers
964:
where all elements in a class must be of the same "type". With
5726:(ZF) axiomatically by just adding to ZF a new function symbol 2107:{\displaystyle \pi _{1}(p)=\bigcup \bigcap p=\bigcup \{x\}=x.} 8259: 5029:{\displaystyle (\{\{a,0\},\{b,c,1\}\},\{\{d,2\},\{e,f,3\}\})} 4479:
simply increments every natural number in it. In particular,
6184:
cf introduction to Wiener's paper in van Heijenoort 1967:224
6150: 5746:
of arity 2 (it is usually omitted) and a defining axiom for
5505:{\displaystyle s(x)=\{\emptyset \}\cup \{\{t\}\mid t\in x\}} 2988:
Proving that definitions satisfy the characteristic property
5217:
and in outgrowths thereof such as the axiomatic set theory
5145:{\displaystyle \{\{a,1\},\{b,c,2\},\{d,3,0\},\{e,f,4,0\}\}} 4111: 2600:{\displaystyle (a,b)=(x,y)\leftrightarrow (a=x)\land (b=y)} 2389: 2223: 2154: 6087:
Proof, Logic, and Conjecture / The Mathematician's Toolbox
6017:(definition Def5 of "ordered pairs" as { { x,y }, { x } }) 2757:{\displaystyle (a,b)_{\text{reverse}}:=\{\{b\},\{a,b\}\};} 2607:. In particular, it adequately expresses 'order', in that 3841:} has no minimal element under the relation "element of." 1108:
offered the now-accepted definition of the ordered pair (
6209:"Sur la notion de l'ordre dans la ThĂ©orie des Ensembles" 3984:(1953) employed a definition of the ordered pair due to 2915:{\displaystyle (a,b)_{\text{01}}:=\{\{0,a\},\{1,b\}\}.} 1200:{\displaystyle (a,\ b)_{K}\;:=\ \{\{a\},\ \{a,\ b\}\}.} 6062:(3rd ed.), Chapman & Hall / CRC, p. 79, 4568:{\displaystyle \varphi (x)\neq \{0\}\cup \varphi (y).} 4508:
does never contain the number 0, so that for any sets
968:
nested within an additional set, its type is equal to
588: 507:
of all ordered pairs whose first entry is in some set
252:) are defined in terms of ordered pairs, cf. picture. 6397: 6370: 6350: 6323: 6038:(4th ed.), Pearson / Prentice Hall, p. 50, 5772: 5752: 5732: 5663: 5524: 5447: 5349: 5260: 5158: 5042: 4926: 4895: 4850: 4707: 4667: 4581: 4522: 4485: 4461: 4433: 4409: 4389: 4241: 4219: 4199: 4171: 4151: 4131: 4020: 3998: 2844: 2771: 2692: 2663: 2613: 2527: 2484: 2457: 2372: 2346: 2122: 2048: 1912: 1796: 1719: 1575: 1411: 1359: 1213: 1122: 1089:{\displaystyle (a,b):=\left\{\{a,1\},\{b,2\}\right\}} 1024: 974: 830: 370: 312: 266: 6260:
Lectures in Logic and Set Theory. Vol. 2: Set Theory
2830:{\displaystyle (a,b)_{\text{short}}:=\{a,\{a,b\}\};} 2509:, in the sense that their domains and codomains are 2116:
This is how the second coordinate can be extracted:
8837: 8800: 8712: 8602: 8490: 8431: 8322: 8297: 8157: 8052: 7884: 7777: 7629: 7322: 7245: 7139: 7043: 6932: 6859: 6794: 6709: 6700: 6622: 6539: 6317:, on: Boise State, March 29, 2009. The author uses 5978:of the product and the fact that elements of a set 2941:satisfies the characteristic property requires the 809:, then all mathematical objects must be defined as 6485: 6403: 6383: 6356: 6336: 5901: 5758: 5738: 5678: 5647: 5504: 5433: 5305: 5202: 5144: 5028: 4901: 4878: 4836: 4682: 4653: 4567: 4500: 4467: 4447: 4415: 4395: 4371: 4227: 4205: 4185: 4157: 4137: 4117: 4006: 2914: 2829: 2756: 2675: 2649: 2599: 2497: 2470: 2440: 2366:, then the set {y} could be obtained more simply: 2358: 2330: 2106: 2019: 1897: 1779: 1686: 1558: 1389: 1331: 1199: 1088: 998: 919: 606: 493: 344: 298: 156:since an ordered pair need not be an element of a 1961: 1927: 1845: 1811: 6283:Also see Tourlakis (2003), Proposition III.10.1. 4014:be the set of natural numbers and define first 6262:. Cambridge Univ. Press. Proposition III.10.1. 5203:{\displaystyle a,b,c,d,e,f\notin \mathbb {N} } 8275: 6517: 675:), respectively. In contexts where arbitrary 8: 5624: 5618: 5591: 5585: 5558: 5552: 5499: 5484: 5478: 5475: 5469: 5463: 5410: 5404: 5377: 5371: 5297: 5279: 5139: 5136: 5112: 5106: 5088: 5082: 5064: 5058: 5046: 5043: 5020: 5017: 4999: 4993: 4981: 4978: 4972: 4969: 4951: 4945: 4933: 4930: 4828: 4813: 4807: 4789: 4783: 4756: 4645: 4639: 4618: 4612: 4544: 4538: 4363: 4325: 4299: 4272: 2906: 2903: 2891: 2885: 2873: 2870: 2821: 2818: 2806: 2797: 2748: 2745: 2733: 2727: 2721: 2718: 2435: 2432: 2426: 2410: 2398: 2385: 2379: 2373: 2316: 2310: 2296: 2290: 2278: 2272: 2266: 2254: 2244: 2232: 2092: 2086: 2011: 1999: 1993: 1981: 1975: 1969: 1956: 1944: 1938: 1932: 1889: 1883: 1877: 1865: 1859: 1853: 1840: 1828: 1822: 1816: 1774: 1771: 1759: 1753: 1747: 1744: 1326: 1323: 1317: 1314: 1308: 1305: 1299: 1290: 1284: 1281: 1275: 1272: 1257: 1251: 1245: 1242: 1191: 1188: 1173: 1164: 1158: 1155: 1078: 1066: 1060: 1048: 993: 984: 978: 975: 601: 589: 175:objects). For example, the ordered triple ( 8282: 8268: 8260: 7343: 6938: 6706: 6524: 6510: 6502: 6423:Elementary Set Theory with a Universal Set 6167:, Harvard University Press, Cambridge MA, 2968:are of the same type, the elements of the 1148: 797:Defining the ordered pair using set theory 6396: 6375: 6369: 6349: 6328: 6322: 6226: 6109:Fletcher, Peter; Patty, C. Wayne (1988), 5890: 5877: 5868: 5862: 5849: 5840: 5831: 5818: 5796: 5783: 5771: 5751: 5731: 5662: 5523: 5446: 5348: 5259: 5196: 5195: 5157: 5041: 4925: 4894: 4849: 4706: 4666: 4580: 4521: 4484: 4460: 4432: 4408: 4388: 4356: 4355: 4315: 4314: 4240: 4221: 4220: 4218: 4198: 4179: 4178: 4170: 4150: 4130: 4101: 4100: 4089: 4064: 4063: 4052: 4036: 4019: 4000: 3999: 3997: 3988:which requires a prior definition of the 2861: 2843: 2788: 2770: 2709: 2691: 2662: 2612: 2526: 2489: 2483: 2462: 2456: 2419: 2413: 2371: 2345: 2253: 2247: 2175: 2169: 2127: 2121: 2053: 2047: 1960: 1959: 1926: 1925: 1911: 1844: 1843: 1810: 1809: 1795: 1780:{\displaystyle p=(x,y)=\{\{x\},\{x,y\}\}} 1718: 1672: 1653: 1631: 1618: 1599: 1586: 1574: 1541: 1522: 1500: 1487: 1468: 1455: 1410: 1358: 1233: 1212: 1142: 1121: 1023: 973: 960:} to make the definition compatible with 889: 877: 829: 741:is a notation specifying the two objects 614:, but this notation also has other uses. 587: 482: 469: 460: 454: 441: 432: 423: 410: 391: 378: 369: 333: 320: 311: 287: 274: 265: 199:)), i.e., as one pair nested in another. 34:is associated with the set of all pairs ( 6036:Analysis / With an Introduction to Proof 5722:Ordered pairs can also be introduced in 4879:{\displaystyle \varphi ''A\cup \psi ''B} 3786:}, then by similar reasoning as above, { 18: 6026: 4311: 4186:{\displaystyle x\setminus \mathbb {N} } 4175: 6089:, W. H. Freeman and Co., p. 164, 6080: 6078: 1390:{\displaystyle \forall Y\in p:x\in Y.} 1014:About the same time as Wiener (1914), 511:and whose second entry is in some set 95:) is different from the ordered pair ( 7: 999:{\displaystyle \{\{a\},\emptyset \}} 152:. (Technically, this is an abuse of 148:are sometimes called 2-dimensional 5466: 4693:Finally, define the ordered pair ( 4690:does always contain the number 0. 3872:}, again contradicting regularity. 2956:. Yet another disadvantage of the 1579: 1448: 1415: 1360: 990: 878: 14: 6111:Foundations of Higher Mathematics 6015:Journal of Formalized Mathematics 3790:} is in the right hand side, so { 8313: 8243: 5306:{\displaystyle (x,y)=\{R:xRy\}.} 607:{\textstyle \langle a,b\rangle } 26:associates to each point in the 6466:Set Theory From Cantor to Cohen 2960:pair is the fact that, even if 713:Informal and formal definitions 697:) is a common notation for the 6443:Frege, Gottlob (1893). "144". 6011:Tarski–Grothendieck Set Theory 6005:Tarski–Grothendieck set theory 5837: 5811: 5802: 5776: 5673: 5667: 5642: 5639: 5633: 5615: 5609: 5606: 5600: 5582: 5576: 5573: 5567: 5549: 5543: 5525: 5457: 5451: 5428: 5425: 5419: 5401: 5395: 5392: 5386: 5368: 5362: 5350: 5273: 5261: 5023: 4927: 4801: 4795: 4768: 4762: 4750: 4744: 4735: 4729: 4720: 4708: 4677: 4671: 4633: 4627: 4606: 4600: 4591: 4585: 4559: 4553: 4532: 4526: 4495: 4489: 4360: 4346: 4319: 4305: 4284: 4278: 4266: 4260: 4251: 4245: 4193:is the set of the elements of 4030: 4024: 2858: 2845: 2785: 2772: 2706: 2693: 2644: 2632: 2626: 2614: 2594: 2582: 2576: 2564: 2561: 2558: 2546: 2540: 2528: 2281: 2191: 2139: 2133: 2065: 2059: 1738: 1726: 1681: 1678: 1640: 1637: 1576: 1550: 1547: 1509: 1506: 1445: 1439: 1412: 1230: 1214: 1139: 1123: 1037: 1025: 429: 403: 397: 371: 339: 313: 293: 267: 136:Ordered pairs are also called 125:}, equals the unordered pair { 1: 8204:History of mathematical logic 6452:. Jena: Verlag Hermann Pohle. 