Knowledge

Orthogonal matrix

Source 📝

47: 7524: 437: 3258: 1569: 3446: 4403: 3042: 5197: 5340: 1420: 3298: 1848: 3995: 724: 5062: 732:
linear isometries—rotations, reflections, and their combinations—produce orthogonal matrices. The converse is also true: orthogonal matrices imply orthogonal transformations. However, linear algebra includes orthogonal transformations between spaces which may be neither finite-dimensional nor of the
4420:
takes advantage of many of the properties of orthogonal matrices for numerical linear algebra, and they arise naturally. For example, it is often desirable to compute an orthonormal basis for a space, or an orthogonal change of bases; both take the form of orthogonal matrices. Having determinant ±1
5208: 4810: 5439: 2592:, and any orthogonal matrix can be produced by taking a rotation matrix and possibly negating all of its columns. This follows from the property of determinants that negating a column negates the determinant, and thus negating an odd (but not even) number of columns negates the determinant. 3253:{\displaystyle P^{\mathrm {T} }QP={\begin{bmatrix}R_{1}&&\\&\ddots &\\&&R_{k}\end{bmatrix}}\ (n{\text{ even}}),\ P^{\mathrm {T} }QP={\begin{bmatrix}R_{1}&&&\\&\ddots &&\\&&R_{k}&\\&&&1\end{bmatrix}}\ (n{\text{ odd}}).} 2730: 3930: 2341: 1106: 1690: 2011: 601: 554: 1564:{\displaystyle {\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \\\end{bmatrix}}{\text{ (rotation), }}\qquad {\begin{bmatrix}\cos \theta &\sin \theta \\\sin \theta &-\cos \theta \\\end{bmatrix}}{\text{ (reflection)}}} 925: 1320: 3441:{\displaystyle P^{\mathrm {T} }QP={\begin{bmatrix}{\begin{matrix}R_{1}&&\\&\ddots &\\&&R_{k}\end{matrix}}&0\\0&{\begin{matrix}\pm 1&&\\&\ddots &\\&&\pm 1\end{matrix}}\\\end{bmatrix}},} 4692: 440:
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of
5349: 4398:{\displaystyle \exp(\Omega )={\begin{bmatrix}1-2s^{2}+2x^{2}s^{2}&2xys^{2}-2zsc&2xzs^{2}+2ysc\\2xys^{2}+2zsc&1-2s^{2}+2y^{2}s^{2}&2yzs^{2}-2xsc\\2xzs^{2}-2ysc&2yzs^{2}+2xsc&1-2s^{2}+2z^{2}s^{2}\end{bmatrix}}.} 2639: 3819: 5192:{\displaystyle {\begin{bmatrix}3&1\\7&5\end{bmatrix}}\rightarrow {\begin{bmatrix}1.8125&0.0625\\3.4375&2.6875\end{bmatrix}}\rightarrow \cdots \rightarrow {\begin{bmatrix}0.8&-0.6\\0.6&0.8\end{bmatrix}}} 5732: 4451:
Likewise, algorithms using Householder and Givens matrices typically use specialized methods of multiplication and storage. For example, a Givens rotation affects only two rows of a matrix it multiplies, changing a full
2203: 2403: 6176:
There is no standard terminology for these matrices. They are variously called "semi-orthogonal matrices", "orthonormal matrices", "orthogonal matrices", and sometimes simply "matrices with orthonormal rows/columns".
3631: 5335:{\displaystyle {\begin{bmatrix}3&1\\7&5\end{bmatrix}}\rightarrow {\begin{bmatrix}1.41421&-1.06066\\1.06066&1.41421\end{bmatrix}}\rightarrow {\begin{bmatrix}0.8&-0.6\\0.6&0.8\end{bmatrix}}} 5622: 2607:
orthogonal matrices with bottom right entry equal to 1. The remainder of the last column (and last row) must be zeros, and the product of any two such matrices has the same form. The rest of the matrix is an
983: 843: 1927: 1656: 1187: 2172:. It might be tempting to suppose a matrix with orthogonal (not orthonormal) columns would be called an orthogonal matrix, but such matrices have no special interest and no special name; they only satisfy 2937: 479: 994: 3709: 186: 1197: 5040:
invariant under an orthogonal change of basis, such as the spectral norm or the Frobenius norm.) For a near-orthogonal matrix, rapid convergence to the orthogonal factor can be achieved by a "
5964: 4466:. When uses of these reflections and rotations introduce zeros in a matrix, the space vacated is enough to store sufficient data to reproduce the transform, and to do so robustly. (Following 766:
of a molecule is a subgroup of O(3). Because floating point versions of orthogonal matrices have advantageous properties, they are key to many algorithms in numerical linear algebra, such as
5818: 1871:
Rotations become more complicated in higher dimensions; they can no longer be completely characterized by one angle, and may affect more than one planar subspace. It is common to describe a
5877: 2074:
acts on a two-dimensional (planar) subspace spanned by two coordinate axes, rotating by a chosen angle. It is typically used to zero a single subdiagonal entry. Any rotation matrix of size
1192: 267: 1843:{\displaystyle {\begin{bmatrix}-1&0&0\\0&-1&0\\0&0&-1\end{bmatrix}}{\text{ and }}{\begin{bmatrix}0&-1&0\\1&0&0\\0&0&-1\end{bmatrix}}} 2548:, with the projection map choosing or according to the determinant. Orthogonal matrices with determinant −1 do not include the identity, and so do not form a subgroup but only a 850: 3766: 3557: 2580:. In practical terms, a comparable statement is that any orthogonal matrix can be produced by taking a rotation matrix and possibly negating one of its columns, as we saw with 4429:
is 1 (which is the minimum), so errors are not magnified when multiplying with an orthogonal matrix. Many algorithms use orthogonal matrices like Householder reflections and
719:{\displaystyle {\mathbf {v} }^{\mathrm {T} }{\mathbf {v} }=(Q{\mathbf {v} })^{\mathrm {T} }(Q{\mathbf {v} })={\mathbf {v} }^{\mathrm {T} }Q^{\mathrm {T} }Q{\mathbf {v} }.} 7182: 5626:
This may be combined with the Babylonian method for extracting the square root of a matrix to give a recurrence which converges to an orthogonal matrix quadratically:
2738:
can reduce any orthogonal matrix to this constrained form, a series of such reflections can bring any orthogonal matrix to the identity; thus an orthogonal group is a
4444:(where permutations do the pivoting). However, they rarely appear explicitly as matrices; their special form allows more efficient representation, such as a list of 5629: 5016:
rotation matrix which has been computed as the composition of numerous twists and turns. Floating point does not match the mathematical ideal of real numbers, so
2348: 2345:
The converse is not true; having a determinant of ±1 is no guarantee of orthogonality, even with orthogonal columns, as shown by the following counterexample.
5520:. Construct a Householder reflection from the vector, then apply it to the smaller matrix (embedded in the larger size with a 1 at the bottom right corner). 4433:
for this reason. It is also helpful that, not only is an orthogonal matrix invertible, but its inverse is available essentially free, by exchanging indices.
3562: 5559: 4805:{\displaystyle R={\begin{bmatrix}\cdot &\cdot &\cdot \\0&\cdot &\cdot \\0&0&\cdot \\0&0&0\\0&0&0\end{bmatrix}}.} 7396: 4625: 5434:{\displaystyle {\begin{bmatrix}3&1\\7&5\end{bmatrix}}\rightarrow {\begin{bmatrix}0.393919&-0.919145\\0.919145&0.393919\end{bmatrix}}} 1605: 1136: 6615: 457:, and for matrices of complex numbers that leads instead to the unitary requirement. Orthogonal matrices preserve the dot product, so, for vectors 7487: 5460:, which essentially requires that the distribution not change if multiplied by any freely chosen orthogonal matrix. Orthogonalizing matrices with 2725:{\displaystyle {\begin{bmatrix}&&&0\\&\mathrm {O} (n)&&\vdots \\&&&0\\0&\cdots &0&1\end{bmatrix}}} 3925:{\displaystyle \Omega ={\begin{bmatrix}0&-z\theta &y\theta \\z\theta &0&-x\theta \\-y\theta &x\theta &0\end{bmatrix}}.} 2850: 6358: 3655: 132: 7406: 7172: 428:, and each of its elements is a special orthogonal matrix. As a linear transformation, every special orthogonal matrix acts as a rotation. 3021:
More broadly, the effect of any orthogonal matrix separates into independent actions on orthogonal two-dimensional subspaces. That is, if
2438:
The inverse of every orthogonal matrix is again orthogonal, as is the matrix product of two orthogonal matrices. In fact, the set of all
5973:
A subtle technical problem afflicts some uses of orthogonal matrices. Not only are the group components with determinant +1 and −1 not
932: 6265: 5881: 4815: 2336:{\displaystyle 1=\det(I)=\det \left(Q^{\mathrm {T} }Q\right)=\det \left(Q^{\mathrm {T} }\right)\det(Q)={\bigl (}\det(Q){\bigr )}^{2}.} 2053:
suffices. A Householder reflection is typically used to simultaneously zero the lower part of a column. Any orthogonal matrix of size
795: 5766: 5822: 5453: 90: 68: 5491:
later generalized as the "subgroup algorithm" (in which form it works just as well for permutations and rotations). To generate an
123: 5036:
orthogonal matrix to the given matrix, or one of the closest if the given matrix is singular. (Closeness can be measured by any
1101:{\displaystyle {\begin{bmatrix}0&0&0&1\\0&0&1&0\\1&0&0&0\\0&1&0&0\end{bmatrix}}} 7207: 2411:, being +1 or −1 as the parity of the permutation is even or odd, for the determinant is an alternating function of the rows. 224: 6754: 4555: 6581: 5537: 6451: 3524: 6971: 6608: 5541: 4522: 3473: 2423: 2006:{\displaystyle Q=I-2{\frac {{\mathbf {v} }{\mathbf {v} }^{\mathrm {T} }}{{\mathbf {v} }^{\mathrm {T} }{\mathbf {v} }}}.} 1879:, but this only works in three dimensions. Above three dimensions two or more angles are needed, each associated with a 1683:
Regardless of the dimension, it is always possible to classify orthogonal matrices as purely rotational or not, but for
7046: 6576: 2552:; it is also (separately) connected. Thus each orthogonal group falls into two pieces; and because the projection map 2839:
rotation matrix. Since the planes are fixed, each rotation has only one degree of freedom, its angle. By induction,
7202: 6724: 5344:
Gram-Schmidt yields an inferior solution, shown by a Frobenius distance of 8.28659 instead of the minimum 8.12404.
4628:, as might occur with repeated measurements of a physical phenomenon to compensate for experimental errors. Write 1894:
The most elementary permutation is a transposition, obtained from the identity matrix by exchanging two rows. Any
7306: 7177: 7091: 2408: 774: 549:{\displaystyle {\mathbf {u} }\cdot {\mathbf {v} }=\left(Q{\mathbf {u} }\right)\cdot \left(Q{\mathbf {v} }\right)} 6588: 5761:
Using a first-order approximation of the inverse and the same initialization results in the modified iteration:
5021: 4910:
are superfluous in the product, which is thus already in lower-triangular upper-triangular factored form, as in
1886:
However, we have elementary building blocks for permutations, reflections, and rotations that apply in general.
7411: 7301: 7009: 6689: 5461: 2589: 2519: 729: 374: 61: 55: 6498:(1980), "The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators", 449:. Although we consider only real matrices here, the definition can be used for matrices with entries from any 920:{\displaystyle {\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \\\end{bmatrix}}} 7446: 7375: 7257: 7117: 6714: 6601: 1126:
matrices and , which we can interpret as the identity and a reflection of the real line across the origin.