5657:The use of the singleton set 345:{\displaystyle (a_{2},b_{2})} 299:{\displaystyle (a_{1},b_{1})} 8923:Basic concepts in set theory 8129:Primitive recursive function 4228:{\displaystyle \mathbb {N} } 4007:{\displaystyle \mathbb {N} } 1401:is the second coordinate of 16:Pair of mathematical objects 6446:Grundgesetze der Arithmetik 6384:{\displaystyle \sigma _{2}} 6337:{\displaystyle \sigma _{1}} 5970:and the second coming from 5724:Zermelo–Fraenkel set theory 4501:{\displaystyle \varphi (x)} 4455:as well. Applying function 3925:, contradicting regularity. 2972:pair are not. (However, if 2943:Zermelo–Fraenkel set theory 2650:{\displaystyle (a,b)=(b,a)} 2032:iterated-operation notation 1349:is the first coordinate of 941:had taken types, and hence 352:be ordered pairs. Then the 8951: 8773:von Neumann–Bernays–Gödel 7193:Schröder–Bernstein theorem 6920:Monadic predicate calculus 6579:Foundations of mathematics 6484:Morse, Anthony P. (1965). 6463:Kanamori, Akihiro (2007). 6420:Holmes, M. Randall (1998) 6009:Trybulec, Andrzej, 1989, " 5842: if and only if  4448:{\displaystyle \sigma ''x} 1099: 1009: 816: 434: if and only if  8574:One-to-one correspondence 8311: 8239: 8226:Philosophy of mathematics 8175:Automated theorem proving 7346: 7300:Von Neumann–Bernays–Gödel 6941: 6275:proof of the adequacy of 6258:Tourlakis, George (2003) 3528:}, a contradiction. Thus 3446:, which also contradicts 1694:is trivially true, since 1018:proposed his definition: 807:foundation of mathematics 30:an ordered pair. The red 6357:{\displaystyle \varphi } 6297:Logic for Mathematicians 6113:, PWS-Kent, p. 80, 6085:Wolf, Robert S. (1998), 4902:{\displaystyle \varphi } 4886:in alternate notation). 4701:) as the disjoint union 4683:{\displaystyle \psi (x)} 4468:{\displaystyle \varphi } 2948:. Moreover, if one uses 2498:{\displaystyle \pi _{2}} 2471:{\displaystyle \pi _{1}} 1405:" can be formulated as: 1353:" can be formulated as: 1341:Given some ordered pair 679:-tuples are considered, 364:of the ordered pair is: 234:, or the left and right 7876:Self-verifying theories 7697:Tarski's axiomatization 6648:Tarski's undefinability 6643:incompleteness theorems 6214:Fundamenta Mathematicae 6034:Lay, Steven R. (2005), 5328:Morse–Kelley set theory 5249:Cantor–Frege definition 4416:{\displaystyle \sigma } 4158:{\displaystyle \sigma } 4138:{\displaystyle \sigma } 3977:Quine–Rosser definition 2359:{\displaystyle x\neq y} 1100:Kuratowski's definition 230:, the first and second 8532:Constructible universe 8359:Constructibility (V=L) 8250:Mathematics portal 7861:Proof of impossibility 7509:propositional variable 6819:Propositional calculus 6405: 6385: 6358: 6338: 6228:10.4064/fm-2-1-161-171 6058:Devlin, Keith (2004), 5948: 5913:conservative extension 5903: 5760: 5740: 5680: 5649: 5506: 5435: 5307: 5204: 5146: 5030: 4920:For example, the pair 4903: 4880: 4838: 4684: 4655: 4569: 4502: 4469: 4449: 4417: 4397: 4373: 4229: 4207: 4187: 4159: 4139: 4119: 4008: 3397:}} would also equal {{ 2916: 2831: 2758: 2677: 2651: 2601: 2499: 2472: 2442: 2360: 2332: 2108: 2036:arbitrary intersection 2021: 1899: 1781: 1688: 1560: 1391: 1333: 1201: 1090: 1010:Hausdorff's definition 1000: 921: 751: 627:is usually denoted by 608: 495: 346: 300: 164:definition of ordered 68: 8755:Principia Mathematica 8589:Transfinite induction 8448:(i.e. set difference) 8119:Kolmogorov complexity 8072:Computably enumerable 7972:Model complete theory 7764:Principia Mathematica 6824:Propositional formula 6653:Banach–Tarski paradox 6406: 6404:{\displaystyle \psi } 6386: 6359: 6339: 5951:A category-theoretic 5929: 5904: 5761: 5741: 5681: 5650: 5507: 5436: 5308: 5205: 5147: 5031: 4904: 4881: 4839: 4685: 4656: 4570: 4503: 4470: 4450: 4418: 4398: 4374: 4230: 4208: 4188: 4160: 4140: 4120: 4009: 3536:is the case, so that 2917: 2832: 2759: 2678: 2652: 2602: 2507:generalized functions 2500: 2473: 2443: 2361: 2333: 2109: 2022: 1900: 1782: 1689: 1561: 1392: 1334: 1202: 1091: 1001: 939:Principia Mathematica 934:Principia Mathematica 922: 719: 609: 496: 347: 301: 238:of the ordered pair. 202:In the ordered pair ( 187:) can be defined as ( 22: 8829:Burali-Forti paradox 8584:Set-builder notation 8537:Continuum hypothesis 8477:Symmetric difference 8067:Church–Turing thesis 8054:Computability theory 7263:continuum hypothesis 6781:Square of opposition 6639:Gödel's completeness 6395: 6368: 6348: 6321: 5988:naturally isomorphic 5933:for the set product 5770: 5750: 5730: 5718:Axiomatic definition 5679:{\displaystyle s(x)} 5661: 5522: 5445: 5347: 5258: 5156: 5040: 4924: 4893: 4848: 4705: 4665: 4579: 4520: 4483: 4459: 4431: 4407: 4387: 4239: 4217: 4197: 4169: 4149: 4129: 4018: 3996: 3885:Again, we see that { 3774:} must be the case. 2842: 2769: 2690: 2661: 2611: 2525: 2482: 2455: 2370: 2344: 2120: 2046: 1910: 1794: 1717: 1573: 1409: 1357: 1211: 1120: 1106:Kazimierz Kuratowski 1022: 972: 828: 721:For any two objects 701:-th component of an 586: 368: 310: 264: 111:. In contrast, the 8790:Tarski–Grothendieck 8221:Mathematical object 8112:P versus NP problem 8077:Computable function 7871:Reverse mathematics 7797:Logical consequence 7674:primitive recursive 7669:elementary function 7442:Free/bound variable 7295:Tarski–Grothendieck 6814:Logical connectives 6744:Logical equivalence 6594:Logical consequence 6205:Kuratowski, Casimir 5931:Commutative diagram 5694:-tuple and b is an 2946:axiom of regularity 2676:{\displaystyle b=a} 1710:is never the case. 945:of all arities, as 817:Wiener's definition 801:If one agrees that 729:, the ordered pair 617:The left and right 8379:Limitation of size 8019:Transfer principle 7982:Semantics of logic 7967:Categorical theory 7943:Non-standard model 7457:Logical connective 6584:Information theory 6533:Mathematical logic 6474:p. 22, footnote 59 6428:2011-04-11 at the 6401: 6381: 6354: 6334: 6309:Holmes, M. Randall 6194:reduced to 1 or 0. 5976:universal property 5949: 5899: 5756: 5736: 5676: 5645: 5502: 5431: 5330:makes free use of 5303: 5200: 5142: 5026: 4899: 4876: 4834: 4680: 4651: 4565: 4498: 4465: 4445: 4413: 4393: 4369: 4225: 4203: 4183: 4155: 4135: 4115: 4110: 4004: 3409:which contradicts 2912: 2827: 2754: 2673: 2647: 2597: 2495: 2468: 2438: 2356: 2328: 2104: 2017: 1895: 1777: 1684: 1556: 1387: 1329: 1197: 1086: 996: 917: 604: 491: 342: 296: 242:Cartesian products 171:(ordered lists of 69: 8910: 8909: 8819:Russell's paradox 8768:Zermelo–Fraenkel 8669:Dedekind-infinite 8542:Diagonal argument 8441:Cartesian product 8305:Set (mathematics) 8257: 8256: 8189:Abstract category 7992:Theories of truth 7802:Rule of inference 7792:Natural deduction 7773: 7772: 7318: 7317: 7023:Cartesian product 6928: 6927: 6834:Many-valued logic 6809:Boolean functions 6692:Russell's paradox 6667:diagonal argument 6564:First-order logic 6492:. Academic Press. 6293:J. Barkley Rosser 6149:Dipert, Randall. 6096:978-0-7167-3050-7 6069:978-1-58488-449-1 6045:978-0-13-148101-5 6000:Cartesian product 5871: 5843: 5759:{\displaystyle f} 5739:{\displaystyle f} 5243:axiom of infinity 5239:J. Barkley Rosser 4425:sometimes denoted 4396:{\displaystyle x} 4206:{\displaystyle x} 4092: 4055: 3921:is an element of 3856:is an element of 3500:were true, then { 3249:. By hypothesis, 3233:}, which implies 2864: 2791: 2712: 1298: 1268: 1225: 1184: 1172: 1154: 1134: 749:, in that order. 