6242: 5989:(except for SO(1), which is trivial). Thus it is sometimes advantageous, or even necessary, to work with a 5464:
uniformly distributed random entries does not result in uniformly distributed orthogonal matrices, but the
7316: 6899: 6704: 6417: 6076: 5986: 4915: 1915: 382: 370: 72: 5059:
For example, consider a non-orthogonal matrix for which the simple averaging algorithm takes seven steps
5028:
the columns, but it is not the most reliable, nor the most efficient, nor the most invariant method. The
3735: 3284:
rotation matrices, and with the remaining entries zero. Exceptionally, a rotation block may be diagonal,
7262: 6999: 6849: 6844: 6679: 6654: 6649: 4453: 3718: 2415: 7523: 6571: 2950:
Permutation matrices are simpler still; they form, not a Lie group, but only a finite group, the order
1687:
matrices and larger the non-rotational matrices can be more complicated than reflections. For example,
6226: 7456: 6814: 6644: 6624: 6553: 6507: 4911: 4483: 4437: 2015:
Here the numerator is a symmetric matrix while the denominator is a number, the squared magnitude of
1854: 1315:{\displaystyle {\begin{aligned}1&=p^{2}+t^{2},\\1&=q^{2}+u^{2},\\0&=pq+tu.\end{aligned}}} 762:, which—with its subgroups—is widely used in mathematics and the physical sciences. For example, the 6422: 2200:
of any orthogonal matrix is +1 or −1. This follows from basic facts about determinants, as follows:
7477: 7451: 7029: 6834: 6824: 6495: 6456: 6346: 6207: 5540:. There are several different ways to get the unique solution, the simplest of which is taking the 5472: 5029: 4593: 2515: 2449: 747: 450: 436: 399: 321: 2989:. The even permutations produce the subgroup of permutation matrices of determinant +1, the order 7528: 7482: 7472: 7426: 7421: 7350: 7286: 7152: 6889: 6884: 6819: 6809: 6674: 6543: 6534:
Mezzadri, Francesco (2006), "How to generate random matrices from the classical compact groups",
6484: 6443: 6314: 6289:; Shahshahani, Mehrdad (1987), "The subgroup algorithm for generating uniform random variables", 6246: 5553: 5449: 4417: 3722: 2735: 2565: 1599: 5041: 736:
Orthogonal matrices are important for a number of reasons, both theoretical and practical. The
7560: 7539: 7326: 7321: 7311: 7291: 7252: 7247: 7076: 7056: 7051: 7042: 7037: 6984: 6879: 6829: 6774: 6744: 6739: 6719: 6709: 6669: 6523: 6476: 6435: 6394: 6354: 6306: 5025: 4951: 4422: 3010: 2414:
Stronger than the determinant restriction is the fact that an orthogonal matrix can always be
2150: 1880: 1860: 1664: 378: 317: 218: 2742:. The last column can be fixed to any unit vector, and each choice gives a different copy of 7534: 7502: 7431: 7370: 7365: 7345: 7281: 7187: 7157: 7142: 7127: 7122: 7061: 7014: 6989: 6979: 6950: 6869: 6864: 6839: 6769: 6749: 6659: 6639: 6515: 6468: 6427: 6386: 6298: 6230: 6195: 6064: 5751: 5465: 4559: 4494: 4426: 3729: 2739: 2485: 2113:
matrices, three such rotations suffice; and by fixing the sequence we can thus describe all
1668: 767: 751: 425: 410: 6262: 2128:
has the same form as a Givens rotation, but is used to zero both off-diagonal entries of a
7232: 7167: 7147: 7132: 7112: 7096: 6994: 6925: 6915: 6874: 6759: 6729: 6405: 6371: 6367: 6269: 5974: 4430: 3030: 2959: 2822:. A single rotation can produce a zero in the first row of the last column, and series of 2804: 2503: 2500: 2190: 2154: 2125: 2071: 1672: 1671:(equal to its transpose) as well as orthogonal. The product of two rotation matrices is a 571: 474: 366: 207: 3295:
reflection diagonalizes to a +1 and −1, any orthogonal matrix can be brought to the form
6557: 6511: 2117:
rotation matrices (though not uniquely) in terms of the three angles used, often called
7492: 7436: 7416: 7401: 7360: 7237: 7197: 7162: 7086: 7025: 7004: 6945: 6935: 6920: 6854: 6799: 6789: 6784: 6694: 6286: 5008:
The case of a square invertible matrix also holds interest. Suppose, for example, that
3477: 3469: 2553: 2530: 2427: 2419: 2146: 1876: 445:
An orthogonal matrix is the real specialization of a unitary matrix, and thus always a
297: 120: 104: 35: 31: 4436:
Permutations are essential to the success of many algorithms, including the workhorse
7554: 7497: 7355: 7296: 7227: 7217: 7212: 7137: 7066: 6940: 6930: 6859: 6779: 6764: 6699: 6488: 6342: 6318: 4969: 4441: 2453: 446: 358: 329: 116: 6447: 6408:; Schreiber, Robert (July 1990), "Fast polar decomposition of an arbitrary matrix", 3725:
of any skew-symmetric matrix is an orthogonal matrix (in fact, special orthogonal).
789:
Below are a few examples of small orthogonal matrices and possible interpretations.
17: 7380: 7337: 7242: 6955: 6894: 6804: 6684: 5998: 5990: 5457: 2767: 2118: 7222: 7192: 6960: 6794: 6664: 5037: 3714: 2197: 2163: 763: 560:
is an orthogonal matrix. To see the inner product connection, consider a vector
454: 350: 346: 7273: 6734: 6302: 6272:, Nicholas J. Higham, Mathematics of Computation, Volume 46, Number 174, 1986. 6057: 5456:
random orthogonal matrices. In this context, "uniform" is defined in terms of
1395:
is the identity), and the second as a reflection across a line at an angle of
354: 6527: 6480: 6439: 6398: 6310: 5727:{\displaystyle Q_{n+1}=2M\left(Q_{n}^{-1}M+M^{\mathrm {T} }Q_{n}\right)^{-1}} 4950:
In the case of a linear system which is underdetermined, or an otherwise non-
7507: 7081: 6018: 2951: 2456: 195: 2398:{\displaystyle {\begin{bmatrix}2&0\\0&{\frac {1}{2}}\end{bmatrix}}} 5548:
and replacing the singular values with ones. Another method expresses the
3934:
The exponential of this is the orthogonal matrix for rotation around axis
7441: 2166:, which is the case if and only if its rows form an orthonormal basis of 414: 362: 6548: 5056:
has published an accelerated method with a convenient convergence test.
4947:, but also for allowing solution without magnifying numerical problems. 1675:, and the product of two reflection matrices is also a rotation matrix. 6472: 6191: 5452:
and exploration of high-dimensional data spaces, require generation of
3626:{\displaystyle {\dot {Q}}^{\mathrm {T} }Q+Q^{\mathrm {T} }{\dot {Q}}=0} 1324:
In consideration of the first equation, without loss of generality let
4986:
merely replaces each non-zero diagonal entry with its reciprocal. Set
574:. Written with respect to an orthonormal basis, the squared length of 27:
Real square matrix whose columns and rows are orthogonal unit vectors
6519: 6431: 6390: 4474:
store a rotation angle, which is both expensive and badly behaved.)
3468:
give conjugate pairs of eigenvalues lying on the unit circle in the
3025:
is special orthogonal then one can always find an orthogonal matrix
424:
consisting of orthogonal matrices with determinant +1 is called the
5617:{\displaystyle Q=M\left(M^{\mathrm {T} }M\right)^{-{\frac {1}{2}}}} 3488:
rotation, the eigenvector associated with +1 is the rotation axis.
1904:
permutation matrix can be constructed as a product of no more than
2829:
rotations will zero all but the last row of the last column of an
2549: 6593: 978:{\displaystyle {\begin{bmatrix}1&0\\0&-1\\\end{bmatrix}}} 838:{\displaystyle {\begin{bmatrix}1&0\\0&1\\\end{bmatrix}}} 733:
same dimension, and these have no orthogonal matrix equivalent.
6597: 5052:), repeatedly averaging the matrix with its inverse transpose. 3810:
being a unit vector, the correct skew-symmetric matrix form of
3484:
is odd, there is at least one real eigenvalue, +1 or −1; for a
1651:{\displaystyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}.} 1182:{\displaystyle {\begin{bmatrix}p&t\\q&u\end{bmatrix}},} 6250: 6040:
is simply connected and thus the universal covering group for
778: 40: 4954:, singular value decomposition (SVD) is equally useful. With 3732:
is a differential rotation, thus a vector in the Lie algebra
2807:
using an analogous procedure. The bundle structure persists:
6326: 3291:. Thus, negating one column if necessary, and noting that a 1602:, with a single 1 in each column and row (and otherwise 0): 6353:(3/e ed.), Baltimore: Johns Hopkins University Press, 4421:
and all eigenvalues of magnitude 1 is of great benefit for
6190:, matrices with orthonormal columns may be referred to as 6067:, which themselves can be built from orthogonal matrices. 2021:. This is a reflection in the hyperplane perpendicular to 6327:"An Optimum Iteration for the Matrix Polar Decomposition" 6291:
Probability in the Engineering and Informational Sciences
5513:
one and a uniformly distributed unit vector of dimension
5032:
factors a matrix into a pair, one of which is the unique
4918:). Here orthogonality is important not only for reducing 4859:) are independent, the projection solution is found from 2932:{\displaystyle (n-1)+(n-2)+\cdots +1={\frac {n(n-1)}{2}}} 773:. As another example, with appropriate normalization the 3728:
For example, the three-dimensional object physics calls
2803:; and any special orthogonal matrix can be generated by 1189:
which orthogonality demands satisfy the three equations
213:
This leads to the equivalent characterization: a matrix
2499:
The orthogonal matrices whose determinant is +1 form a
5397: 5358: 5298: 5256: 5217: 5155: 5110: 5071: 4707: 4022: 3834: 3704:{\displaystyle {\dot {Q}}^{\mathrm {T} }=-{\dot {Q}}.} 3391: 3332: 3328: 3169: 3072: 2648: 2407:
With permutation matrices the determinant matches the
2357: 1776: 1699: 1614: 1580:
generates a reflection about the line at 45° given by
1498: 1429: 1145: 1003: 941: 859: 804: 181:{\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} 6589:
Tutorial and Interactive Program on Orthogonal Matrix
6459:(1976), "The Economical Storage of Plane Rotations", 6372:"Computing the Polar Decomposition—with Applications" 5884: 5825: 5769: 5632: 5562: 5352: 5211: 5065: 4695: 4490:) involve orthogonal matrices, including especially: 3998: 3822: 3738: 3658: 3565: 3527: 3301: 3045: 2853: 2642: 2351: 2206: 1930: 1693: 1608: 1423: 1195: 1139: 997: 935: 853: 798: 781:
compression) is represented by an orthogonal matrix.
604: 482: 398:
orthogonal matrices, under multiplication, forms the
227: 135: 6410:
SIAM Journal on Scientific and Statistical Computing
6379:
SIAM Journal on Scientific and Statistical Computing
6048:. By far the most famous example of a spin group is 453:. However, orthogonal matrices arise naturally from 7465: 7389: 7335: 7271: 7105: 7023: 6969: 6908: 6632: 5488: 1384:. We can interpret the first case as a rotation by 5958: 5871: 5812: 5726: 5616: 5433: 5334: 5191: 4804: 4397: 3924: 3760: 3703: 3625: 3551: 3440: 3252: 2931: 2724: 2448:orthogonal matrices satisfies all the axioms of a 2397: 2335: 2005: 1842: 1650: 1563: 1314: 1181: 1100: 977: 919: 837: 718: 548: 353:of any orthogonal matrix is either +1 or −1. As a 261: 180: 4968:, a satisfactory solution uses the Moore-Penrose 2588:is odd, then the semidirect product is in fact a 5959:{\displaystyle Q_{n+1}=2Q_{n}+P_{n}N_{n}-3P_{n}} 5475:random entries does, as long as the diagonal of 5199:and which acceleration trims to two steps (with 2734:Since an elementary reflection in the form of a 2304: 2282: 2259: 2228: 2213: 5813:{\displaystyle N_{n}=Q_{n}^{\mathrm {T} }Q_{n}} 1573:The special case of the reflection matrix with 1108:   (permutation of coordinate axes) 217:is orthogonal if its transpose is equal to its 5872:{\displaystyle P_{n}={\frac {1}{2}}Q_{n}N_{n}} 5487:replaced this with a more efficient idea that 3521:. Differentiating the orthogonality condition 6609: 6331:Electronic Transactions on Numerical Analysis 5528:The problem of finding the orthogonal matrix 5020:has gradually lost its true orthogonality. A 4487: 2319: 2299: 589:. If a linear transformation, in matrix form 8: 6536:Notices of the American Mathematical Society 6263:"Newton's Method for the Matrix Square Root" 6085:is not a square matrix, then the conditions 1667:, which implies that a reflection matrix is 2084:can be constructed as a product of at most 2063:can be constructed as a product of at most 2027:(negating any vector component parallel to 1660:The identity is also a permutation matrix. 7183:Fundamental (linear differential equation) 6616: 6602: 6594: 4847:to the subspace spanned by the columns of 3717:of an orthogonal matrix group consists of 3472:; so this decomposition confirms that all 927:   (rotation about the origin) 6547: 6421: 6125:are orthonormal. This can only happen if 6063:The Pin and Spin groups are found within 5950: 5934: 5924: 5911: 5889: 5883: 5863: 5853: 5839: 5830: 5824: 5804: 5793: 5792: 5787: 5774: 5768: 5750:These iterations are stable provided the 5715: 5704: 5693: 5692: 5673: 5668: 5637: 5631: 5602: 5598: 5583: 5582: 5561: 5392: 5353: 5351: 5293: 5251: 5212: 5210: 5150: 5105: 5066: 5064: 4702: 4694: 4626:overdetermined system of linear equations 4378: 4368: 4352: 4316: 4280: 4242: 4221: 4211: 4195: 4159: 4121: 4085: 4064: 4054: 4038: 4017: 3997: 3829: 3821: 3740: 3739: 3737: 3687: 3686: 3673: 3672: 3661: 3660: 3657: 3606: 3605: 3598: 3597: 3580: 3579: 3568: 3567: 3564: 3533: 3532: 3526: 3390: 3366: 3339: 3331: 3323: 3307: 3306: 3300: 3239: 3205: 3176: 3164: 3148: 3147: 3129: 3106: 3079: 3067: 3051: 3050: 3044: 2902: 2852: 2662: 2643: 2641: 2377: 2352: 2350: 2324: 2318: 2317: 2298: 2297: 2271: 2270: 2241: 2240: 2205: 1991: 1990: 1983: 1982: 1976: 1975: 1965: 1964: 1958: 1957: 1950: 1949: 1946: 1929: 1771: 1766: 1694: 1692: 1609: 1607: 1556: 1493: 1487: 1424: 1422: 1267: 1254: 1227: 1214: 1196: 1194: 1140: 1138: 1122:The simplest orthogonal matrices are the 998: 996: 936: 934: 854: 852: 799: 797: 707: 706: 696: 695: 684: 683: 677: 676: 663: 662: 649: 648: 638: 637: 622: 621: 614: 613: 607: 606: 603: 535: 534: 512: 511: 494: 493: 484: 483: 481: 247: 233: 232: 226: 162: 161: 141: 140: 134: 91:Learn how and when to remove this message 30:For matrices with orthogonality over the 6243:"Finding the Nearest Orthonormal Matrix" 5480: 5053: 4556:Eigendecomposition of a symmetric matrix 3713:In Lie group terms, this means that the 845:   (identity transformation) 435: 286:is necessarily invertible (with inverse 262:{\displaystyle Q^{\mathrm {T} }=Q^{-1},} 54:This article includes a list of general 7488:Matrix representation of conic sections 6219: 6149:(due to linear dependence). Similarly, 5484: 4467: 5977:to each other, even the +1 component, 5049: 5045: 1918:is constructed from a non-null vector 5552:explicitly but requires the use of a 5448:Some numerical applications, such as 361:of vectors, and therefore acts as an 357:, an orthogonal matrix preserves the 7: 4897:) and invertible, and also equal to 4841:, which is equivalent to projecting 3761:{\displaystyle {\mathfrak {so}}(3)} 3744: 3741: 3552:{\displaystyle Q^{\mathrm {T} }Q=I} 2426:, all of which must have (complex) 2145:A real square matrix is orthogonal 6500:SIAM Journal on Numerical Analysis 6108:are not equivalent. The condition 5794: 5694: 5584: 4008: 3823: 3674: 3599: 3581: 3534: 3308: 3149: 3052: 2663: 2272: 2242: 1984: 1966: 985:   (reflection across 697: 685: 650: 615: 234: 163: 142: 60:it lacks sufficient corresponding 25: 5489:Diaconis & Shahshahani (1987) 4906:. But the lower rows of zeros in 3721:. Going the other direction, the 750:under matrix multiplication, the 598:, preserves vector lengths, then 7522: 6163:are orthonormal, which requires 5479:contains only positive entries ( 4558:(decomposition according to the 3500:are differentiable functions of 2970:. By the same kind of argument, 2939:degrees of freedom, and so does 1992: 1977: 1959: 1951: 708: 678: 664: 639: 623: 608: 536: 513: 495: 485: 45: 7390:Used in science and engineering 4615:symmetric positive-semidefinite 4462:to a much more efficient order 2109:such rotations. In the case of 1875:rotation matrix in terms of an 1492: 6633:Explicitly constrained entries 6325:Dubrulle, Augustin A. (1999), 5389: 5290: 5248: 5147: 5141: 5102: 4425:. One implication is that the 4011: 4005: 3755: 3749: 3244: 3233: 3134: 3123: 2920: 2908: 2884: 2872: 2866: 2854: 2673: 2667: 2313: 2307: 2291: 2285: 2222: 2216: 669: 656: 645: 631: 1: 7407:Fundamental (computer vision) 6194:and they are elements of the 5538:Orthogonal Procrustes problem 5542:singular value decomposition 4523:Singular value decomposition 2634:(and of all higher groups). 2162:with the ordinary Euclidean 7173:Duplication and elimination 6972:eigenvalues or eigenvectors 6577:Encyclopedia of Mathematics 5503:orthogonal matrix, take an 746:orthogonal matrices form a 129:One way to express this is 119:whose columns and rows are 7577: 7106:With specific applications 6735:Discrete Fourier Transform 6227:"Paul's online math notes" 6074: 4851:. Assuming the columns of 3037:into block diagonal form: 1864:, respectively, about the 381:. In other words, it is a 29: 7516: 7397:Cabibbo–Kobayashi–Maskawa 7024:Satisfying conditions on 6303:10.1017/S0269964800000255 6121:says that the columns of 6017:has covering groups, the 5524:Nearest orthogonal matrix 4488:Golub & Van Loan 1996 2422:to exhibit a full set of 1858:through the origin and a 775:discrete cosine transform 4408:Numerical linear algebra 2618:orthogonal matrix; thus 2520:special orthogonal group 1590:and therefore exchanges 1113:Elementary constructions 426:special orthogonal group 6755:Generalized permutation 6056:, or the group of unit 6052:, which is nothing but 5532:nearest a given matrix 5203:= 0.353553, 0.565685). 4818:problem is to find the 3719:skew-symmetric matrices 3496:Suppose the entries of 2039:is a unit vector, then 1489: (rotation),  1133:matrices have the form 75:more precise citations. 