517:Cartesian product 463: 435: 218:, and the object 24:Analytic geometry 8940: 8892:Bertrand Russell 8882:John von Neumann 8867:Abraham Fraenkel 8862:Richard Dedekind 8824:Suslin's problem 8735:Cantor's theorem 8452:De Morgan's laws 8317: 8284: 8277: 8270: 8261: 8248: 8247: 8199:History of logic 8194:Category of sets 8087:Decision problem 7866:Ordinal analysis 7807:Sequent calculus 7705:Boolean algebras 7645: 7644: 7619: 7590:logical/constant 7344: 7330: 7253:Zermelo–Fraenkel 7004:Set operations: 6939: 6876: 6707: 6687:Löwenheim–Skolem 6574:Formal semantics 6526: 6519: 6512: 6503: 6494: 6493: 6491: 6488:A Theory of Sets 6481: 6475: 6473: 6471: 6460: 6454: 6453: 6451: 6440: 6434: 6418: 6412: 6410: 6408: 6407: 6402: 6390: 6388: 6387: 6382: 6380: 6379: 6363: 6361: 6360: 6355: 6343: 6341: 6340: 6335: 6333: 6332: 6314:On Ordered Pairs 6306: 6300: 6290: 6284: 6269: 6263: 6256: 6250: 6239: 6233: 6232: 6230: 6201: 6195: 6191: 6185: 6182: 6176: 6161: 6155: 6154: 6146: 6140: 6130: 6124: 6123: 6106: 6100: 6099: 6082: 6073: 6072: 6055: 6049: 6048: 6031: 5964:category of sets 5908: 5906: 5905: 5900: 5895: 5894: 5882: 5881: 5872: 5869: 5867: 5866: 5854: 5853: 5844: 5841: 5836: 5835: 5823: 5822: 5801: 5800: 5788: 5787: 5765: 5763: 5762: 5757: 5745: 5743: 5742: 5737: 5685: 5683: 5682: 5677: 5654: 5652: 5651: 5646: 5511: 5509: 5508: 5503: 5440: 5438: 5437: 5432: 5323:Morse definition 5312: 5310: 5309: 5304: 5209: 5207: 5206: 5201: 5199: 5151: 5149: 5148: 5143: 5035: 5033: 5032: 5027: 4908: 4906: 4905: 4900: 4885: 4883: 4882: 4877: 4872: 4858: 4843: 4841: 4840: 4835: 4689: 4687: 4686: 4681: 4660: 4658: 4657: 4652: 4575:Further, define 4574: 4572: 4571: 4566: 4507: 4505: 4504: 4499: 4474: 4472: 4471: 4466: 4454: 4452: 4451: 4446: 4441: 4422: 4420: 4419: 4414: 4402: 4400: 4399: 4394: 4378: 4376: 4375: 4370: 4359: 4318: 4234: 4232: 4231: 4226: 4224: 4212: 4210: 4209: 4204: 4192: 4190: 4189: 4184: 4182: 4164: 4162: 4161: 4156: 4144: 4142: 4141: 4136: 4124: 4122: 4121: 4116: 4114: 4113: 4104: 4093: 4090: 4067: 4056: 4053: 4013: 4011: 4010: 4005: 4003: 2921: 2919: 2918: 2913: 2866: 2865: 2862: 2836: 2834: 2833: 2828: 2793: 2792: 2789: 2763: 2761: 2760: 2755: 2714: 2713: 2710: 2682: 2680: 2679: 2674: 2657:is false unless 2656: 2654: 2653: 2648: 2606: 2604: 2603: 2598: 2504: 2502: 2501: 2496: 2494: 2493: 2477: 2475: 2474: 2469: 2467: 2466: 2447: 2445: 2444: 2439: 2418: 2414: 2365: 2363: 2362: 2357: 2337: 2335: 2334: 2329: 2303: 2299: 2252: 2248: 2210: 2206: 2174: 2170: 2132: 2131: 2113: 2111: 2110: 2105: 2058: 2057: 2026: 2024: 2023: 2018: 1965: 1964: 1931: 1930: 1904: 1902: 1901: 1896: 1849: 1848: 1815: 1814: 1786: 1784: 1783: 1778: 1709: 1693: 1691: 1690: 1685: 1677: 1676: 1658: 1657: 1636: 1635: 1623: 1622: 1604: 1603: 1591: 1590: 1565: 1563: 1562: 1557: 1546: 1545: 1527: 1526: 1505: 1504: 1492: 1491: 1473: 1472: 1460: 1459: 1396: 1394: 1393: 1388: 1345:, the property " 1338: 1336: 1335: 1330: 1296: 1266: 1238: 1237: 1223: 1206: 1204: 1203: 1198: 1182: 1170: 1152: 1147: 1146: 1132: 1095: 1093: 1092: 1087: 1085: 1081: 1005: 1003: 1002: 997: 926: 924: 923: 918: 913: 909: 908: 904: 885: 881: 873: 849: 845: 805:is an appealing 775:primitive notion 760: 756: 748: 744: 740: 728: 724: 692: 691: 682: 665: 652: 641: 630: 622: 621: 613: 611: 610: 605: 580:real number line 573: 500: 498: 497: 492: 487: 486: 474: 473: 464: 461: 459: 458: 446: 445: 436: 433: 428: 427: 415: 414: 396: 395: 383: 382: 351: 349: 348: 343: 338: 337: 325: 324: 305: 303: 302: 297: 292: 291: 279: 278: 246:binary relations 66: 60: 58: 57: 54: 51: 8950: 8949: 8943: 8942: 8941: 8939: 8938: 8937: 8913: 8912: 8911: 8906: 8833: 8812: 8796: 8761:New Foundations 8708: 8598: 8517:Cardinal number 8500: 8486: 8427: 8318: 8309: 8293: 8288: 8258: 8253: 8242: 8235: 8180:Category theory 8170:Algebraic logic 8153: 8124:Lambda calculus 8062:Church encoding 8048: 8024:Truth predicate 7880: 7846:Complete theory 7769: 7638: 7634: 7630: 7625: 7617: 7337: and  7333: 7328: 7314: 7290:New Foundations 7258:axiom of choice 7241: 7203:Gödel numbering 7143: and  7135: 7039: 6924: 6874: 6855: 6804:Boolean algebra 6790: 6754:Equiconsistency 6719:Classical logic 6696: 6677:Halting problem 6665: and  6641: and  6629: and  6628: 6623:Theorems ( 6618: 6535: 6530: 6499: 6497: 6483: 6482: 6478: 6469: 6462: 6461: 6457: 6449: 6442: 6441: 6437: 6430:Wayback Machine 6419: 6415: 6393: 6392: 6371: 6366: 6365: 6346: 6345: 6324: 6319: 6318: 6307: 6303: 6291: 6287: 6281:here (opthreg). 6270: 6266: 6257: 6253: 6240: 6236: 6203: 6202: 6198: 6192: 6188: 6183: 6179: 6162: 6158: 6148: 6147: 6143: 6137:Word and Object 6131: 6127: 6121: 6108: 6107: 6103: 6097: 6084: 6083: 6076: 6070: 6057: 6056: 6052: 6046: 6033: 6032: 6028: 6024: 5996: 5946: 5939: 5924: 5922:Category theory 5886: 5873: 5870: and  5858: 5845: 5827: 5814: 5792: 5779: 5768: 5767: 5748: 5747: 5728: 5727: 5720: 5659: 5658: 5520: 5519: 5443: 5442: 5345: 5344: 5325: 5256: 5255: 5251: 5154: 5153: 5038: 5037: 4922: 4921: 4891: 4890: 4865: 4851: 4846: 4845: 4703: 4702: 4663: 4662: 4577: 4576: 4518: 4517: 4481: 4480: 4457: 4456: 4434: 4429: 4428: 4405: 4404: 4385: 4384: 4237: 4236: 4215: 4214: 4195: 4194: 4167: 4166: 4147: 4146: 4127: 4126: 4109: 4108: 4087: 4072: 4071: 4050: 4037: 4016: 4015: 3994: 3993: 3990:natural numbers 3979: 3735: 3727: 3684: 3676: 3630: 3622: 3614: 3606: 3592: 3568: 3560: 3389:}}. But then {{ 3300: 3288: 3209: 3197: 3142: 3097: 3085: 3034: 2990: 2955: 2937:. Proving that 2857: 2840: 2839: 2784: 2767: 2766: 2705: 2688: 2687: 2659: 2658: 2609: 2608: 2523: 2522: 2519: 2485: 2480: 2479: 2458: 2453: 2452: 2391: 2388: 2368: 2367: 2342: 2341: 2225: 2222: 2221: 2217: 2156: 2153: 2152: 2148: 2123: 2118: 2117: 2049: 2044: 2043: 2040:arbitrary union 1908: 1907: 1792: 1791: 1715: 1714: 1708: 1701: 1695: 1668: 1649: 1627: 1614: 1595: 1582: 1571: 1570: 1537: 1518: 1496: 1483: 1464: 1451: 1407: 1406: 1355: 1354: 1229: 1209: 1208: 1138: 1118: 1117: 1102: 1047: 1043: 1020: 1019: 1016:Felix Hausdorff 1012: 970: 969: 956:}} instead of { 894: 890: 863: 862: 858: 857: 853: 835: 831: 826: 825: 819: 799: 758: 754: 746: 742: 730: 726: 722: 715: 690: 685: 684: 683: 680: 670: 663: 657: 650: 644: 639: 633: 628: 619: 618: 584: 583: 563: 537:binary relation 478: 465: 462: and  450: 437: 419: 406: 387: 374: 366: 365: 329: 316: 308: 307: 283: 270: 262: 261: 258: 55: 52: 47: 46: 44: 43: 28:Euclidean plane 17: 12: 11: 5: 8948: 8947: 8944: 8936: 8935: 8930: 8925: 8915: 8914: 8908: 8907: 8905: 8904: 8899: 8897:Thoralf Skolem 8894: 8889: 8884: 8879: 8874: 8869: 8864: 8859: 8854: 8849: 8843: 8841: 8835: 8834: 8832: 8831: 8826: 8821: 8815: 8813: 8811: 8810: 8807: 8801: 8798: 8797: 8795: 8794: 8793: 8792: 8787: 8782: 8781: 8780: 8765: 8764: 8763: 8751: 8750: 8749: 8738: 8737: 8732: 8727: 8722: 8716: 8714: 8710: 8709: 8707: 8706: 8701: 8696: 8691: 8682: 8677: 8672: 8662: 8657: 8656: 8655: 8650: 8645: 8635: 8625: 8620: 8615: 8609: 8607: 8600: 8599: 8597: 8596: 8591: 8586: 8581: 8579:Ordinal number 8576: 8571: 8566: 8561: 8560: 8559: 8554: 8544: 8539: 8534: 8529: 8524: 8514: 8509: 8503: 8501: 8499: 8498: 8495: 8491: 8488: 8487: 8485: 8484: 8479: 8474: 8469: 8464: 8459: 8457:Disjoint union 8454: 8449: 8443: 8437: 8435: 8429: 8428: 8426: 8425: 8424: 8423: 8418: 8407: 8406: 8404:Martin's axiom 8401: 8396: 8391: 8386: 8381: 8376: 8371: 8369:Extensionality 8366: 8361: 8356: 8355: 8354: 8349: 8344: 8334: 8328: 8326: 8320: 8319: 8312: 8310: 8308: 8307: 8301: 8299: 8295: 8294: 8289: 8287: 8286: 8279: 8272: 8264: 8255: 8254: 8240: 8237: 8236: 8234: 8233: 8228: 8223: 8218: 8213: 8212: 8211: 8201: 8196: 8191: 8182: 8177: 8172: 8167: 8165:Abstract logic 8161: 8159: 8155: 8154: 8152: 8151: 8146: 8144:Turing machine 8141: 8136: 8131: 8126: 8121: 8116: 8115: 8114: 8109: 8104: 8099: 8094: 8084: 8082:Computable set 8079: 8074: 8069: 8064: 8058: 8056: 8050: 8049: 8047: 8046: 8041: 8036: 8031: 8026: 8021: 8016: 8011: 8010: 8009: 8004: 7999: 7989: 7984: 7979: 7977:Satisfiability 7974: 7969: 7964: 7963: 7962: 7952: 7951: 7950: 7940: 7939: 7938: 7933: 7928: 7923: 7918: 7908: 7907: 7906: 7901: 7894:Interpretation 7890: 7888: 7882: 7881: 7879: 7878: 7873: 7868: 7863: 7858: 7848: 7843: 7842: 7841: 7840: 7839: 7829: 7824: 7814: 7809: 7804: 7799: 7794: 7789: 7783: 7781: 7775: 7774: 7771: 7770: 7768: 7767: 7759: 7758: 7757: 7756: 7751: 7750: 7749: 7744: 7739: 7719: 7718: 7717: 7715:minimal axioms 7712: 7701: 7700: 7699: 7688: 7687: 7686: 7681: 7676: 7671: 7666: 7661: 7648: 7646: 7627: 7626: 7624: 7623: 7622: 7621: 7609: 7604: 7603: 7602: 7597: 7592: 7587: 7577: 7572: 7567: 7562: 7561: 7560: 7555: 7545: 7544: 