7529:Mathematics portal 6159:says that the rows of 6077:Semi-orthogonal matrix 5960: 5873: 5814: 5728: 5618: 5435: 5336: 5193: 4916:Cholesky decomposition 4806: 4669:decomposition reduces 4482:A number of important 4399: 3926: 3762: 3705: 3627: 3553: 3442: 3254: 2933: 2805:Givens plane rotations 2726: 2399: 2337: 2007: 1916:Householder reflection 1844: 1652: 1565: 1316: 1183: 1102: 979: 921: 839: 720: 550: 442: 383:unitary transformation 263: 182: 6461:Numerische Mathematik 5961: 5874: 5815: 5729: 5619: 5454:uniformly distributed 5436: 5337: 5194: 4807: 4484:matrix decompositions 4400: 3927: 3763: 3706: 3628: 3554: 3443: 3255: 2934: 2770:over the unit sphere 2727: 2400: 2338: 2132:symmetric submatrix. 2008: 1845: 1653: 1566: 1317: 1184: 1103: 980: 922: 840: 721: 551: 439: 355:linear transformation 282:An orthogonal matrix 264: 183: 6347:Van Loan, Charles F. 6233:, 2008. Theorem 3(c) 6071:Rectangular matrices 5882: 5823: 5767: 5758:is less than three. 5630: 5560: 5473:normally distributed 5350: 5209: 5063: 5022:Gram–Schmidt process 4912:Gaussian elimination 4816:linear least squares 4693: 4673:to upper triangular 4438:Gaussian elimination 3996: 3820: 3736: 3656: 3563: 3525: 3299: 3043: 2851: 2640: 2349: 2204: 2149:its columns form an 1928: 1691: 1606: 1421: 1193: 1137: 995: 933: 851: 796: 602: 480: 225: 133: 18:Orthogonal transform 7478:Linear independence 6725:Diagonally dominant 6572:"Orthogonal matrix" 6558:2006math.ph...9050M 6512:1980SJNA...17..403S 6351:Matrix Computations 6208:Biorthogonal system 6192:orthogonal k-frames 5799: 5681: 5450:Monte Carlo methods 5030:polar decomposition 4594:Polar decomposition 3262:where the matrices 322:conjugate transpose 7483:Matrix exponential 7473:Jordan normal form 7307:Fisher information 7178:Euclidean distance 7092:Totally unimodular 6473:10.1007/BF01462266 6268:2011-09-29 at the 6247:Berthold K.P. Horn 5956: 5869: 5810: 5783: 5724: 5664: 5614: 5554:matrix square root 5536:is related to the 5431: 5425: 5383: 5332: 5326: 5284: 5242: 5189: 5183: 5135: 5096: 5044:" approach due to 4802: 4793: 4677:. For example, if 4418:Numerical analysis 4395: 4386: 3922: 3913: 3758: 3723:matrix exponential 3701: 3623: 3549: 3438: 3429: 3425: 3374: 3250: 3224: 3114: 2929: 2736:Householder matrix 2722: 2716: 2566:semidirect product 2529:of rotations. The 2395: 2389: 2333: 2067:such reflections. 2003: 1840: 1834: 1760: 1648: 1639: 1600:permutation matrix 1561: 1558: (reflection) 1550: 1481: 1312: 1310: 1179: 1170: 1098: 1092: 975: 969: 917: 911: 835: 829: 730:finite-dimensional 716: 570:-dimensional real 546: 473:-dimensional real 443: 275:is the inverse of 259: 178: 113:orthonormal matrix 7548: 7547: 7540:Category:Matrices 7412:Fuzzy associative 7302:Doubly stochastic 7010:Positive-definite 6690:Block tridiagonal 6360:978-0-8018-5414-9 6065:Clifford algebras 5847: 5610: 4952:invertible matrix 4423:numeric stability 3695: 3669: 3614: 3576: 3242: 3232: 3142: 3132: 3122: 3029:, a (rotational) 3011:alternating group 2979:is a subgroup of 2927: 2795:is a subgroup of 2626:is a subgroup of 2544:is isomorphic to 2385: 2151:orthonormal basis 2141:Matrix properties 1998: 1881:plane of rotation 1769: 1679:Higher dimensions 1559: 1490: 318:Hermitian adjoint 109:orthogonal matrix 101: 100: 93: 16:(Redirected from 7568: 7535:List of matrices 7527: 7526: 7503:Row echelon form 7447:State transition 7376:Seidel adjacency 7258:Totally positive 7118:Alternating sign 6715:Complex Hadamard 6618: 6611: 6604: 6595: 6585: 6560: 6551: 6530: 6491: 6450: 6425: 6406:Higham, Nicholas 6401: 6385:(4): 1160–1174, 6376: 6368:Higham, Nicholas 6363: 6338: 6321: 6273: 6260: 6254: 6240: 6234: 6231:Lamar University 6229:, Paul Dawkins, 6224: 6196:Stiefel manifold 6189: 6172: 6162: 6158: 6148: 6138: 6128: 6120: 6107: 6097: 6084: 6055: 6051: 6047: 6039: 6031: 6016: 6008: 5987:simply connected 5984: 5965: 5963: 5962: 5957: 5955: 5954: 5939: 5938: 5929: 5928: 5916: 5915: 5900: 5899: 5878: 5876: 5875: 5870: 5868: 5867: 5858: 5857: 5848: 5840: 5835: 5834: 5819: 5817: 5816: 5811: 5809: 5808: 5798: 5797: 5791: 5779: 5778: 5757: 5752:condition number 5746: 5733: 5731: 5730: 5725: 5723: 5722: 5714: 5710: 5709: 5708: 5699: 5698: 5697: 5680: 5672: 5648: 5647: 5623: 5621: 5620: 5615: 5613: 5612: 5611: 5603: 5597: 5593: 5589: 5588: 5587: 5551: 5547: 5535: 5531: 5519: 5512: 5502: 5478: 5468: 5440: 5438: 5437: 5432: 5430: 5429: 5388: 5387: 5341: 5339: 5338: 5333: 5331: 5330: 5289: 5288: 5247: 5246: 5202: 5198: 5196: 5195: 5190: 5188: 5187: 5140: 5139: 5101: 5100: 5019: 5015: 5011: 5004: 4991: 4985: 4981: 4967: 4957: 4946: 4937: 4909: 4905: 4896: 4886: 4877: 4858: 4854: 4850: 4846: 4840: 4838: 4823: 4811: 4809: 4808: 4803: 4798: 4797: 4688: 4684: 4680: 4676: 4672: 4668: 4664: 4654: 4644: 4640: 4614: 4610: 4606: 4589: 4585: 4581: 4577: 4560:spectral theorem 4551: 4547: 4543: 4539: 4519:upper triangular 4518: 4514: 4510: 4497: 4465: 4461: 4447: 4442:partial pivoting 4431:Givens rotations 4427:condition number 4404: 4402: 4401: 4396: 4391: 4390: 4383: 4382: 4373: 4372: 4357: 4356: 4321: 4320: 4285: 4284: 4247: 4246: 4226: 4225: 4216: 4215: 4200: 4199: 4164: 4163: 4126: 4125: 4090: 4089: 4069: 4068: 4059: 4058: 4043: 4042: 3991: 3990: 3988: 3987: 3984: 3981: 3967: 3966: 3964: 3963: 3960: 3957: 3943: 3939: 3931: 3929: 3928: 3923: 3918: 3917: 3815: 3809: 3790: 3771: 3767: 3765: 3764: 3759: 3748: 3747: 3730:angular velocity 3710: 3708: 3707: 3702: 3697: 3696: 3688: 3679: 3678: 3677: 3671: 3670: 3662: 3651: 3641: 3632: 3630: 3629: 3624: 3616: 3615: 3607: 3604: 3603: 3602: 3586: 3585: 3584: 3578: 3577: 3569: 3558: 3556: 3555: 3550: 3539: 3538: 3537: 3520: 3510: 3503: 3499: 3487: 3483: 3467: 3447: 3445: 3444: 3439: 3434: 3433: 3426: 3415: 3414: 3411: 3405: 3402: 3401: 3375: 3371: 3370: 3360: 3359: 3356: 3350: 3347: 3346: 3344: 3343: 3313: 3312: 3311: 3294: 3290: 3283: 3279: 3259: 3257: 3256: 3251: 3243: 3240: 3230: 3229: 3228: 3217: 3216: 3215: 3212: 3210: 3209: 3199: 3198: 3195: 3194: 3188: 3185: 3184: 3183: 3181: 3180: 3154: 3153: 3152: 3140: 3133: 3130: 3120: 3119: 3118: 3111: 3110: 3100: 3099: 3096: 3090: 3087: 3086: 3084: 3083: 3057: 3056: 3055: 3036: 3028: 3024: 3009: 3008: 3006: 3005: 3002: 2999: 2988: 2978: 2969: 2957: 2946: 2938: 2936: 2935: 2930: 2928: 2923: 2903: 2846: 2838: 2828: 2821: 2802: 2794: 2783: 2775: 2765: 2757: 2749: 2740:reflection group 2731: 2729: 2728: 2723: 2721: 2720: 2687: 2686: 2685: 2677: 2666: 2660: 2652: 2651: 2650: 2633: 2625: 2617: 2606: 2587: 2583: 2579: 2575: 2563: 2547: 2543: 2528: 2513: 2495: 2486:orthogonal group 2483: 2482: 2480: 2479: 2476: 2473: 2447: 2434:Group properties 2404: 2402: 2401: 2396: 2394: 2393: 2386: 2378: 2342: 2340: 2339: 2334: 2329: 2328: 2323: 2322: 2303: 2302: 2281: 2277: 2276: 2275: 2255: 2251: 2247: 2246: 2245: 2188: 2184: 2171: 2161: 2131: 2116: 2112: 2108: 2107: 2105: 2104: 2101: 2098: 2083: 2066: 2062: 2052: 2038: 2032: 2026: 2020: 2012: 2010: 2009: 2004: 1999: 1997: 1996: 1995: 1989: 1988: 1987: 1981: 1980: 1972: 1971: 1970: 1969: 1963: 1962: 1955: 1954: 1947: 1923: 1911:transpositions. 