7543: 7538: 7533: 7528: 7518: 7513: 7512: 7511: 7506: 7501: 7491: 7490: 7489: 7484: 7479: 7474: 7469: 7464: 7454: 7449: 7444: 7439: 7438: 7437: 7432: 7427: 7422: 7412: 7407: 7405:Formation rule 7402: 7397: 7396: 7395: 7390: 7380: 7379: 7378: 7368: 7363: 7358: 7353: 7347: 7341: 7324:Formal systems 7320: 7319: 7316: 7315: 7313: 7312: 7307: 7302: 7297: 7292: 7287: 7282: 7277: 7272: 7267: 7266: 7265: 7260: 7249: 7247: 7243: 7242: 7240: 7239: 7238: 7237: 7227: 7222: 7221: 7220: 7213:Large cardinal 7210: 7205: 7200: 7195: 7190: 7176: 7175: 7174: 7169: 7164: 7149: 7147: 7137: 7136: 7134: 7133: 7132: 7131: 7126: 7121: 7111: 7106: 7101: 7096: 7091: 7086: 7081: 7076: 7071: 7066: 7061: 7056: 7050: 7048: 7041: 7040: 7038: 7037: 7036: 7035: 7030: 7025: 7020: 7015: 7010: 7002: 7001: 7000: 6995: 6985: 6980: 6978:Extensionality 6975: 6973:Ordinal number 6970: 6960: 6955: 6954: 6953: 6942: 6936: 6930: 6929: 6926: 6925: 6923: 6922: 6917: 6912: 6907: 6902: 6897: 6892: 6891: 6890: 6880: 6879: 6878: 6865: 6863: 6857: 6856: 6854: 6853: 6852: 6851: 6846: 6841: 6831: 6826: 6821: 6816: 6811: 6806: 6800: 6798: 6792: 6791: 6789: 6788: 6783: 6778: 6773: 6768: 6763: 6758: 6757: 6756: 6746: 6741: 6736: 6731: 6726: 6721: 6715: 6713: 6704: 6698: 6697: 6695: 6694: 6689: 6684: 6679: 6674: 6669: 6657:Cantor's  6655: 6650: 6645: 6635: 6633: 6620: 6619: 6617: 6616: 6611: 6606: 6601: 6596: 6591: 6586: 6581: 6576: 6571: 6566: 6561: 6556: 6555: 6554: 6543: 6541: 6537: 6536: 6531: 6529: 6528: 6521: 6514: 6506: 6496: 6495: 6476: 6472:. Elsevier BV. 6455: 6435: 6413: 6400: 6378: 6374: 6353: 6331: 6327: 6301: 6299:. McGraw–Hill. 6285: 6264: 6251: 6234: 6221:(1): 161–171. 6196: 6186: 6177: 6156: 6141: 6125: 6119: 6101: 6095: 6074: 6068: 6050: 6044: 6025: 6023: 6020: 6019: 6018: 6007: 6002: 5995: 5992: 5944: 5937: 5923: 5920: 5898: 5893: 5889: 5885: 5880: 5876: 5865: 5861: 5857: 5852: 5848: 5839: 5834: 5830: 5826: 5821: 5817: 5813: 5810: 5807: 5804: 5799: 5795: 5791: 5786: 5782: 5778: 5775: 5755: 5735: 5719: 5716: 5675: 5672: 5669: 5666: 5644: 5641: 5638: 5635: 5632: 5629: 5626: 5623: 5620: 5617: 5614: 5611: 5608: 5605: 5602: 5599: 5596: 5593: 5590: 5587: 5584: 5581: 5578: 5575: 5572: 5569: 5566: 5563: 5560: 5557: 5554: 5551: 5548: 5545: 5542: 5539: 5536: 5533: 5530: 5527: 5516:proper classes 5501: 5498: 5495: 5492: 5489: 5486: 5483: 5480: 5477: 5474: 5471: 5468: 5465: 5462: 5459: 5456: 5453: 5450: 5430: 5427: 5424: 5421: 5418: 5415: 5412: 5409: 5406: 5403: 5400: 5397: 5394: 5391: 5388: 5385: 5382: 5379: 5376: 5373: 5370: 5367: 5364: 5361: 5358: 5355: 5352: 5332:proper classes 5324: 5321: 5302: 5299: 5296: 5293: 5290: 5287: 5284: 5281: 5278: 5275: 5272: 5269: 5266: 5263: 5250: 5247: 5198: 5194: 5191: 5188: 5185: 5182: 5179: 5176: 5173: 5170: 5167: 5164: 5161: 5141: 5138: 5135: 5132: 5129: 5126: 5123: 5120: 5117: 5114: 5111: 5108: 5105: 5102: 5099: 5096: 5093: 5090: 5087: 5084: 5081: 5078: 5075: 5072: 5069: 5066: 5063: 5060: 5057: 5054: 5051: 5048: 5045: 5036:is encoded as 5025: 5022: 5019: 5016: 5013: 5010: 5007: 5004: 5001: 4998: 4995: 4992: 4989: 4986: 4983: 4980: 4977: 4974: 4971: 4968: 4965: 4962: 4959: 4956: 4953: 4950: 4947: 4944: 4941: 4938: 4935: 4932: 4929: 4898: 4875: 4871: 4868: 4864: 4861: 4857: 4854: 4833: 4830: 4827: 4824: 4821: 4818: 4815: 4812: 4809: 4806: 4803: 4800: 4797: 4794: 4791: 4788: 4785: 4782: 4779: 4776: 4773: 4770: 4767: 4764: 4761: 4758: 4755: 4752: 4749: 4746: 4743: 4740: 4737: 4734: 4731: 4728: 4725: 4722: 4719: 4716: 4713: 4710: 4679: 4676: 4673: 4670: 4650: 4647: 4644: 4641: 4638: 4635: 4632: 4629: 4626: 4623: 4620: 4617: 4614: 4611: 4608: 4605: 4602: 4599: 4596: 4593: 4590: 4587: 4584: 4564: 4561: 4558: 4555: 4552: 4549: 4546: 4543: 4540: 4537: 4534: 4531: 4528: 4525: 4497: 4494: 4491: 4488: 4464: 4444: 4440: 4437: 4412: 4392: 4368: 4365: 4362: 4358: 4354: 4351: 4348: 4345: 4342: 4339: 4336: 4333: 4330: 4327: 4324: 4321: 4317: 4313: 4310: 4307: 4304: 4301: 4298: 4295: 4292: 4289: 4286: 4283: 4280: 4277: 4274: 4271: 4268: 4265: 4262: 4259: 4256: 4253: 4250: 4247: 4244: 4223: 4202: 4181: 4177: 4174: 4154: 4134: 4112: 4107: 4103: 4099: 4096: 4088: 4086: 4083: 4080: 4077: 4074: 4073: 4070: 4066: 4062: 4059: 4051: 4049: 4046: 4043: 4042: 4040: 4035: 4032: 4029: 4026: 4023: 4002: 3978: 3975: 3974: 3973: 3926: 3883: 3882: 3875: 3874: 3873: 3842: 3733: 3725: 3682: 3674: 3628: 3620: 3612: 3604: 3590: 3566: 3554: 3553: 3489: 3488: 3456: 3455: 3419: 3418: 3298: 3286: 3267: 3266: 3215: 3207: 3195: 3172: 3140: 3095: 3083: 3010:if and only if 2989: 2986: 2953: 2923: 2922: 2911: 2908: 2905: 2902: 2899: 2896: 2893: 2890: 2887: 2884: 2881: 2878: 2875: 2872: 2869: 2860: 2856: 2853: 2850: 2847: 2837: 2826: 2823: 2820: 2817: 2814: 2811: 2808: 2805: 2802: 2799: 2796: 2787: 2783: 2780: 2777: 2774: 2764: 2753: 2750: 2747: 2744: 2741: 2738: 2735: 2732: 2729: 2726: 2723: 2720: 2717: 2708: 2704: 2701: 2698: 2695: 2672: 2669: 2666: 2646: 2643: 2640: 2637: 2634: 2631: 2628: 2625: 2622: 2619: 2616: 2596: 2593: 2590: 2587: 2584: 2581: 2578: 2575: 2572: 2569: 2566: 2563: 2560: 2557: 2554: 2551: 2548: 2545: 2542: 2539: 2536: 2533: 2530: 2518: 2515: 2511:proper classes 2492: 2488: 2465: 2461: 2437: 2434: 2431: 2428: 2425: 2422: 2417: 2412: 2409: 2406: 2403: 2400: 2397: 2394: 2390: 2387: 2384: 2381: 2378: 2375: 2355: 2352: 2349: 2327: 2324: 2321: 2318: 2315: 2312: 2309: 2306: 2302: 2298: 2295: 2292: 2289: 2286: 2283: 2280: 2277: 2274: 2271: 2268: 2265: 2262: 2259: 2256: 2251: 2246: 2243: 2240: 2237: 2234: 2231: 2228: 2224: 2220: 2216: 2213: 2209: 2205: 2202: 2199: 2196: 2193: 2190: 2187: 2184: 2181: 2178: 2173: 2168: 2165: 2162: 2159: 2155: 2151: 2147: 2144: 2141: 2138: 2135: 2130: 2126: 2103: 2100: 2097: 2094: 2091: 2088: 2085: 2082: 2079: 2076: 2073: 2070: 2067: 2064: 2061: 2056: 2052: 2028: 2027: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1963: 1958: 1955: 1952: 1949: 1946: 1943: 1940: 1937: 1934: 1929: 1924: 1921: 1918: 1915: 1905: 1894: 1891: 1888: 1885: 1882: 1879: 1876: 1873: 1870: 1867: 1864: 1861: 1858: 1855: 1852: 1847: 1842: 1839: 1836: 1833: 1830: 1827: 1824: 1821: 1818: 1813: 1808: 1805: 1802: 1799: 1776: 1773: 1770: 1767: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1725: 1722: 1706: 1699: 1683: 1680: 1675: 1671: 1667: 1664: 1661: 1656: 1652: 1648: 1645: 1642: 1639: 1634: 1630: 1626: 1621: 1617: 1613: 1610: 1607: 1602: 1598: 1594: 1589: 1585: 1581: 1578: 1555: 1552: 1549: 1544: 1540: 1536: 1533: 1530: 1525: 1521: 1517: 1514: 1511: 1508: 1503: 1499: 1495: 1490: 1486: 1482: 1479: 1476: 1471: 1467: 1463: 1458: 1454: 1450: 1447: 1444: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1397:The property " 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1362: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1241: 1236: 1232: 1228: 1222: 1219: 1216: 1196: 1193: 1190: 1187: 1181: 1178: 1175: 1169: 1166: 1163: 1160: 1157: 1151: 1145: 1141: 1137: 1131: 1128: 1125: 1101: 1098: 1084: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1046: 1042: 1039: 1036: 1033: 1030: 1027: 1011: 1008: 995: 992: 989: 986: 983: 980: 977: 952:Wiener used {{ 916: 912: 907: 903: 900: 897: 893: 888: 884: 880: 876: 872: 869: 866: 861: 856: 852: 848: 844: 841: 838: 834: 822:Norbert Wiener 818: 815: 798: 795: 791:Theory of Sets 783:Theory of Sets 714: 711: 686: 666: 653: 642: 631: 603: 600: 597: 594: 591: 576:open intervals 527:, and written 515:is called the 490: 485: 481: 477: 472: 468: 457: 453: 449: 444: 440: 431: 426: 422: 418: 413: 409: 405: 402: 399: 394: 390: 386: 381: 377: 373: 354:characteristic 341: 336: 332: 328: 323: 319: 315: 295: 290: 286: 282: 277: 273: 269: 257: 254: 214:is called the 210:), the object 114:unordered pair 15: 13: 10: 9: 6: 4: 3: 2: 8946: 8945: 8934: 8931: 8929: 8926: 8924: 8921: 8920: 8918: 8903: 8902:Ernst Zermelo 8900: 8898: 8895: 8893: 8890: 8888: 8887:Willard Quine 8885: 8883: 8880: 8878: 8875: 8873: 8870: 8868: 8865: 8863: 8860: 8858: 8855: 8853: 8850: 8848: 8845: 8844: 8842: 8840: 8839:Set theorists 8836: 8830: 8827: 8825: 8822: 8820: 8817: 8816: 8814: 8808: 8806: 8803: 8802: 8799: 8791: 8788: 