1910: 1903: 1874: 1867: 1849: 1847: 1846: 1841: 1839: 1838: 1770: 1767: 1765: 1764: 1686: 1663:A reflection is 1657: 1655: 1654: 1649: 1644: 1643: 1597: 1593: 1589: 1579: 1570: 1568: 1567: 1562: 1560: 1557: 1555: 1554: 1491: 1488: 1486: 1485: 1414: 1413: 1411: 1410: 1407: 1404: 1394: 1387: 1383: 1373: 1363: 1353: 1343: 1333: 1321: 1319: 1318: 1313: 1311: 1272: 1271: 1259: 1258: 1232: 1231: 1219: 1218: 1188: 1186: 1185: 1180: 1175: 1174: 1132: 1125: 1118:Lower dimensions 1107: 1105: 1104: 1099: 1097: 1096: 984: 982: 981: 976: 974: 973: 926: 924: 923: 918: 916: 915: 844: 842: 841: 836: 834: 833: 770: 761: 752:orthogonal group 745: 725: 723: 722: 717: 712: 711: 702: 701: 700: 690: 689: 688: 682: 681: 668: 667: 655: 654: 653: 643: 642: 627: 626: 620: 619: 618: 612: 611: 597: 588: 579: 569: 565: 559: 555: 553: 552: 547: 545: 541: 540: 539: 522: 518: 517: 516: 499: 498: 489: 488: 472: 468: 462: 423: 411:orthogonal group 408: 397: 344: 328:, and therefore 327: 315: 309: 295: 285: 278: 274: 268: 266: 265: 260: 255: 254: 239: 238: 237: 216: 205: 201: 193: 187: 185: 184: 179: 168: 167: 166: 147: 146: 145: 96: 89: 85: 82: 76: 71:this article by 62:inline citations 49: 48: 41: 21: 7576: 7575: 7571: 7570: 7569: 7567: 7566: 7565: 7551: 7550: 7549: 7544: 7521: 7512: 7461: 7385: 7331: 7267: 7101: 7019: 6965: 6904: 6705:Centrosymmetric 6628: 6622: 6570: 6567: 6549:math-ph/0609050 6533: 6520:10.1137/0717034 6494: 6455: 6432:10.1137/0911038 6423:10.1.1.230.4322 6404: 6391:10.1137/0907079 6374: 6366: 6361: 6341: 6324: 6287:Diaconis, Persi 6285: 6282: 6277: 6276: 6270:Wayback Machine 6261: 6257: 6241: 6237: 6225: 6221: 6216: 6204: 6181: 6164: 6160: 6150: 6140: 6130: 6126: 6109: 6099: 6086: 6082: 6079: 6073: 6053: 6049: 6041: 6033: 6026: 6010: 6002: 5978: 5971: 5946: 5930: 5920: 5907: 5885: 5880: 5879: 5859: 5849: 5826: 5821: 5820: 5800: 5770: 5765: 5764: 5755: 5741: 5735: 5700: 5688: 5663: 5659: 5658: 5633: 5628: 5627: 5578: 5577: 5573: 5572: 5558: 5557: 5549: 5545: 5533: 5529: 5526: 5514: 5504: 5492: 5476: 5471:of independent 5466: 5446: 5424: 5423: 5418: 5412: 5411: 5403: 5393: 5382: 5381: 5376: 5370: 5369: 5364: 5354: 5348: 5347: 5325: 5324: 5319: 5313: 5312: 5304: 5294: 5283: 5282: 5277: 5271: 5270: 5262: 5252: 5241: 5240: 5235: 5229: 5228: 5223: 5213: 5207: 5206: 5200: 5182: 5181: 5176: 5170: 5169: 5161: 5151: 5134: 5133: 5128: 5122: 5121: 5116: 5106: 5095: 5094: 5089: 5083: 5082: 5077: 5067: 5061: 5060: 5054:Dubrulle (1999) 5042:Newton's method 5017: 5013: 5009: 4993: 4987: 4983: 4973: 4959: 4955: 4939: 4919: 4907: 4898: 4888: 4879: 4860: 4856: 4852: 4848: 4842: 4827: 4825: 4824:that minimizes 4819: 4792: 4791: 4786: 4781: 4775: 4774: 4769: 4764: 4758: 4757: 4752: 4747: 4741: 4740: 4735: 4730: 4724: 4723: 4718: 4713: 4703: 4691: 4690: 4686: 4682: 4678: 4674: 4670: 4666: 4656: 4646: 4642: 4629: 4622: 4612: 4608: 4598: 4587: 4583: 4579: 4565: 4552:diagonal matrix 4549: 4545: 4541: 4527: 4516: 4512: 4502: 4495: 4480: 4463: 4457: 4445: 4415: 4410: 4385: 4384: 4374: 4364: 4348: 4337: 4312: 4301: 4276: 4264: 4263: 4238: 4227: 4217: 4207: 4191: 4180: 4155: 4143: 4142: 4117: 4106: 4081: 4070: 4060: 4050: 4034: 4018: 3994: 3993: 3985: 3982: 3977: 3976: 3974: 3969: 3961: 3958: 3953: 3952: 3950: 3945: 3941: 3935: 3912: 3911: 3906: 3898: 3886: 3885: 3874: 3869: 3860: 3859: 3851: 3840: 3830: 3818: 3817: 3811: 3792: 3773: 3769: 3734: 3733: 3659: 3654: 3653: 3652:) then implies 3643: 3636: 3593: 3566: 3561: 3560: 3528: 3523: 3522: 3512: 3505: 3501: 3497: 3494: 3485: 3481: 3466: 3457: 3451: 3428: 3427: 3424: 3423: 3412: 3410: 3403: 3400: 3388: 3382: 3381: 3376: 3373: 3372: 3362: 3357: 3355: 3348: 3345: 3335: 3324: 3302: 3297: 3296: 3292: 3285: 3281: 3278: 3269: 3263: 3223: 3222: 3213: 3211: 3201: 3196: 3193: 3186: 3182: 3172: 3165: 3143: 3113: 3112: 3102: 3097: 3095: 3088: 3085: 3075: 3068: 3046: 3041: 3040: 3034: 3031:change of basis 3026: 3022: 3019: 3003: 3000: 2994: 2993: 2991: 2990: 2987: 2980: 2977: 2971: 2968: 2962: 2960:symmetric group 2952: 2940: 2904: 2849: 2848: 2840: 2830: 2823: 2808: 2796: 2788: 2777: 2771: 2759: 2751: 2743: 2715: 2714: 2709: 2704: 2699: 2693: 2692: 2683: 2682: 2676: 2658: 2657: 2644: 2638: 2637: 2627: 2619: 2609: 2596: 2585: 2581: 2577: 2569: 2557: 2545: 2533: 2522: 2507: 2504:normal subgroup 2489: 2488:and denoted by 2477: 2474: 2464: 2463: 2461: 2460: 2439: 2436: 2420:complex numbers 2388: 2387: 2375: 2369: 2368: 2363: 2353: 2347: 2346: 2316: 2266: 2262: 2236: 2235: 2231: 2202: 2201: 2191:diagonal matrix 2186: 2173: 2167: 2157: 2155:Euclidean space 2143: 2138: 2129: 2126:Jacobi rotation 2114: 2110: 2102: 2099: 2089: 2088: 2086: 2085: 2075: 2072:Givens rotation 2064: 2054: 2040: 2034: 2028: 2022: 2016: 1974: 1973: 1956: 1948: 1926: 1925: 1919: 1905: 1895: 1892: 1872: 1865: 1833: 1832: 1824: 1819: 1813: 1812: 1807: 1802: 1796: 1795: 1790: 1782: 1772: 1768: and  1759: 1758: 1750: 1745: 1739: 1738: 1733: 1725: 1719: 1718: 1713: 1708: 1695: 1689: 1688: 1684: 1681: 1673:rotation matrix 1665:its own inverse 1638: 1637: 1632: 1626: 1625: 1620: 1610: 1604: 1603: 1595: 1591: 1581: 1574: 1549: 1548: 1534: 1522: 1521: 1510: 1494: 1480: 1479: 1468: 1456: 1455: 1441: 1425: 1419: 1418: 1408: 1405: 1400: 1399: 1397: 1396: 1389: 1385: 1375: 1365: 1355: 1345: 1335: 1325: 1309: 1308: 1283: 1277: 1276: 1263: 1250: 1243: 1237: 1236: 1223: 1210: 1203: 1191: 1190: 1169: 1168: 1163: 1157: 1156: 1151: 1141: 1135: 1134: 1130: 1123: 1120: 1115: 1091: 1090: 1085: 1080: 1075: 1069: 1068: 1063: 1058: 1053: 1047: 1046: 1041: 1036: 1031: 1025: 1024: 1019: 1014: 1009: 999: 993: 992: 968: 967: 959: 953: 952: 947: 937: 931: 930: 910: 909: 898: 886: 885: 871: 855: 849: 848: 828: 827: 822: 816: 815: 810: 800: 794: 793: 787: 768: 755: 737: 691: 675: 644: 605: 600: 599: 590: 581: 575: 572:Euclidean space 567: 561: 557: 530: 526: 507: 503: 478: 477: 475:Euclidean space 470: 464: 458: 434: 417: 409:, known as the 402: 389: 367:Euclidean space 333: 325: 311: 301: 287: 283: 276: 270: 243: 228: 223: 222: 214: 208:identity matrix 203: 199: 189: 157: 136: 131: 130: 97: 86: 80: 77: 67:Please help to 66: 50: 46: 39: 28: 23: 22: 15: 12: 11: 5: 7574: 7572: 7564: 7563: 7553: 7552: 7546: 7545: 7543: 7542: 7537: 7532: 7517: 7514: 7513: 7511: 7510: 7505: 7500: 7495: 7493:Perfect matrix 7490: 7485: 7480: 7475: 7469: 7467: 7463: 7462: 7460: 7459: 7454: 7449: 7444: 7439: 7434: 7429: 7424: 7419: 7414: 7409: 7404: 7399: 7393: 7391: 7387: 7386: 7384: 7383: 7378: 7373: 7368: 7363: 7358: 7353: 7348: 7342: 7340: 7333: 7332: 7330: 7329: 7324: 7319: 7314: 7309: 7304: 7299: 7294: 7289: 7284: 7278: 7276: 7269: 7268: 7266: 7265: 7263:Transformation 7260: 7255: 7250: 7245: 7240: 7235: 7230: 7225: 7220: 7215: 7210: 7205: 7200: 7195: 7190: 7185: 7180: 7175: 7170: 7165: 7160: 7155: 7150: 7145: 7140: 7135: 7130: 7125: 7120: 7115: 7109: 7107: 7103: 7102: 7100: 7099: 7094: 7089: 7084: 7079: 7074: 7069: 7064: 7059: 7054: 7049: 7040: 7034: 7032: 7021: 7020: 7018: 7017: 7012: 7007: 7002: 7000:Diagonalizable 6997: 6992: 6987: 6982: 6976: 6974: 6970:Conditions on 6967: 6966: 6964: 6963: 6958: 6953: 6948: 6943: 6938: 6933: 6928: 6923: 6918: 6912: 6910: 6906: 6905: 6903: 6902: 6897: 6892: 6887: 6882: 6877: 6872: 6867: 6862: 6857: 6852: 6850:Skew-symmetric 6847: 6845:Skew-Hermitian 6842: 6837: 6832: 6827: 6822: 6817: 6812: 6807: 6802: 6797: 6792: 6787: 6782: 6777: 6772: 6767: 6762: 6757: 6752: 6747: 6742: 6737: 6732: 6727: 6722: 6717: 6712: 6707: 6702: 6697: 6692: 6687: 6682: 6680:Block-diagonal 6677: 6672: 6667: 6662: 6657: 6655:Anti-symmetric 6652: 6650:Anti-Hermitian 6647: 6642: 6636: 6634: 6630: 6629: 6623: 6621: 6620: 6613: 6606: 6598: 6592: 6591: 6586: 6566: 6565:External links 6563: 6562: 6561: 6531: 6506:(3): 403–409, 6496:Stewart, G. W. 6492: 6467:(2): 137–138, 6457:Stewart, G. W. 6453: 6416:(4): 648–655, 6402: 6364: 6359: 6343:Golub, Gene H. 6339: 6322: 6281: 6278: 6275: 6274: 6255: 6235: 6218: 6217: 6215: 6212: 6211: 6210: 6203: 6200: 6075:Main article: 6072: 6069: 5991:covering group 5970: 5967: 5953: 5949: 5945: 5942: 5937: 5933: 5927: 5923: 5919: 5914: 5910: 5906: 5903: 5898: 5895: 5892: 5888: 5866: 5862: 5856: 5852: 5846: 5843: 5838: 5833: 5829: 5807: 5803: 5796: 5790: 5786: 5782: 5777: 5773: 5739: 5721: 5718: 5713: 5707: 5703: 5696: 5691: 5687: 5684: 5679: 5676: 5671: 5667: 5662: 5657: 5654: 5651: 5646: 5643: 5640: 5636: 5609: 5606: 5601: 5596: 5592: 5586: 5581: 5576: 5571: 5568: 5565: 5525: 5522: 5485:Stewart (1980) 5445: 5442: 5428: 5422: 5419: 5417: 5414: 5413: 5410: 5407: 5404: 5402: 5399: 5398: 5396: 5391: 5386: 5380: 5377: 5375: 5372: 5371: 5368: 5365: 5363: 5360: 5359: 5357: 5329: 5323: 5320: 5318: 5315: 5314: 5311: 5308: 5305: 5303: 5300: 5299: 5297: 5292: 5287: 5281: 5278: 5276: 5273: 5272: 5269: 5266: 5263: 5261: 5258: 5257: 5255: 5250: 5245: 5239: 5236: 5234: 5231: 5230: 5227: 5224: 5222: 5219: 5218: 5216: 5186: 5180: 5177: 5175: 5172: 5171: 5168: 5165: 5162: 5160: 5157: 5156: 5154: 5149: 5146: 5143: 5138: 5132: 5129: 5127: 5124: 5123: 5120: 5117: 5115: 5112: 5111: 5109: 5104: 5099: 5093: 