8786: 8785:Kripke–Platek 8783: 8779: 8776: 8775: 8774: 8771: 8770: 8769: 8766: 8762: 8759: 8758: 8757: 8756: 8752: 8748: 8745: 8744: 8743: 8740: 8739: 8736: 8733: 8731: 8728: 8726: 8723: 8721: 8718: 8717: 8715: 8711: 8705: 8702: 8700: 8697: 8695: 8692: 8690: 8688: 8683: 8681: 8678: 8676: 8673: 8670: 8666: 8663: 8661: 8658: 8654: 8651: 8649: 8646: 8644: 8641: 8640: 8639: 8636: 8633: 8629: 8626: 8624: 8621: 8619: 8616: 8614: 8611: 8610: 8608: 8605: 8601: 8595: 8592: 8590: 8587: 8585: 8582: 8580: 8577: 8575: 8572: 8570: 8567: 8565: 8562: 8558: 8555: 8553: 8550: 8549: 8548: 8545: 8543: 8540: 8538: 8535: 8533: 8530: 8528: 8525: 8522: 8518: 8515: 8513: 8510: 8508: 8505: 8504: 8502: 8496: 8493: 8492: 8489: 8483: 8480: 8478: 8475: 8473: 8470: 8468: 8465: 8463: 8460: 8458: 8455: 8453: 8450: 8447: 8444: 8442: 8439: 8438: 8436: 8434: 8430: 8422: 8421:specification 8419: 8417: 8414: 8413: 8412: 8409: 8408: 8405: 8402: 8400: 8397: 8395: 8392: 8390: 8387: 8385: 8382: 8380: 8377: 8375: 8372: 8370: 8367: 8365: 8362: 8360: 8357: 8353: 8350: 8348: 8345: 8343: 8340: 8339: 8338: 8335: 8333: 8330: 8329: 8327: 8325: 8321: 8316: 8306: 8303: 8302: 8300: 8296: 8292: 8285: 8280: 8278: 8273: 8271: 8266: 8265: 8262: 8252: 8251: 8246: 8238: 8232: 8229: 8227: 8224: 8222: 8219: 8217: 8214: 8210: 8207: 8206: 8205: 8202: 8200: 8197: 8195: 8192: 8190: 8186: 8183: 8181: 8178: 8176: 8173: 8171: 8168: 8166: 8163: 8162: 8160: 8156: 8150: 8147: 8145: 8142: 8140: 8139:Recursive set 8137: 8135: 8132: 8130: 8127: 8125: 8122: 8120: 8117: 8113: 8110: 8108: 8105: 8103: 8100: 8098: 8095: 8093: 8090: 8089: 8088: 8085: 8083: 8080: 8078: 8075: 8073: 8070: 8068: 8065: 8063: 8060: 8059: 8057: 8055: 8051: 8045: 8042: 8040: 8037: 8035: 8032: 8030: 8027: 8025: 8022: 8020: 8017: 8015: 8012: 8008: 8005: 8003: 8000: 7998: 7995: 7994: 7993: 7990: 7988: 7985: 7983: 7980: 7978: 7975: 7973: 7970: 7968: 7965: 7961: 7958: 7957: 7956: 7953: 7949: 7948:of arithmetic 7946: 7945: 7944: 7941: 7937: 7934: 7932: 7929: 7927: 7924: 7922: 7919: 7917: 7914: 7913: 7912: 7909: 7905: 7902: 7900: 7897: 7896: 7895: 7892: 7891: 7889: 7887: 7883: 7877: 7874: 7872: 7869: 7867: 7864: 7862: 7859: 7856: 7855:from ZFC 7852: 7849: 7847: 7844: 7838: 7835: 7834: 7833: 7830: 7828: 7825: 7823: 7820: 7819: 7818: 7815: 7813: 7810: 7808: 7805: 7803: 7800: 7798: 7795: 7793: 7790: 7788: 7785: 7784: 7782: 7780: 7776: 7766: 7765: 7761: 7760: 7755: 7754:non-Euclidean 7752: 7748: 7745: 7743: 7740: 7738: 7737: 7733: 7732: 7730: 7727: 7726: 7724: 7720: 7716: 7713: 7711: 7708: 7707: 7706: 7702: 7698: 7695: 7694: 7693: 7689: 7685: 7682: 7680: 7677: 7675: 7672: 7670: 7667: 7665: 7662: 7660: 7657: 7656: 7654: 7650: 7649: 7647: 7642: 7636: 7631:Example  7628: 7620: 7615: 7614: 7613: 7610: 7608: 7605: 7601: 7598: 7596: 7593: 7591: 7588: 7586: 7583: 7582: 7581: 7578: 7576: 7573: 7571: 7568: 7566: 7563: 7559: 7556: 7554: 7551: 7550: 7549: 7546: 7542: 7539: 7537: 7534: 7532: 7529: 7527: 7524: 7523: 7522: 7519: 7517: 7514: 7510: 7507: 7505: 7502: 7500: 7497: 7496: 7495: 7492: 7488: 7485: 7483: 7480: 7478: 7475: 7473: 7470: 7468: 7465: 7463: 7460: 7459: 7458: 7455: 7453: 7450: 7448: 7445: 7443: 7440: 7436: 7433: 7431: 7428: 7426: 7423: 7421: 7418: 7417: 7416: 7413: 7411: 7408: 7406: 7403: 7401: 7398: 7394: 7391: 7389: 7388:by definition 7386: 7385: 7384: 7381: 7377: 7374: 7373: 7372: 7369: 7367: 7364: 7362: 7359: 7357: 7354: 7352: 7349: 7348: 7345: 7342: 7340: 7336: 7331: 7325: 7321: 7311: 7308: 7306: 7303: 7301: 7298: 7296: 7293: 7291: 7288: 7286: 7283: 7281: 7278: 7276: 7275:Kripke–Platek 7273: 7271: 7268: 7264: 7261: 7259: 7256: 7255: 7254: 7251: 7250: 7248: 7244: 7236: 7233: 7232: 7231: 7228: 7226: 7223: 7219: 7216: 7215: 7214: 7211: 7209: 7206: 7204: 7201: 7199: 7196: 7194: 7191: 7188: 7184: 7180: 7177: 7173: 7170: 7168: 7165: 7163: 7160: 7159: 7158: 7154: 7151: 7150: 7148: 7146: 7142: 7138: 7130: 7127: 7125: 7122: 7120: 7119:constructible 7117: 7116: 7115: 7112: 7110: 7107: 7105: 7102: 7100: 7097: 7095: 7092: 7090: 7087: 7085: 7082: 7080: 7077: 7075: 7072: 7070: 7067: 7065: 7062: 7060: 7057: 7055: 7052: 7051: 7049: 7047: 7042: 7034: 7031: 7029: 7026: 7024: 7021: 7019: 7016: 7014: 7011: 7009: 7006: 7005: 7003: 6999: 6996: 6994: 6991: 6990: 6989: 6986: 6984: 6981: 6979: 6976: 6974: 6971: 6969: 6965: 6961: 6959: 6956: 6952: 6949: 6948: 6947: 6944: 6943: 6940: 6937: 6935: 6931: 6921: 6918: 6916: 6913: 6911: 6908: 6906: 6903: 6901: 6898: 6896: 6893: 6889: 6886: 6885: 6884: 6881: 6877: 6872: 6871: 6870: 6867: 6866: 6864: 6862: 6858: 6850: 6847: 6845: 6842: 6840: 6837: 6836: 6835: 6832: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6805: 6802: 6801: 6799: 6797: 6796:Propositional 6793: 6787: 6784: 6782: 6779: 6777: 6774: 6772: 6769: 6767: 6764: 6762: 6759: 6755: 6752: 6751: 6750: 6747: 6745: 6742: 6740: 6737: 6735: 6732: 6730: 6727: 6725: 6724:Logical truth 6722: 6720: 6717: 6716: 6714: 6712: 6708: 6705: 6703: 6699: 6693: 6690: 6688: 6685: 6683: 6680: 6678: 6675: 6673: 6670: 6668: 6664: 6660: 6656: 6654: 6651: 6649: 6646: 6644: 6640: 6637: 6636: 6634: 6632: 6626: 6621: 6615: 6612: 6610: 6607: 6605: 6602: 6600: 6597: 6595: 6592: 6590: 6587: 6585: 6582: 6580: 6577: 6575: 6572: 6570: 6567: 6565: 6562: 6560: 6557: 6553: 6550: 6549: 6548: 6545: 6544: 6542: 6538: 6534: 6527: 6522: 6520: 6515: 6513: 6508: 6507: 6504: 6500: 6490: 6489: 6480: 6477: 6468: 6467: 6459: 6456: 6448: 6447: 6439: 6436: 6432: 6431: 6427: 6424: 6417: 6414: 6398: 6376: 6372: 6351: 6329: 6325: 6316: 6315: 6310: 6305: 6302: 6298: 6294: 6289: 6286: 6282: 6278: 6274: 6271:For a formal 6268: 6265: 6261: 6255: 6252: 6248: 6244: 6238: 6235: 6229: 6224: 6220: 6216: 6215: 6210: 6206: 6200: 6197: 6190: 6187: 6181: 6178: 6174: 6173:0-674-32449-8 6170: 6166: 6160: 6157: 6152: 6145: 6142: 6138: 6134: 6129: 6126: 6122: 6120:0-87150-164-3 6116: 6112: 6105: 6102: 6098: 6092: 6088: 6081: 6079: 6075: 6071: 6065: 6061: 6054: 6051: 6047: 6041: 6037: 6030: 6027: 6021: 6016: 6012: 6008: 6006: 6003: 6001: 5998: 5997: 5993: 5991: 5989: 5985: 5981: 5977: 5973: 5969: 5965: 5961: 5957: 5954: 5943: 5936: 5932: 5928: 5921: 5919: 5916: 5914: 5909: 5896: 5891: 5887: 5883: 5878: 5874: 5863: 5859: 5855: 5850: 5846: 5832: 5828: 5824: 5819: 5815: 5808: 5805: 5797: 5793: 5789: 5784: 5780: 5773: 5753: 5733: 5725: 5717: 5715: 5713: 5709: 5705: 5701: 5697: 5693: 5689: 5670: 5664: 5655: 5636: 5630: 5627: 5621: 5612: 5603: 5597: 5594: 5588: 5579: 5570: 5564: 5561: 5555: 5546: 5540: 5537: 5534: 5531: 5528: 5517: 5512: 5496: 5493: 5490: 5487: 5481: 5472: 5460: 5454: 5448: 5422: 5416: 5413: 5407: 5398: 5389: 5383: 5380: 5374: 5365: 5359: 5356: 5353: 5342: 5337: 5333: 5329: 5322: 5320: 5318: 5313: 5300: 5294: 5291: 5288: 5285: 5282: 5276: 5270: 5267: 5264: 5248: 5246: 5244: 5240: 5236: 5232: 5229:, but not in 5228: 5224: 5220: 5216: 5211: 5192: 5189: 5186: 5183: 5180: 5177: 5174: 5171: 5168: 5165: 5162: 5159: 5133: 5130: 5127: 5124: 5121: 5118: 5115: 5109: 5103: 5100: 5097: 5094: 5091: 5085: 5079: 5076: 5073: 5070: 5067: 5061: 5055: 5052: 5049: 5014: 5011: 5008: 5005: 5002: 4996: 4990: 4987: 4984: 4975: 4966: 4963: 4960: 4957: 4954: 4948: 4942: 4939: 4936: 4918: 4916: 4912: 4896: 4887: 4873: 4869: 4866: 4862: 4859: 4855: 4852: 4831: 4825: 4822: 4819: 4816: 4810: 4804: 4798: 4792: 4786: 4780: 4777: 4774: 4771: 4765: 4759: 4753: 4747: 4741: 4738: 4732: 4726: 4723: 4717: 4714: 4711: 4700: 4696: 4691: 4674: 4668: 4648: 4642: 4636: 4630: 4624: 4621: 4615: 4609: 4603: 4597: 4594: 4588: 4582: 4562: 4556: 4550: 4547: 4541: 4535: 4529: 4523: 4515: 4511: 4492: 4486: 4478: 4462: 4442: 4438: 4435: 4426: 4410: 4390: 4382: 4366: 4352: 4349: 4343: 4340: 4337: 4334: 4331: 4328: 4322: 4308: 4302: 4296: 4293: 4290: 4287: 4281: 4275: 4269: 4263: 4257: 4254: 4248: 4242: 4200: 4172: 4152: 4132: 4125:The function 4105: 4097: 4094: 4084: 4081: 4078: 4075: 4068: 4060: 4057: 4047: 4044: 4038: 4033: 4027: 4021: 3991: 3987: 3983: 3976: 3971: 3967: 3963: 3959: 3955: 3951: 3947: 3943: 3939: 3935: 3931: 3927: 3924: 3920: 3917:implies that 3916: 3912: 3908: 3904: 3903: 3902: 3900: 3896: 3892: 3888: 