5090: 5088: 5085: 5084: 5081: 5078: 5076: 5073: 5072: 5070: 4801: 4796: 4790: 4787: 4785: 4782: 4780: 4777: 4776: 4773: 4770: 4768: 4765: 4763: 4760: 4759: 4756: 4753: 4751: 4748: 4746: 4743: 4742: 4739: 4736: 4734: 4731: 4729: 4726: 4725: 4722: 4719: 4717: 4714: 4712: 4709: 4708: 4706: 4701: 4698: 4621: 4618: 4617: 4616: 4596: 4591: 4563: 4553: 4525: 4520: 4500: 4479: 4478:Decompositions 4476: 4468:Stewart (1976) 4454:multiplication 4414: 4411: 4409: 4406: 4394: 4389: 4381: 4377: 4371: 4367: 4363: 4360: 4355: 4351: 4347: 4344: 4341: 4338: 4336: 4333: 4330: 4327: 4324: 4319: 4315: 4311: 4308: 4305: 4302: 4300: 4297: 4294: 4291: 4288: 4283: 4279: 4275: 4272: 4269: 4266: 4265: 4262: 4259: 4256: 4253: 4250: 4245: 4241: 4237: 4234: 4231: 4228: 4224: 4220: 4214: 4210: 4206: 4203: 4198: 4194: 4190: 4187: 4184: 4181: 4179: 4176: 4173: 4170: 4167: 4162: 4158: 4154: 4151: 4148: 4145: 4144: 4141: 4138: 4135: 4132: 4129: 4124: 4120: 4116: 4113: 4110: 4107: 4105: 4102: 4099: 4096: 4093: 4088: 4084: 4080: 4077: 4074: 4071: 4067: 4063: 4057: 4053: 4049: 4046: 4041: 4037: 4033: 4030: 4027: 4024: 4023: 4021: 4016: 4013: 4010: 4007: 4004: 4001: 3921: 3916: 3910: 3907: 3905: 3902: 3899: 3897: 3894: 3891: 3888: 3887: 3884: 3881: 3878: 3875: 3873: 3870: 3868: 3865: 3862: 3861: 3858: 3855: 3852: 3850: 3847: 3844: 3841: 3839: 3836: 3835: 3833: 3828: 3825: 3757: 3754: 3751: 3746: 3743: 3700: 3694: 3691: 3685: 3682: 3676: 3668: 3665: 3635:Evaluation at 3622: 3619: 3613: 3610: 3601: 3596: 3592: 3589: 3583: 3575: 3572: 3548: 3545: 3542: 3536: 3531: 3493: 3490: 3478:absolute value 3462: 3455: 3437: 3432: 3422: 3419: 3416: 3413: 3409: 3406: 3404: 3399: 3396: 3393: 3392: 3389: 3387: 3384: 3383: 3380: 3377: 3369: 3365: 3361: 3358: 3354: 3351: 3349: 3342: 3338: 3334: 3333: 3330: 3329: 3327: 3322: 3319: 3316: 3310: 3305: 3274: 3267: 3249: 3246: 3238: 3235: 3227: 3221: 3218: 3214: 3208: 3204: 3200: 3197: 3192: 3189: 3187: 3179: 3175: 3171: 3170: 3168: 3163: 3160: 3157: 3151: 3146: 3139: 3136: 3128: 3125: 3117: 3109: 3105: 3101: 3098: 3094: 3091: 3089: 3082: 3078: 3074: 3073: 3071: 3066: 3063: 3060: 3054: 3049: 3033:, that brings 3018: 3017:Canonical form 3015: 2982: 2973: 2964: 2926: 2922: 2919: 2916: 2913: 2910: 2907: 2901: 2898: 2895: 2892: 2889: 2886: 2883: 2880: 2877: 2874: 2871: 2868: 2865: 2862: 2859: 2856: 2847:therefore has 2758:; in this way 2719: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2694: 2691: 2688: 2684: 2681: 2678: 2675: 2672: 2669: 2665: 2661: 2659: 2656: 2653: 2649: 2647: 2590:direct product 2531:quotient group 2501:path-connected 2435: 2432: 2392: 2384: 2381: 2376: 2374: 2371: 2370: 2367: 2364: 2362: 2359: 2358: 2356: 2332: 2327: 2321: 2315: 2312: 2309: 2306: 2301: 2296: 2293: 2290: 2287: 2284: 2280: 2274: 2269: 2265: 2261: 2258: 2254: 2250: 2244: 2239: 2234: 2230: 2227: 2224: 2221: 2218: 2215: 2212: 2209: 2147:if and only if 2142: 2139: 2137: 2134: 2002: 1994: 1986: 1979: 1968: 1961: 1953: 1945: 1942: 1939: 1936: 1933: 1891: 1888: 1877:axis and angle 1837: 1831: 1828: 1825: 1823: 1820: 1818: 1815: 1814: 1811: 1808: 1806: 1803: 1801: 1798: 1797: 1794: 1791: 1789: 1786: 1783: 1781: 1778: 1777: 1775: 1763: 1757: 1754: 1751: 1749: 1746: 1744: 1741: 1740: 1737: 1734: 1732: 1729: 1726: 1724: 1721: 1720: 1717: 1714: 1712: 1709: 1707: 1704: 1701: 1700: 1698: 1680: 1677: 1647: 1642: 1636: 1633: 1631: 1628: 1627: 1624: 1621: 1619: 1616: 1615: 1613: 1553: 1547: 1544: 1541: 1538: 1535: 1533: 1530: 1527: 1524: 1523: 1520: 1517: 1514: 1511: 1509: 1506: 1503: 1500: 1499: 1497: 1484: 1478: 1475: 1472: 1469: 1467: 1464: 1461: 1458: 1457: 1454: 1451: 1448: 1445: 1442: 1440: 1437: 1434: 1431: 1430: 1428: 1344:; then either 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1284: 1282: 1279: 1278: 1275: 1270: 1266: 1262: 1257: 1253: 1249: 1246: 1244: 1242: 1239: 1238: 1235: 1230: 1226: 1222: 1217: 1213: 1209: 1206: 1204: 1202: 1199: 1198: 1178: 1173: 1167: 1164: 1162: 1159: 1158: 1155: 1152: 1150: 1147: 1146: 1144: 1119: 1116: 1114: 1111: 1110: 1109: 1095: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1070: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1048: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1026: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1004: 1002: 990: 972: 966: 963: 960: 958: 955: 954: 951: 948: 946: 943: 942: 940: 928: 914: 908: 905: 902: 899: 897: 894: 891: 888: 887: 884: 881: 878: 875: 872: 870: 867: 864: 861: 860: 858: 846: 832: 826: 823: 821: 818: 817: 814: 811: 809: 806: 805: 803: 786: 783: 715: 710: 705: 699: 694: 687: 680: 674: 671: 666: 661: 658: 652: 647: 641: 636: 633: 630: 625: 617: 610: 544: 538: 533: 529: 525: 521: 515: 510: 506: 502: 497: 492: 487: 433: 430: 379:rotoreflection 258: 253: 250: 246: 242: 236: 231: 177: 174: 171: 165: 160: 156: 153: 150: 144: 139: 105:linear algebra 99: 98: 53: 51: 44: 36:unitary matrix 32:complex number 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7573: 7562: 7559: 7558: 7556: 7541: 7538: 7536: 7533: 7531: 7530: 7525: 7519: 7518: 7515: 7509: 7506: 7504: 7501: 7499: 7498:Pseudoinverse 7496: 7494: 7491: 7489: 7486: 7484: 7481: 7479: 7476: 7474: 7471: 7470: 7468: 7466:Related terms 7464: 7458: 7457:Z (chemistry) 7455: 7453: 7450: 7448: 7445: 7443: 7440: 7438: 7435: 7433: 7430: 7428: 7425: 7423: 7420: 7418: 7415: 7413: 7410: 7408: 7405: 7403: 7400: 7398: 7395: 7394: 7392: 7388: 7382: 7379: 7377: 7374: 7372: 7369: 7367: 7364: 7362: 7359: 7357: 7354: 7352: 7349: 7347: 7344: 7343: 7341: 7339: 7334: 7328: 7325: 7323: 7320: 7318: 7315: 7313: 7310: 7308: 7305: 7303: 7300: 7298: 7295: 7293: 7290: 7288: 7285: 7283: 7280: 7279: 7277: 7275: 7270: 7264: 7261: 7259: 7256: 7254: 7251: 7249: 7246: 7244: 7241: 7239: 7236: 7234: 7231: 7229: 7226: 7224: 7221: 7219: 7216: 7214: 7211: 7209: 7206: 7204: 7201: 7199: 7196: 7194: 7191: 7189: 7186: 7184: 7181: 7179: 7176: 7174: 7171: 7169: 7166: 7164: 7161: 7159: 7156: 7154: 7151: 7149: 7146: 7144: 7141: 7139: 7136: 7134: 7131: 7129: 7126: 7124: 7121: 7119: 7116: 7114: 7111: 7110: 7108: 7104: 7098: 7095: 7093: 7090: 7088: 7085: 7083: 7080: 7078: 7075: 7073: 7070: 7068: 7065: 7063: 7060: 7058: 7055: 7053: 7050: 7048: 7044: 7041: 7039: 7036: 7035: 7033: 7031: 7027: 7022: 7016: 7013: 7011: 7008: 7006: 7003: 7001: 6998: 6996: 6993: 6991: 6988: 6986: 6983: 6981: 6978: 6977: 6975: 6973: 6968: 6962: 6959: 6957: 6954: 6952: 6949: 6947: 6944: 6942: 6939: 6937: 6934: 6932: 6929: 6927: 6924: 6922: 6919: 6917: 6914: 6913: 6911: 6907: 6901: 6898: 6896: 6893: 6891: 6888: 6886: 6883: 6881: 6878: 6876: 6873: 6871: 6868: 6866: 6863: 6861: 6858: 6856: 6853: 6851: 6848: 6846: 6843: 6841: 6838: 6836: 6833: 6831: 6828: 6826: 6823: 6821: 6818: 6816: 6815:Pentadiagonal 6813: 6811: 6808: 6806: 6803: 6801: 6798: 6796: 6793: 6791: 6788: 6786: 6783: 6781: 6778: 6776: 6773: 6771: 6768: 6766: 6763: 6761: 6758: 6756: 6753: 6751: 6748: 6746: 6743: 6741: 6738: 6736: 6733: 6731: 6728: 6726: 6723: 6721: 6718: 6716: 6713: 6711: 6708: 6706: 6703: 6701: 6698: 6696: 6693: 6691: 6688: 6686: 6683: 6681: 6678: 6676: 6673: 6671: 6668: 6666: 6663: 6661: 6658: 6656: 6653: 6651: 6648: 6646: 6645:Anti-diagonal 6643: 6641: 6638: 6637: 6635: 6631: 6626: 6619: 6614: 6612: 6607: 6605: 6600: 6599: 6596: 6590: 6587: 6583: 6579: 6578: 6573: 6569: 6568: 6564: 6559: 6555: 6550: 6545: 6541: 6537: 6532: 6529: 6525: 6521: 6517: 6513: 6509: 6505: 6501: 6497: 6493: 6490: 6486: 6482: 6478: 6474: 6470: 6466: 6462: 6458: 6454: 6452: 6449: 6445: 6441: 6437: 6433: 6429: 6424: 6419: 6415: 6411: 6407: 6403: 6400: 6396: 6392: 6388: 6384: 6380: 6373: 6369: 6365: 6362: 6356: 6352: 6348: 6344: 6340: 6336: 6332: 6328: 6323: 6320: 6316: 6312: 6308: 6304: 6300: 6296: 6292: 6288: 6284: 6283: 6279: 6271: 6267: 6264: 6259: 6256: 6252: 6248: 6244: 6239: 6236: 6232: 6228: 6223: 6220: 6213: 6209: 6206: 6205: 6201: 6199: 6197: 6193: 6188: 6184: 6180:For the case 6178: 6174: 6171: 6167: 6157: 6153: 6147: 6143: 6137: 6133: 6124: 6119: 6115: 6112: 6106: 6102: 6096: 6092: 6089: 6078: 6070: 6068: 6066: 6061: 6059: 6045: 6037: 6029: 6024: 6020: 6014: 6006: 6000: 5996: 5992: 5988: 5982: 5976: 5968: 5966: 5951: 5947: 5943: 5940: 5935: 5931: 5925: 5921: 5917: 5912: 5908: 5904: 5901: 5896: 5893: 5890: 5886: 5864: 5860: 5854: 5850: 5844: 5841: 5836: 5831: 5827: 5805: 5801: 5788: 5784: 5780: 5775: 5771: 5762: 5759: 5753: 5748: 5745: 5738: 5719: 5716: 5711: 5705: 5701: 5689: 5685: 5682: 5677: 5674: 5669: 5665: 5660: 5655: 5652: 5649: 5644: 5641: 5638: 5634: 5624: 5607: 5604: 5599: 5594: 5590: 5579: 5574: 5569: 5566: 5563: 5555: 5543: 5539: 5523: 5521: 5517: 5511: 5507: 5500: 5496: 5490: 5486: 5482: 5481:Mezzadri 2006 5474: 5470: 5469:decomposition 5463: 5459: 5455: 5451: 5444:Randomization 5443: 5441: 5426: 5420: 5415: 5408: 5405: 5400: 5394: 5384: 5378: 5373: 5366: 5361: 5355: 5345: 5342: 5327: 5321: 5316: 5309: 5306: 5301: 5295: 5285: 5279: 5274: 5267: 5264: 5259: 5253: 5243: 5237: 5232: 5225: 5220: 5214: 5204: 5184: 5178: 5173: 5166: 5163: 5158: 5152: 5144: 5136: 5130: 5125: 5118: 5113: 5107: 5097: 5091: 5086: 5079: 5074: 5068: 5057: 5055: 5051: 5047: 5046:Higham (1986) 5043: 5039: 5035: 5031: 5027: 5026:orthogonalize 5023: 5006: 5003: 5000: 4996: 4990: 4980: 4976: 4971: 4970:pseudoinverse 4966: 4962: 4953: 4948: 4945: 4942: 4936: 4932: 4929: 4925: 4922: 4917: 4913: 4904: 4901: 4895: 4891: 4885: 4882: 4876: 4873: 4869: 4866: 4863: 4845: 4837: 4833: 4830: 4822: 4817: 4812: 4799: 4794: 4788: 4783: 4778: 4771: 4766: 4761: 4754: 4749: 4744: 4737: 4732: 4727: 4720: 4715: 4710: 4704: 4699: 4696: 4689:has the form 4663: 4659: 4653: 4649: 4639: 4635: 4632: 4627: 4619: 4605: 4601: 4597: 4595: 4592: 4576: 4572: 4568: 4564: 4561: 4557: 4554: 4538: 4534: 4530: 4526: 4524: 4521: 4509: 4505: 4501: 4499: 4498:decomposition 4493: 4492: 4491: 4489: 4485: 4477: 4475: 4473: 4469: 4460: 4455: 4449: 4443: 4439: 4434: 4432: 4428: 4424: 4419: 4412: 4407: 4405: 4392: 4387: 4379: 4375: 4369: 4365: 4361: 4358: 4353: 4349: 4345: 4342: 4339: 4334: 4331: 4328: 4325: 4322: 4317: 4313: 4309: 4306: 4303: 4298: 4295: 4292: 4289: 4286: 4281: 4277: 4273: 4270: 4267: 4260: 4257: 4254: 4251: 4248: 4243: 4239: 4235: 4232: 4229: 4222: 4218: 4212: 4208: 4204: 4201: 4196: 4192: 4188: 4185: 4182: 4177: 4174: 4171: 4168: 4165: 4160: 4156: 4152: 4149: 4146: 4139: 4136: 4133: 4130: 4127: 4122: 4118: 4114: 4111: 4108: 4103: 4100: 4097: 4094: 4091: 4086: 4082: 4078: 4075: 4072: 4065: 4061: 4055: 4051: 4047: 4044: 4039: 4035: 4031: 4028: 4025: 4019: 4014: 4002: 3999: 3980: 3972: 3956: 3948: 3938: 3932: 3919: 3914: 3908: 3903: 3900: 3895: 3892: 3889: 3882: 3879: 3876: 3871: 3866: 3863: 3856: 3853: 3848: 3845: 3842: 3837: 3831: 3826: 3814: 3807: 3803: 3799: 3795: 3788: 3784: 3780: 3776: 3752: 3731: 3726: 3724: 3720: 3716: 3711: 3698: 3692: 3689: 3683: 3680: 3666: 3663: 3650: 3646: 3639: 3633: 3620: 3617: 3611: 3608: 3594: 3590: 3587: 3573: 3570: 3546: 3543: 3540: 3529: 3519: 3515: 3508: 3491: 3489: 3479: 3475: 3471: 3470:complex plane 3465: 3461: 3454: 3450:The matrices 3448: 3435: 3430: 3420: 3417: 3407: 3397: 3394: 3385: 3378: 3367: 3363: 3352: 3340: 3336: 3325: 3320: 3317: 3314: 3303: 3289: 3277: 3273: 3266: 3260: 3247: 3236: 3225: 3219: 3206: 3202: 3190: 3177: 3173: 3166: 3161: 3158: 3155: 3144: 3137: 3126: 3115: 3107: 3103: 3092: 3080: 3076: 3069: 3064: 3061: 3058: 3047: 3038: 3032: 3016: 3014: 3012: 2997: 2985: 2976: 2967: 2961: 2958: 2955: 2948: 2944: 2924: 2917: 2914: 2911: 2905: 2899: 2896: 2893: 2890: 2887: 2881: 2878: 2875: 2869: 2863: 2860: 2857: 2844: 2837: 2833: 2826: 2820: 2816: 2812: 2806: 2800: 2792: 2785: 2781: 2774: 2769: 2763: 2755: 2747: 2741: 2737: 2732: 2717: 2711: 2706: 2701: 2696: 2689: 2679: 2670: 2654: 2645: 2635: 2631: 2623: 2616: 2612: 2604: 2600: 2595:Now consider 2593: 2591: 2584:matrices. If 2573: 2567: 2561: 2555: 2551: 2541: 2537: 2532: 2526: 2521: 2517: 2511: 2505: 2502: 2497: 2493: 2487: 2484:, called the 2471: 2467: 2459:of dimension 2458: 2455: 2451: 2446: 2442: 2433: 2431: 2429: 2425: 2421: 2417: 2412: 2410: 2405: 2390: 2382: 2379: 2372: 2365: 2360: 2354: 2343: 2330: 2325: 2310: 2294: 2288: 2278: 2267: 2263: 2256: 2252: 2248: 2237: 2232: 2225: 2219: 2210: 2207: 2199: 2194: 2192: 2183: 2179: 2176: 2170: 2165: 2160: 2156: 2152: 2148: 2140: 2135: 2133: 2127: 2122: 2120: 2096: 2092: 2082: 2078: 2073: 2068: 2061: 2057: 2051: 2047: 2043: 2037: 2031: 2025: 2019: 2013: 2000: 1943: 1940: 1937: 1934: 1931: 1922: 1917: 1912: 1908: 1902: 1898: 1889: 1887: 1884: 1882: 1878: 1869: 1863: 1862: 1861:rotoinversion 1857: 1856: 1852:represent an 1850: 1835: 1829: 1826: 1821: 1816: 1809: 1804: 1799: 1792: 1787: 1784: 1779: 1773: 1761: 1755: 1752: 1747: 1742: 1735: 1730: 1727: 1722: 1715: 1710: 1705: 1702: 1696: 1678: 1676: 1674: 1670: 1666: 1661: 1658: 1645: 1640: 1634: 1629: 1622: 1617: 1611: 1601: 1588: 1584: 1577: 1571: 1551: 1545: 1542: 1539: 1536: 1531: 1528: 1525: 1518: 1515: 1512: 1507: 1504: 1501: 1495: 1482: 1476: 1473: 1470: 1465: 1462: 1459: 1452: 1449: 1446: 1443: 1438: 1435: 1432: 1426: 1416: 1403: 1392: 1382: 1378: 1372: 1368: 1362: 1358: 1352: 1348: 1342: 1338: 1332: 1328: 1322: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1285: 1280: 1273: 1268: 1264: 1260: 1255: 1251: 1247: 1245: 1240: 1233: 1228: 1224: 1220: 1215: 1211: 1207: 1205: 1200: 1176: 1171: 1165: 1160: 1153: 1148: 1142: 1127: 1117: 1112: 1093: 1087: 1082: 1077: 1072: 1065: 1060: 1055: 1050: 1043: 1038: 1033: 1028: 1021: 1016: 1011: 1006: 1000: 991: 988: 970: 964: 961: 956: 949: 944: 938: 929: 912: 906: 903: 900: 895: 892: 889: 882: 879: 876: 873: 868: 865: 862: 856: 847: 830: 824: 819: 812: 807: 801: 792: 791: 790: 784: 782: 780: 776: 772: 771:decomposition 765: 759: 753: 749: 744: 740: 734: 731: 726: 713: 703: 692: 672: 659: 634: 628: 596: 593: 587: 584: 578: 573: 564: 542: 531: 527: 523: 519: 508: 504: 500: 490: 476: 467: 461: 456: 452: 448: 447:normal matrix 438: 431: 429: 427: 421: 416: 412: 406: 401: 396: 392: 386: 384: 380: 376: 372: 368: 364: 360: 359:inner product 356: 352: 348: 343: 339: 336: 331: 323: 319: 314: 308: 304: 299: 294: 290: 280: 273: 256: 251: 248: 244: 240: 229: 220: 211: 209: 197: 192: 175: 172: 169: 158: 154: 151: 148: 137: 127: 125: 122: 118: 117:square matrix 114: 110: 106: 95: 92: 84: 74: 70: 64: 63: 57: 52: 43: 42: 37: 33: 19: 7520: 7452:Substitution 7338:graph theory 7071: 6835:Quaternionic 6825:Persymmetric 6575: 6539: 6535: 6503: 6499: 6464: 6460: 6413: 6409: 6382: 6378: 6350: 6334: 6330: 6294: 6290: 6258: 6238: 6222: 6186: 6182: 6179: 6175: 6169: 6165: 6155: 6151: 6145: 6141: 6139:matrix with 6135: 6131: 6122: 6117: 6113: 6110: 6104: 6100: 6094: 6090: 6087: 6080: 6062: 6043: 6035: 6027: 6022: 6012: 6009:. Likewise, 6004: 5994: 5980: 5972: 5969:Spin and pin 5763: 5760: 5749: 5743: 5736: 5625: 5527: 5515: 5509: 5505: 5498: 5494: 5458:Haar measure 5447: 5346: 5343: 5205: 5058: 5033: 5007: 5001: 4998: 4994: 4988: 4978: 4974: 4964: 4960: 4958:factored as 4949: 4943: 4940: 4934: 4930: 4927: 4923: 4920: 4902: 4899: 4893: 4889: 4883: 4880: 4874: 4871: 4867: 4864: 4861: 4843: 4835: 4831: 4828: 4820: 4813: 4661: 4657: 4651: 4647: 4637: 4633: 4630: 4624:Consider an 4623: 4611:orthogonal, 4603: 4599: 4586:orthogonal, 4574: 4570: 4566: 4548:orthogonal, 4536: 4532: 4528: 4515:orthogonal, 4507: 4503: 4481: 4471: 4458: 4450: 4435: 4416: 3978: 3970: 3954: 3946: 3936: 3933: 3812: 3805: 3801: 3797: 3793: 3786: 3782: 3778: 3774: 3727: 3712: 3648: 3644: 3637: 3634: 3517: 3513: 3506: 3495: 3463: 3459: 3452: 3449: 3287: 3275: 3271: 3264: 3261: 3039: 3020: 2995: 2983: 2974: 2965: 2953: 2949: 2942: 2842: 2835: 2831: 2824: 2818: 2814: 2810: 2798: 2790: 2786: 2779: 2772: 2761: 2753: 2745: 2733: 2636: 2629: 2621: 2614: 2610: 2602: 2598: 2594: 2571: 2559: 2539: 2535: 2524: 2509: 2498: 2491: 2469: 2465: 2444: 2440: 2437: 2416:diagonalized 