3880: 3876: 3871: 3867: 3863: 3859: 3855: 3851: 3847: 3843: 3840: 3836: 3832: 3828: 3824: 3820: 3816: 3812: 3808: 3807: 3805: 3801: 3797: 3793: 3789: 3785: 3781: 3777: 3776: 3775: 3773: 3769: 3765: 3761: 3757: 3753: 3749: 3745: 3741: 3737: 3731: 3723: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3690: 3686: 3680: 3672: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3640: 3638: 3634: 3631:. Therefore, 3626: 3618: 3610: 3602: 3598: 3594: 3588: 3584: 3580: 3576: 3572: 3564: 3558: 3551: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3490: 3486: 3482: 3478: 3474: 3470: 3466: 3462: 3458: 3457: 3453: 3449: 3445: 3441: 3437: 3433: 3429: 3425: 3421: 3420: 3416: 3412: 3408: 3404: 3400: 3396: 3392: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3348: 3344: 3340: 3336: 3332: 3328: 3327: 3326: 3324: 3320: 3316: 3312: 3308: 3304: 3296: 3292: 3284: 3280: 3276: 3272: 3264: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3228: 3224: 3220: 3216: 3213: 3205: 3201: 3193: 3189: 3185: 3181: 3177: 3173: 3170: 3166: 3162: 3158: 3154: 3150: 3146: 3138: 3134: 3133: 3132: 3130: 3126: 3121: 3119: 3115: 3111: 3107: 3104:. Two cases: 3103: 3099: 3093: 3089: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3041: 3037: 3032: 3028: 3026: 3022: 3018: 3014: 3011: 3007: 3003: 2999: 2995: 2987: 2985: 2983: 2979: 2976: =  2975: 2971: 2967: 2963: 2959: 2951: 2947: 2944: 2940: 2936: 2932: 2928: 2909: 2900: 2897: 2894: 2888: 2882: 2879: 2876: 2867: 2854: 2851: 2848: 2838: 2824: 2815: 2812: 2809: 2803: 2800: 2794: 2781: 2778: 2775: 2765: 2751: 2742: 2739: 2736: 2730: 2724: 2715: 2702: 2699: 2696: 2686: 2685: 2684: 2670: 2667: 2664: 2641: 2638: 2635: 2629: 2623: 2620: 2617: 2591: 2588: 2585: 2579: 2573: 2570: 2567: 2555: 2552: 2549: 2543: 2537: 2534: 2531: 2516: 2514: 2512: 2508: 2490: 2486: 2463: 2459: 2449: 2429: 2423: 2420: 2415: 2407: 2404: 2401: 2395: 2392: 2382: 2376: 2353: 2350: 2347: 2338: 2325: 2322: 2319: 2313: 2307: 2304: 2300: 2293: 2287: 2284: 2275: 2269: 2263: 2260: 2257: 2249: 2241: 2238: 2235: 2229: 2226: 2218: 2214: 2211: 2207: 2203: 2200: 2197: 2194: 2188: 2185: 2182: 2179: 2176: 2171: 2166: 2163: 2160: 2157: 2149: 2145: 2142: 2136: 2128: 2124: 2114: 2101: 2098: 2095: 2089: 2083: 2080: 2077: 2074: 2071: 2068: 2062: 2054: 2050: 2041: 2037: 2033: 2014: 2008: 2005: 2002: 1996: 1990: 1987: 1984: 1978: 1972: 1966: 1953: 1950: 1947: 1941: 1935: 1922: 1919: 1916: 1913: 1906: 1892: 1886: 1880: 1874: 1871: 1868: 1862: 1856: 1850: 1837: 1834: 1831: 1825: 1819: 1806: 1803: 1800: 1797: 1790: 1789: 1788: 1768: 1765: 1762: 1756: 1750: 1741: 1735: 1732: 1729: 1723: 1720: 1711: 1705: 1698: 1673: 1669: 1665: 1662: 1659: 1654: 1650: 1646: 1643: 1632: 1628: 1624: 1619: 1615: 1611: 1608: 1605: 1600: 1596: 1592: 1587: 1583: 1569: 1553: 1542: 1538: 1534: 1531: 1528: 1523: 1519: 1515: 1512: 1501: 1497: 1493: 1488: 1484: 1480: 1477: 1474: 1469: 1465: 1461: 1456: 1452: 1442: 1436: 1433: 1430: 1427: 1424: 1421: 1418: 1404: 1400: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1352: 1348: 1344: 1339: 1320: 1311: 1302: 1293: 1287: 1278: 1269: 1263: 1260: 1254: 1248: 1239: 1234: 1226: 1220: 1217: 1194: 1185: 1179: 1176: 1167: 1161: 1149: 1143: 1135: 1129: 1126: 1115: 1111: 1107: 1097: 1082: 1075: 1072: 1069: 1063: 1057: 1054: 1051: 1044: 1040: 1034: 1031: 1028: 1017: 1007: 987: 981: 967: 963: 959: 955: 950: 948: 944: 940: 936: 935: 930: 914: 910: 905: 901: 898: 895: 891: 886: 882: 874: 870: 867: 864: 859: 854: 850: 846: 842: 839: 836: 832: 823: 814: 812: 808: 804: 796: 794: 792: 786: 784: 781:group in its 780: 776: 770: 768: 763: 750: 738: 734: 718: 712: 710: 708: 704: 700: 696: 689: 678: 674: 669: 661: 656: 648: 637: 626: 615: 598: 595: 592: 581: 577: 571: 567: 560: 558: 554: 550: 546: 542: 539:between sets 538: 534: 530: 526: 522: 518: 514: 510: 506: 501: 488: 483: 479: 475: 470: 466: 455: 451: 447: 442: 438: 424: 420: 416: 411: 407: 400: 392: 388: 384: 379: 375: 363: 359: 355: 334: 330: 326: 321: 317: 288: 284: 280: 275: 271: 255: 253: 251: 247: 243: 239: 237: 233: 229: 225: 221: 217: 213: 209: 205: 200: 198: 194: 190: 186: 182: 178: 174: 170: 168: 163: 159: 155: 151: 147: 143: 139: 134: 132: 128: 124: 120: 116: 115: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 64: 50: 41: 37: 33: 29: 25: 21: 8928:Order theory 8852:Georg Cantor 8847:Paul Bernays 8778:Morse–Kelley 8753: 8686: 8685:Subset  8632:hereditarily 8594:Venn diagram 8552:ordered pair 8551: 8467:Intersection 8411:Axiom schema 8241: 8039:Ultraproduct 7886:Model theory 7851:Independence 7787:Formal proof 7779:Proof theory 7762: 7735: 7692:real numbers 7664:second-order 7575:Substitution 7452:Metalanguage 7393:conservative 7366:Axiom schema 7310:Constructive 7280:Morse–Kelley 7246:Set theories 7225:Aleph number 7218:inaccessible 7124:Grothendieck 7008:intersection 6895:Higher-order 6883:Second-order 6829:Truth tables 6786:Venn diagram 6569:Formal proof 6498: 6487: 6479: 6465: 6458: 6445: 6438: 6421: 6416: 6312: 6304: 6296: 6288: 6276: 6267: 6259: 6254: 6246: 6242: 6237: 6218: 6212: 6199: 6189: 6180: 6164: 6159: 6144: 6128: 6110: 6104: 6086: 6059: 6053: 6035: 6029: 6014: 5983: 5979: 5971: 5967: 5959: 5955: 5950: 5941: 5934: 5917: 5910: 5721: 5711: 5707: 5703: 5699: 5695: 5691: 5687: 5656: 5513: 5340: 5326: 5314: 5252: 5212: 4919: 4914: 4913:. Likewise, 4910: 4888: 4698: 4694: 4692: 4513: 4509: 4476: 4379:This is the 3980: 3969: 3965: 3961: 3957: 3953: 3949: 3945: 3941: 3940:}, and so: { 3937: 3933: 3929: 3922: 3918: 3914: 3910: 3906: 3905:The option { 3898: 3894: 3890: 3886: 3884: 3878: 3869: 3865: 3861: 3857: 3853: 3849: 3845: 3838: 3834: 3830: 3826: 3822: 3818: 3814: 3810: 3803: 3799: 3795: 3791: 3787: 3783: 3779: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3739: 3738: 3729: 3721: 3717: 3713: 3709: 3705: 3701: 3697: 3693: 3692: 3688: 3687: 3678: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3641: 3636: 3632: 3624: 3616: 3608: 3600: 3596: 3595: 3586: 3582: 3578: 3574: 3570: 3562: 3556: 3555: 3549: 3545: 3541: 3537: 3533: 3529: 3525: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3493: 3484: 3480: 3476: 3472: 3468: 3464: 3460: 3451: 3447: 3443: 3439: 3435: 3431: 3427: 3423: 3414: 3410: 3406: 3402: 3401:}}, so that 3398: 3394: 3390: 3386: 3382: 3378: 3374: 3370: 3366: 3362: 3358: 3354: 3350: 3346: 3342: 3338: 3334: 3330: 3322: 3318: 3314: 3310: 3306: 3302: 3294: 3290: 3282: 3278: 3274: 3270: 3268: 3262: 3258: 3254: 3250: 3246: 3242: 3238: 3234: 3230: 3226: 3222: 3218: 3211: 3203: 3199: 3191: 3187: 3183: 3179: 3175: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3136: 3128: 3124: 3122: 3117: 3113: 3109: 3105: 3101: 3100: 3091: 3087: 3079: 3075: 3071: 3067: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3030: 3029: 3024: 3020: 3016: 3012: 3005: 3001: 2997: 2993: 2991: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2938: 2930: 2926: 2924: 2520: 2450: 2339: 2115: 2029: 1712: 1703: 1696: 1402: 1398: 1350: 1346: 1342: 1340: 1113: 1109: 1103: 1013: 965: 957: 953: 951: 938: 932: 820: 800: 790: 787: 782: 771: 766: 764: 752: 736: 732: 720: 716: 706: 702: 698: 694: 687: 676: 672: 667: 659: 654: 646: 635: 624: 616: 569: 565: 561: 556: 552: 544: 540: 532: 528: 524: 520: 512: 508: 502: 361: 357: 353: 259: 256:Generalities 240: 235: 231: 227: 224:second entry 223: 219: 215: 211: 207: 203: 201: 196: 192: 188: 184: 180: 176: 172: 166: 158:vector space 135: 130: 126: 122: 118: 112: 108: 104: 100: 96: 92: 88: 84: 80: 77:ordered pair 76: 70: 62: 48: 42:) such that 39: 35: 8933:Type theory 8877:Thomas Jech 8720:Alternative 8699:Uncountable 8653:Ultrafilter 8512:Cardinality 8416:replacement 8364:Determinacy 8149:Type theory 8097:undecidable 8029:Truth value 7916:equivalence 7595:non-logical 7208:Enumeration 7198:Isomorphism 7145:cardinality 7129:Von Neumann 7094:Ultrafilter 7059:Uncountable 6993:equivalence 6910:Quantifiers 6900:Fixed-point 6869:First-order 6749:Consistency 6734:Proposition 6711:Traditional 6682:Lindström's 6672:Compactness 6614:Type theory 6559:Cardinality 5698:-tuple and 5231:type theory 5215:type theory 4235:go on with 3928:So we have 3742:: Suppose { 3467:}, so that 3459:Therefore { 3353:, and so {{ 962:type theory 779:N. Bourbaki 248:(and hence 236:projections 232:coordinates 216:first entry 154:terminology 117:, denoted { 79:, denoted ( 73:mathematics 8917:Categories 8872:Kurt Gödel 8857:Paul Cohen 8694:Transitive 8462:Identities 8446:Complement 8433:Operations 8394:Regularity 8332:Adjunction 8291:Set theory 7960:elementary 7653:arithmetic 7521:Quantifier 7499:functional 7371:Expression 7089:Transitive 7033:identities 7018:complement 6951:hereditary 6934:Set theory 6022:References 4844:(which is 3881:must hold. 3720:}}. Thus ( 3669:}}. Thus ( 3301:implies {{ 3078:}}. Thus ( 3031:Kuratowski 2451:Note that 803:set theory 623:of a pair 620:projection 228:components 103:), unless 8805:Paradoxes 8725:Axiomatic 8704:Universal 8680:Singleton 8675:Recursive 8618:Countable 8613:Amorphous 8472:Power set 8389:Power set 8347:dependent 8342:countable 8231:Supertask 8134:Recursion 8092:decidable 7926:saturated 7904:of models 7827:deductive 7822:axiomatic 7742:Hilbert's 7729:Euclidean 7710:canonical 7633:axiomatic 7565:Signature 7494:Predicate 7383:Extension 7305:Ackermann 7230:Operation 7109:Universal 7099:Recursive 7074:Singleton 7069:Inhabited 7054:Countable 7044:Types of 7028:power set 6998:partition 6915:Predicate 6861:Predicate 6776:Syllogism 6766:Soundness 6739:Inference 6729:Tautology 6631:paradoxes 6399:ψ 6373:σ 6352:φ 6326:σ 5628:× 5613:∪ 5595:× 5580:∪ 5562:× 5494:∈ 5488:∣ 5473:∪ 5467:∅ 5414:× 5399:∪ 5381:× 5343:the pair 5341:redefined 5193:∉ 5152:provided 4897:φ 4867:ψ 4863:∪ 4853:φ 4823:∈ 4805:∪ 4793:φ 4787:∪ 4778:∈ 4760:φ 4742:ψ 4739:∪ 4727:φ 4669:ψ 4661:By this, 4637:∪ 4625:φ 4610:∪ 4598:σ 4583:ψ 4551:φ 4548:∪ 4536:≠ 4524:φ 4487:φ 4475:to a set 4463:φ 4436:σ 4411:σ 4383:of a set 4381:set image 4353:∩ 4344:∈ 4323:∪ 4312:∖ 4294:∈ 4291:α 4288:∣ 4282:α 4276:σ 4258:σ 4243:φ 4176:∖ 4153:σ 4133:σ 4098:∈ 4061:∉ 4022:σ 3758:}}. Then 3653:, then {{ 3422:Suppose { 3329:Suppose { 3054:, then {{ 2980:then the 2580:∧ 2562:↔ 2487:π 2460:π 2424:∉ 2396:∈ 2351:≠ 2308:⋃ 2288:∉ 2282:→ 2270:≠ 2230:∈ 2215:⋃ 2201:⋂ 2198:∉ 2192:→ 2186:⋂ 2183:≠ 2177:⋃ 2164:⋃ 2161:∈ 2146:⋃ 2125:π 2084:⋃ 2075:⋂ 2072:⋃ 2051:π 1979:∪ 1923:⋃ 1914:⋃ 1863:∩ 1807:⋂ 1798:⋂ 1666:∉ 1660:∨ 1647:∉ 1638:→ 1625:≠ 1606:∈ 1580:∀ 1535:∉ 1529:∨ 1516:∉ 1507:→ 1494:≠ 1475:∈ 1449:∀ 1443:∧ 1434:∈ 1422:∈ 1416:∃ 1379:∈ 1367:∈ 1361:∀ 991:∅ 947:primitive 943:relations 937:as sets. 879:∅ 649:), or by 602:⟩ 590:⟨ 250:functions 162:recursive 142:sequences 8809:Problems 8713:Theories 8689:Superset 8665:Infinite 8494:Concepts 8374:Infinity 8298:Overview 8216:Logicism 8209:timeline 8185:Concrete 8044:Validity 8014:T-schema 8007:Kripke's 8002:Tarski's 7997:semantic 7987:Strength 7936:submodel 7931:spectrum 7899:function 7747:Tarski's 7736:Elements 7723:geometry 7679:Robinson 7600:variable 7585:function 7558:spectrum 7548:Sentence 7504:variable 7447:Language 7400:Relation 7361:Automata 7351:Alphabet 7335:language 7189:-jection 7167:codomain 7153:Function 7114:Universe 7084:Infinite 6988:Relation 6771:Validity 6761:Argument 6659:theorem, 6426:Archived 6295:, 1953. 6273:Metamath 6207:(1921). 5994:See also 5317:cardinal 5223:function 4870:″ 4856:″ 4439:″ 4091:if  4054:if  3852:}, then 3704:, then { 3434:}. Then 3341:}. Then 3277:, then ( 3257:. Hence 3155:}} = {{ 2992:Prove: ( 2517:Variants 1568:conjunct 1104:In 1921 362:property 358:defining 138:2-tuples 8747:General 8742:Zermelo 8648:subbase 8630: ( 8569:Forcing 8547:Element 8519: ( 8497:Methods 8384:Pairing 8158:Related 7955:Diagram 7853: ( 7832:Hilbert 7817:Systems 7812:Theorem 7690:of the 7635:systems 7415:Formula 7410:Grammar 7326: ( 7270:General 6983:Forcing 6968:Element 6888:Monadic 6663:paradox 6604:Theorem 6540:General 5953:product 4909:yields 4213:not in 3860:, from 3821:is in { 3740:Only if 3683:reverse 3675:reverse 3661:}} = {{ 3643:Only if 3613:reverse 3605:reverse 3577:}} = {{ 3567:reverse 3557:Reverse 3385:}} = {{ 3377:}} = {{ 3365:}} = {{ 3313:}} = {{ 3167:}} = {{ 3102:Only if 3066:}} = {{ 2927:reverse 2711:reverse 705:-tuple 578:on the 169:-tuples 150:vectors 146:scalars 59:⁠ 45:⁠ 32:ellipse 8638:Filter 8628:Finite 8564:Family 8507:Almost 8352:global 8337:Choice 8324:Axioms 7921:finite 7684:Skolem 7637:  7612:Theory 7580:Symbol 7570:String 7553:atomic 7430:ground 7425:closed 7420:atomic 7376:ground 7339:syntax 7235:binary 7162:domain 7079:Finite 6844:finite 6702:Logics 6661:  6609:Theory 6279:, see 6171:  6117:  6093:  6066:  6042:  5690:is an 5233:or in 4403:under 3992:. Let 3982:Rosser 3964:}, so 3877:Hence 3833:is in 3750:}} = { 3712:}} = { 3689:Short: 3599:. If ( 3585:}} = ( 3217:Thus { 3186:}} = ( 3112:, and 2935:braces 1787:then: 1297:  1267:  1224:  1183:  1171:  1153:  1133:  662:) and 638:) and 549:subset 8730:Naive 8660:Fuzzy 8623:Empty 8606:types 8557:tuple 8527:Class 8521:large 8482:Union 8399:Union 7911:Model 7659:Peano 7516:Proof 7356:Arity 7285:Naive 7172:image 7104:Fuzzy 7064:Empty 7013:union 6958:Class 6599:Model 6589:Lemma 6547:Axiom 6470:(PDF) 6450:(PDF) 6277:short 6133:Quine 5962:in a 5706:then 5336:Morse 4165:. As 3986:Quine 3960:} = { 3956:} \ { 3952:} = { 3948:} \ { 3944:} = { 3936:} = { 3932:and { 3930:a = c 3915:a = c 3897:} = { 3879:a = c 3868:} = { 3848:} = { 3817:then 3802:} = { 3764:a = c 3734:short 3726:short 3702:b = d 3698:a = c 3696:: If 3651:b = d 3647:a = c 3645:. If 3637:a = c 3633:b = d 3520:} ≠ { 3516:} = { 3508:} = { 3479:} = { 3471:and { 3469:c = a 3463:} = { 3426:} = { 3337:} = { 3229:} = { 3221:} = { 3038:. If 3000:) = ( 2982:short 2970:short 2958:short 2954:short 2939:short 2931:short 2790:short 929:types 767:order 547:is a 140:, or 75:, an 8643:base 8034:Type 7837:list 7641:list 7618:list 7607:Term 7541:rank 7435:open 7329:list 7141:Maps 7046:sets 6905:Free 6875:list 6625:list 6552:list 6391:for 6364:and 6344:for 6245:and 6169:ISBN 6115:ISBN 6091:ISBN 6064:ISBN 6040:ISBN 4512:and 3954:c, d 3946:a, b 3938:c, d 3934:a, b 3913:and 3909:} = 3907:a, b 3899:c, d 3895:a, b 3893:or { 3889:} = 3887:a, b 3870:a, b 3866:c, d 3850:c, d 3846:a, b 3844:If { 3839:a, c 3829:and 3825:} = 3823:c, d 3813:} = 3811:a, b 3809:If { 3804:c, d 3800:a, b 3798:or { 3794:} = 3792:a, b 3788:a, b 3784:c, d 3772:c, d 3756:c, d 3748:a, b 3730:c, d 3722:a, b 3718:c, d 3710:a, b 3700:and 3679:c, d 3671:a, b 3667:c, d 3665:}, { 3659:a, b 3657:}, { 3649:and 3635:and 3625:d, c 3617:b, a 3609:c, d 3601:a, b 3587:b, a 3583:b, a 3581:}, { 3575:a, b 3573:}, { 3569:= {{ 3563:a, b 3544:and 3395:a, b 3393:}, { 3381:}, { 3369:}, { 3357:}, { 3325:}}. 3317:}, { 3305:}, { 3241:and 3210:= {{ 3178:}, { 3159:}, { 3147:}, { 3143:= {{ 3137:a, b 3080:a, b 3070:}, { 3058:}, { 3046:and 3019:and 2964:and 2925:The 2505:are 2478:and 2340:(if 2038:and 2034:for 1006:'s. 811:sets 757:and 745:and 725:and 562:The 543:and 535:. A 523:and 503:The 356:(or 306:and 260:Let 244:and 222:the 8604:Set 7721:of 7703:of 7651:of 7183:Sur 7157:Map 6964:Ur- 6946:Set 6223:doi 6013:", 5766:: 5235:NFU 5213:In 4427:by 3901:}. 3864:= { 3806:}. 3782:= { 3778:If 3770:= { 3766:or 3754:, { 3746:, { 3728:= ( 3716:, { 3708:, { 3677:= ( 3623:= ( 3615:, ( 3607:= ( 3492:If 3289:= ( 3269:If 3214:}}. 3198:= ( 3171:}}. 3123:If 3086:= ( 2042:): 1713:If 1116:): 931:of 551:of 519:of 505:set 191:, ( 133:}. 71:In 65:= 1 8919:: 8107:NP 7731:: 7725:: 7655:: 7332:), 7187:Bi 7179:In 6311:: 6217:. 6211:. 6077:^ 5990:. 5958:× 5915:. 5710:= 5702:= 5334:. 5237:. 5227:NF 5219:NF 5210:. 4724::= 4697:, 4595::= 4516:, 4423:, 4255::= 4034::= 3968:= 3736:. 3694:If 3685:. 3639:. 3597:If 3593:. 3548:= 3540:= 3532:= 3524:, 3512:, 3504:, 3496:= 3487:}. 3483:, 3475:, 3450:≠ 3442:= 3438:= 3430:, 3413:≠ 3405:= 3373:, 3361:, 3349:= 3345:= 3333:, 3321:, 3309:, 3293:, 3281:, 3273:≠ 3261:= 3253:= 3245:= 3237:= 3225:, 3202:, 3190:, 3182:, 3174:{{ 3163:, 3151:, 3131:: 3127:= 3120:. 3116:≠ 3108:= 3098:. 3090:, 3074:, 3062:, 3050:= 3042:= 3036:If 3027:. 3023:= 3015:= 3008:) 3004:, 2996:, 2868::= 2863:01 2795::= 2716::= 2513:. 1702:≠ 1150::= 1112:, 1041::= 949:. 851::= 735:, 709:. 568:, 559:. 555:× 531:× 360:) 206:, 129:, 121:, 107:= 99:, 91:, 83:, 61:+ 8687:· 8671:) 8667:( 8634:) 8523:) 8283:e 8276:t 8269:v 8187:/ 8102:P 7857:) 7643:) 7639:( 7536:∀ 7531:! 7526:∃ 7487:= 7482:↔ 7477:→ 7472:∧ 7467:√ 7462:ÂŹ 7185:/ 7181:/ 7155:/ 6966:) 6962:( 6849:∞ 6839:3 6627:) 6525:e 6518:t 6511:v 6411:. 6377:2 6330:1 6249:. 6247:b 6243:a 6231:. 6225:: 6219:2 6153:. 5984:X 5980:X 5972:B 5968:A 5960:B 5956:A 5947:. 5945:2 5942:X 5940:× 5938:1 5935:X 5897:. 5892:2 5888:b 5884:= 5879:1 5875:b 5864:2 5860:a 5856:= 5851:1 5847:a 5838:) 5833:2 5829:b 5825:, 5820:2 5816:a 5812:( 5809:f 5806:= 5803:) 5798:1 5794:b 5790:, 5785:1 5781:a 5777:( 5774:f 5754:f 5734:f 5712:m 5708:n 5704:b 5700:a 5696:m 5692:n 5688:a 5674:) 5671:x 5668:( 5665:s 5643:) 5640:) 5637:z 5634:( 5631:s 5625:} 5622:2 5619:{ 5616:( 5610:) 5607:) 5604:y 5601:( 5598:s 5592:} 5589:1 5586:{ 5583:( 5577:) 5574:) 5571:x 5568:( 5565:s 5559:} 5556:0 5553:{ 5550:( 5547:= 5544:) 5541:z 5538:, 5535:y 5532:, 5529:x 5526:( 5500:} 5497:x 5491:t 5485:} 5482:t 5479:{ 5476:{ 5470:} 5464:{ 5461:= 5458:) 5455:x 5452:( 5449:s 5429:) 5426:) 5423:y 5420:( 5417:s 5411:} 5408:1 5405:{ 5402:( 5396:) 5393:) 5390:x 5387:( 5384:s 5378:} 5375:0 5372:{ 5369:( 5366:= 5363:) 5360:y 5357:, 5354:x 5351:( 5301:. 5298:} 5295:y 5292:R 5289:x 5286:: 5283:R 5280:{ 5277:= 5274:) 5271:y 5268:, 5265:x 5262:( 5197:N 5190:f 5187:, 5184:e 5181:, 5178:d 5175:, 5172:c 5169:, 5166:b 5163:, 5160:a 5140:} 5137:} 5134:0 5131:, 5128:4 5125:, 5122:f 5119:, 5116:e 5113:{ 5110:, 5107:} 5104:0 5101:, 5098:3 5095:, 5092:d 5089:{ 5086:, 5083:} 5080:2 5077:, 5074:c 5071:, 5068:b 5065:{ 5062:, 5059:} 5056:1 5053:, 5050:a 5047:{ 5044:{ 5024:) 5021:} 5018:} 5015:3 5012:, 5009:f 5006:, 5003:e 5000:{ 4997:, 4994:} 4991:2 4988:, 4985:d 4982:{ 4979:{ 4976:, 4973:} 4970:} 4967:1 4964:, 4961:c 4958:, 4955:b 4952:{ 4949:, 4946:} 4943:0 4940:, 4937:a 4934:{ 4931:{ 4928:( 4915:B 4911:A 4874:B 4860:A 4832:. 4829:} 4826:B 4820:b 4817:: 4814:} 4811:0 4808:{ 4802:) 4799:b 4796:( 4790:{ 4784:} 4781:A 4775:a 4772:: 4769:) 4766:a 4763:( 4757:{ 4754:= 4751:] 4748:B 4745:[ 4736:] 4733:A 4730:[ 4721:) 4718:B 4715:, 4712:A 4709:( 4699:B 4695:A 4678:) 4675:x 4672:( 4649:. 4646:} 4643:0 4640:{ 4634:) 4631:x 4628:( 4622:= 4619:} 4616:0 4613:{ 4607:] 4604:x 4601:[ 4592:) 4589:x 4586:( 4563:. 4560:) 4557:y 4554:( 4545:} 4542:0 4539:{ 4533:) 4530:x 4527:( 4514:y 4510:x 4496:) 4493:x 4490:( 4477:x 4443:x 4391:x 4367:. 4364:} 4361:) 4357:N 4350:x 4347:( 4341:n 4338:: 4335:1 4332:+ 4329:n 4326:{ 4320:) 4316:N 4309:x 4306:( 4303:= 4300:} 4297:x 4285:) 4279:( 4273:{ 4270:= 4267:] 4264:x 4261:[ 4252:) 4249:x 4246:( 4222:N 4201:x 4180:N 4173:x 4106:. 4102:N 4095:x 4085:, 4082:1 4079:+ 4076:x 4069:, 4065:N 4058:x 4048:, 4045:x 4039:{ 4031:) 4028:x 4025:( 4001:N 3972:. 3970:d 3966:b 3962:d 3958:c 3950:a 3942:b 3923:c 3919:c 3911:c 3891:c 3862:a 3858:a 3854:a 3835:c 3831:a 3827:a 3819:c 3815:c 3796:c 3780:a 3768:a 3760:a 3752:c 3744:a 3732:) 3724:) 3714:c 3706:a 3681:) 3673:) 3663:d 3655:b 3629:K 3627:) 3621:K 3619:) 3611:) 3603:) 3591:K 3589:) 3579:b 3571:b 3565:) 3561:( 3559:: 3552:. 3550:d 3546:b 3542:c 3538:a 3534:b 3530:d 3526:b 3522:a 3518:a 3514:a 3510:a 3506:d 3502:c 3498:a 3494:d 3485:b 3481:a 3477:d 3473:c 3465:a 3461:c 3454:. 3452:b 3448:a 3444:c 3440:b 3436:a 3432:b 3428:a 3424:c 3417:. 3415:b 3411:a 3407:a 3403:b 3399:a 3391:a 3387:a 3383:a 3379:a 3375:a 3371:a 3367:a 3363:d 3359:c 3355:c 3351:a 3347:d 3343:c 3339:a 3335:d 3331:c 3323:d 3319:c 3315:c 3311:b 3307:a 3303:a 3299:K 3297:) 3295:d 3291:c 3287:K 3285:) 3283:b 3279:a 3275:b 3271:a 3265:. 3263:d 3259:b 3255:b 3251:a 3247:d 3243:a 3239:c 3235:a 3231:a 3227:d 3223:c 3219:c 3212:a 3208:K 3206:) 3204:b 3200:a 3196:K 3194:) 3192:d 3188:c 3184:d 3180:c 3176:c 3169:a 3165:a 3161:a 3157:a 3153:b 3149:a 3145:a 3141:K 3139:) 3135:( 3129:b 3125:a 3118:b 3114:a 3110:b 3106:a 3096:K 3094:) 3092:d 3088:c 3084:K 3082:) 3076:d 3072:c 3068:c 3064:b 3060:a 3056:a 3052:d 3048:b 3044:c 3040:a 3033:: 3025:d 3021:b 3017:c 3013:a 3006:d 3002:c 2998:b 2994:a 2978:b 2974:a 2966:b 2962:a 2910:. 2907:} 2904:} 2901:b 2898:, 2895:1 2892:{ 2889:, 2886:} 2883:a 2880:, 2877:0 2874:{ 2871:{ 2859:) 2855:b 2852:, 2849:a 2846:( 2825:; 2822:} 2819:} 2816:b 2813:, 2810:a 2807:{ 2804:, 2801:a 2798:{ 2786:) 2782:b 2779:, 2776:a 2773:( 2752:; 2749:} 2746:} 2743:b 2740:, 2737:a 2734:{ 2731:, 2728:} 2725:b 2722:{ 2719:{ 2707:) 2703:b 2700:, 2697:a 2694:( 2671:a 2668:= 2665:b 2645:) 2642:a 2639:, 2636:b 2633:( 2630:= 2627:) 2624:b 2621:, 2618:a 2615:( 2595:) 2592:y 2589:= 2586:b 2583:( 2577:) 2574:x 2571:= 2568:a 2565:( 2559:) 2556:y 2553:, 2550:x 2547:( 2544:= 2541:) 2538:b 2535:, 2532:a 2529:( 2491:2 2464:1 2436:} 2433:} 2430:x 2427:{ 2421:a 2416:| 2411:} 2408:y 2405:, 2402:x 2399:{ 2393:a 2386:{ 2383:= 2380:} 2377:y 2374:{ 2354:y 2348:x 2326:. 2323:y 2320:= 2317:} 2314:y 2311:{ 2305:= 2301:} 2297:} 2294:x 2291:{ 2285:a 2279:} 2276:x 2273:{ 2267:} 2264:y 2261:, 2258:x 2255:{ 2250:| 2245:} 2242:y 2239:, 2236:x 2233:{ 2227:a 2219:{ 2212:= 2208:} 2204:p 2195:a 2189:p 2180:p 2172:| 2167:p 2158:a 2150:{ 2143:= 2140:) 2137:p 2134:( 2129:2 2102:. 2099:x 2096:= 2093:} 2090:x 2087:{ 2081:= 2078:p 2069:= 2066:) 2063:p 2060:( 2055:1 2015:. 2012:} 2009:y 2006:, 2003:x 2000:{ 1997:= 1994:} 1991:y 1988:, 1985:x 1982:{ 1976:} 1973:x 1970:{ 1967:= 1962:} 1957:} 1954:y 1951:, 1948:x 1945:{ 1942:, 1939:} 1936:x 1933:{ 1928:{ 1920:= 1917:p 1893:, 1890:} 1887:x 1884:{ 1881:= 1878:} 1875:y 1872:, 1869:x 1866:{ 1860:} 1857:x 1854:{ 1851:= 1846:} 1841:} 1838:y 1835:, 1832:x 1829:{ 1826:, 1823:} 1820:x 1817:{ 1812:{ 1804:= 1801:p 1775:} 1772:} 1769:y 1766:, 1763:x 1760:{ 1757:, 1754:} 1751:x 1748:{ 1745:{ 1742:= 1739:) 1736:y 1733:, 1730:x 1727:( 1724:= 1721:p 1707:2 1704:Y 1700:1 1697:Y 1682:) 1679:) 1674:2 1670:Y 1663:x 1655:1 1651:Y 1644:x 1641:( 1633:2 1629:Y 1620:1 1616:Y 1612:: 1609:p 1601:2 1597:Y 1593:, 1588:1 1584:Y 1577:( 1554:. 1551:) 1548:) 1543:2 1539:Y 1532:x 1524:1 1520:Y 1513:x 1510:( 1502:2 1498:Y 1489:1 1485:Y 1481:: 1478:p 1470:2 1466:Y 1462:, 1457:1 1453:Y 1446:( 1440:) 1437:Y 1431:x 1428:: 1425:p 1419:Y 1413:( 1403:p 1399:x 1385:. 1382:Y 1376:x 1373:: 1370:p 1364:Y 1351:p 1347:x 1343:p 1327:} 1324:} 1321:x 1318:{ 1315:{ 1312:= 1309:} 1306:} 1303:x 1300:{ 1294:, 1291:} 1288:x 1285:{ 1282:{ 1279:= 1276:} 1273:} 1270:x 1264:, 1261:x 1258:{ 1255:, 1252:} 1249:x 1246:{ 1243:{ 1240:= 1235:K 1231:) 1227:x 1221:, 1218:x 1215:( 1195:. 1192:} 1189:} 1186:b 1180:, 1177:a 1174:{ 1168:, 1165:} 1162:a 1159:{ 1156:{ 1144:K 1140:) 1136:b 1130:, 1127:a 1124:( 1114:b 1110:a 1083:} 1079:} 1076:2 1073:, 1070:b 1067:{ 1064:, 1061:} 1058:1 1055:, 1052:a 1049:{ 1045:{ 1038:) 1035:b 1032:, 1029:a 1026:( 994:} 988:, 985:} 982:a 979:{ 976:{ 966:b 958:b 954:b 915:. 911:} 906:} 902:} 899:b 896:{ 892:{ 887:, 883:} 875:, 871:} 868:a 865:{ 860:{ 855:{ 847:) 843:b 840:, 837:a 833:( 759:b 755:a 747:b 743:a 739:) 737:b 733:a 731:( 727:b 723:a 707:t 703:n 699:i 695:t 693:( 688:i 681:π 677:n 673:p 671:( 668:r 664:π 660:p 658:( 655:ℓ 651:π 647:p 645:( 643:2 640:π 636:p 634:( 632:1 629:π 625:p 599:b 596:, 593:a 572:) 570:b 566:a 564:( 557:B 553:A 545:B 541:A 533:B 529:A 525:B 521:A 513:B 509:A 489:. 484:2 480:b 476:= 471:1 467:b 456:2 452:a 448:= 443:1 439:a 430:) 425:2 421:b 417:, 412:2 408:a 404:( 401:= 398:) 393:1 389:b 385:, 380:1 376:a 372:( 340:) 335:2 331:b 327:, 322:2 318:a 314:( 294:) 289:1 285:b 281:, 276:1 272:a 268:( 220:b 212:a 208:b 204:a 197:c 195:, 193:b 189:a 185:c 183:, 181:b 179:, 177:a 173:n 167:n 131:a 127:b 123:b 119:a 109:b 105:a 101:a 97:b 93:b 89:a 85:b 81:a 67:. 63:y 56:4 53:/ 49:x 40:y 38:, 36:x

Index


Analytic geometry
Euclidean plane
ellipse
mathematics
unordered pair
2-tuples
sequences
scalars
vectors
terminology
vector space
recursive
n-tuples
Cartesian products
binary relations
functions
set
Cartesian product
binary relation
subset
open intervals
real number line
primitive notion
N. Bourbaki
set theory
foundation of mathematics
sets
Norbert Wiener
types

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