2413: 2406: 2344: 2195: 2181: 2177: 2174: 2168: 2158: 2144: 2123: 2119:Euler angles 2094: 2090: 2080: 2076: 2069: 2059: 2055: 2049: 2045: 2041: 2035: 2029: 2023: 2017: 2014: 1920: 1913: 1906: 1900: 1896: 1893: 1885: 1870: 1859: 1853: 1851: 1682: 1662: 1659: 1586: 1582: 1575: 1572: 1417: 1401: 1390: 1380: 1376: 1370: 1366: 1360: 1356: 1350: 1346: 1340: 1336: 1330: 1326: 1323: 1128: 1121: 986: 788: 757: 742: 738: 735: 727: 594: 591: 585: 582: 576: 562: 465: 459: 455:dot products 444: 419: 404: 394: 390: 387: 369:, such as a 347:real numbers 341: 337: 334: 312: 306: 302: 292: 288: 281: 271: 212: 190: 128: 115:, is a real 112: 108: 102: 87: 78: 59: 7427:Hamiltonian 7351:Biadjacency 7287:Correlation 7203:Householder 7153:Commutation 6890:Vandermonde 6885:Tridiagonal 6820:Permutation 6810:Nonnegative 6795:Matrix unit 6675:Bisymmetric 6058:quaternions 5462:independent 5038:matrix norm 4887:is square ( 4855:(and hence 4582:symmetric, 3768:tangent to 3715:Lie algebra 3504:, and that 3492:Lie algebra 3474:eigenvalues 2787:Similarly, 2776:with fiber 2424:eigenvalues 2198:determinant 2164:dot product 764:point group 754:denoted by 388:The set of 351:determinant 345:) over the 121:orthonormal 73:introducing 34:field, see 7327:Transition 7322:Stochastic 7292:Covariance 7274:statistics 7253:Symplectic 7248:Similarity 7077:Unimodular 7072:Orthogonal 7057:Involutory 7052:Invertible 7047:Projection 7043:Idempotent 6985:Convergent 6880:Triangular 6830:Polynomial 6775:Hessenberg 6745:Equivalent 6740:Elementary 6720:Copositive 6710:Conference 6670:Bidiagonal 6280:References 6019:pin groups 5999:spin group 3944:; setting 3131: even 2452:. It is a 2136:Properties 1890:Primitives 1598:; it is a 375:reflection 56:references 7508:Wronskian 7432:Irregular 7422:Gell-Mann 7371:Laplacian 7366:Incidence 7346:Adjacency 7317:Precision 7282:Centering 7188:Generator 7158:Confusion 7143:Circulant 7123:Augmented 7082:Unipotent 7062:Nilpotent 7038:Congruent 7015:Stieltjes 6990:Defective 6980:Companion 6951:Redheffer 6870:Symmetric 6865:Sylvester 6840:Signature 6770:Hermitian 6750:Frobenius 6660:Arrowhead 6640:Alternant 6582:EMS Press 6528:0036-1429 6489:120372682 6481:0029-599X 6440:0196-5204 6418:CiteSeerX 6399:0196-5204 6319:122752374 6311:0269-9648 6297:: 15–32, 5985:, is not 5975:connected 5941:− 5717:− 5675:− 5600:− 5406:− 5390:→ 5307:− 5291:→ 5265:− 5249:→ 5164:− 5148:→ 5145:⋯ 5142:→ 5103:→ 4755:⋅ 4738:⋅ 4733:⋅ 4721:⋅ 4716:⋅ 4711:⋅ 4456:of order 4448:indices. 4343:− 4287:− 4249:− 4186:− 4092:− 4029:− 4009:Ω 4003:⁡ 3940:by angle 3904:θ 3896:θ 3890:− 3883:θ 3877:− 3867:θ 3857:θ 3849:θ 3843:− 3824:Ω 3693:˙ 3684:− 3667:˙ 3612:˙ 3574:˙ 3418:± 3408:⋱ 3395:± 3353:⋱ 3241: odd 3191:⋱ 3093:⋱ 2915:− 2891:⋯ 2879:− 2861:− 2702:⋯ 2680:⋮ 2457:Lie group 2430: 1. 2418:over the 2409:signature 1941:− 1855:inversion 1827:− 1785:− 1753:− 1728:− 1703:− 1669:symmetric 1546:θ 1543:⁡ 1537:− 1532:θ 1529:⁡ 1519:θ 1516:⁡ 1508:θ 1505:⁡ 1477:θ 1474:⁡ 1466:θ 1463:⁡ 1453:θ 1450:⁡ 1444:− 1439:θ 1436:⁡ 962:− 907:θ 904:⁡ 896:θ 893:⁡ 883:θ 880:⁡ 874:− 869:θ 866:⁡ 777:(used in 524:⋅ 491:⋅ 310:), where 249:− 196:transpose 7561:Matrices 7555:Category 7336:Used in 7272:Used in 7233:Rotation 7208:Jacobian 7168:Distance 7148:Cofactor 7133:Carleman 7113:Adjugate 7097:Weighing 7030:inverses 7026:products 6995:Definite 6926:Identity 6916:Exchange 6909:Constant 6875:Toeplitz 6760:Hadamard 6730:Diagonal 6448:14268409 6370:(1986), 6349:(1996), 6266:Archived 6202:See also 5497:+ 1) × ( 5421:0.393919 5416:0.919145 5409:0.919145 5401:0.393919 4982:, where 4839:‖ 4826:‖ 4641:, where 4620:Examples 4590:diagonal 4470:, we do 4413:Benefits 3772:. Given 2601:+ 1) × ( 785:Examples 432:Overview 415:subgroup 371:rotation 363:isometry 81:May 2023 7437:Overlap 7402:Density 7361:Edmonds 7238:Seifert 7198:Hessian 7163:Coxeter 7087:Unitary 7005:Hurwitz 6936:Of ones 6921:Hilbert 6855:Skyline 6800:Metzler 6790:Logical 6785:Integer 6695:Boolean 6627:classes 6584:, 2001 6554:Bibcode 6508:Bibcode 6337:: 21–25 6050:Spin(3) 6025:). For 5997:), the 5280:1.41421 5275:1.06066 5268:1.06066 5260:1.41421 5034:closest 3989:⁠ 3975:⁠ 3965:⁠ 3951:⁠ 3791:, with 3559:yields 3458:, ..., 3270:, ..., 3007:⁠ 2992:⁠ 2817:+ 1) → 2813:) ↪ SO( 2518:2, the 2481:⁠ 2462:⁠ 2454:compact 2428:modulus 2185:, with 2153:of the 2106:⁠ 2087:⁠ 1868:-axis. 1412:⁠ 1398:⁠ 1388:(where 316:is the 298:unitary 219:inverse 206:is the 194:is the 124:vectors 69:improve 7356:Degree 7297:Design 7228:Random 7218:Payoff 7213:Moment 7138:Cartan 7128:Bézout 7067:Normal 6941:Pascal 6931:Lehmer 6860:Sparse 6780:Hollow 6765:Hankel 6700:Cauchy 6625:Matrix 6526:  6487:  6479:  6446:  6438:  6420:  6397:  6357:  6317:  6309:  6129:is an 6030:> 2 6021:, Pin( 5993:of SO( 5734:where 5131:2.6875 5126:3.4375 5119:0.0625 5114:1.8125 5024:could 4878:. Now 3973:= sin 3949:= cos 3511:gives 3480:1. If 3231:  3141:  3121:  2768:bundle 2554:splits 2033:). If 1339:= sin 1329:= cos 989:-axis) 566:in an 556:where 469:in an 413:. The 349:. The 330:normal 269:where 188:where 58:, but 7417:Gamma 7381:Tutte 7243:Shear 6956:Shift 6946:Pauli 6895:Walsh 6805:Moore 6685:Block 6544:arXiv 6485:S2CID 6444:S2CID 6375:(PDF) 6315:S2CID 6214:Notes 6054:SU(2) 6034:Spin( 6003:Spin( 5014:3 × 3 5012:is a 4685:then 4683:5 × 3 4660:> 4440:with 3770:SO(3) 3486:3 × 3 3476:have 3293:2 × 2 3282:2 × 2 2766:is a 2582:2 × 2 2564:is a 2550:coset 2538:)/SO( 2516:index 2450:group 2130:2 × 2 2115:3 × 3 2111:3 × 3 1873:3 × 3 1685:3 × 3 1578:= 90° 1131:2 × 2 1124:1 × 1 748:group 728:Thus 451:field 400:group 324:) of 111:, or 107:, an 7223:Pick 7193:Gram 6961:Zero 6665:Band 6524:ISSN 6477:ISSN 6436:ISSN 6395:ISSN 6355:ISBN 6307:ISSN 6098:and 5501:+ 1) 5050:1990 4814:The 4665:. A 4544:and 3280:are 2801:+ 1) 2764:+ 1) 2756:+ 1) 2632:+ 1) 2605:+ 1) 2578:O(1) 2546:O(1) 2472:− 1) 2196:The 2097:− 1) 1594:and 1129:The 463:and 202:and 7312:Hat 7045:or 7028:or 6516:doi 6469:doi 6428:doi 6387:doi 6299:doi 6251:MIT 6081:If 6042:SO( 5979:SO( 5754:of 5544:of 5518:+ 1 5483:). 5322:0.8 5317:0.6 5310:0.6 5302:0.8 5179:0.8 5174:0.6 5167:0.6 5159:0.8 4992:to 4938:to 4926:= ( 4681:is 4645:is 4472:not 4000:exp 3816:is 3796:= ( 3777:= ( 3640:= 0 3509:= 0 2986:+ 1 2841:SO( 2827:− 1 2809:SO( 2797:SO( 2789:SO( 2750:in 2576:by 2570:SO( 2568:of 2523:SO( 2514:of 2506:of 2305:det 2283:det 2260:det 2229:det 2214:det 2048:− 2 1924:as 1909:− 1 1540:cos 1526:sin 1513:sin 1502:cos 1471:cos 1460:sin 1447:sin 1433:cos 1393:= 0 1379:= − 1364:or 1349:= − 901:cos 890:sin 877:sin 863:cos 779:MP3 580:is 418:SO( 377:or 365:of 296:), 198:of 103:In 7557:: 6580:, 6574:, 6552:, 6542:, 6540:54 6538:, 6522:, 6514:, 6504:17 6502:, 6483:, 6475:, 6465:25 6463:, 6442:, 6434:, 6426:, 6414:11 6412:, 6393:, 6381:, 6377:, 6345:; 6333:, 6329:, 6313:, 6305:, 6293:, 6249:, 6245:, 6198:. 6185:≤ 6173:. 6168:≥ 6154:= 6152:QQ 6144:≤ 6134:× 6116:= 6103:= 6101:QQ 6093:= 6060:. 6032:, 6011:O( 6001:, 5747:. 5742:= 5556:: 5508:× 5467:QR 5005:. 4972:, 4935:QR 4892:× 4870:= 4834:− 4667:QR 4655:, 4650:× 4636:= 4607:, 4604:QS 4602:= 4578:, 4569:= 4540:, 4531:= 4511:, 4508:QR 4506:= 4496:QR 3992:, 3968:, 3804:, 3800:, 3787:zθ 3785:, 3783:yθ 3781:, 3779:xθ 3647:= 3516:= 3013:. 2947:. 2941:O( 2834:× 2784:. 2778:O( 2760:O( 2752:O( 2744:O( 2628:O( 2620:O( 2613:× 2558:O( 2556:, 2534:O( 2508:O( 2496:. 2490:O( 2443:× 2193:. 2189:a 2180:= 2124:A 2121:. 2079:× 2070:A 2058:× 2050:vv 2044:= 1914:A 1899:× 1883:. 1585:= 1415:. 1374:, 1369:= 1359:= 1354:, 1334:, 769:QR 756:O( 741:× 441:A. 403:O( 393:× 385:. 373:, 342:QQ 340:= 305:= 291:= 279:. 221:: 210:. 126:. 7442:S 6900:Z 6617:e 6610:t 6603:v 6556:: 6546:: 6518:: 6510:: 6471:: 6430:: 6389:: 6383:7 6335:8 6301:: 6295:1 6253:. 6187:m 6183:n 6170:m 6166:n 6161:Q 6156:I 6146:m 6142:n 6136:n 6132:m 6127:Q 6123:Q 6118:I 6114:Q 6111:Q 6105:I 6095:I 6091:Q 6088:Q 6083:Q 6046:) 6044:n 6038:) 6036:n 6028:n 6023:n 6015:) 6013:n 6007:) 6005:n 5995:n 5983:) 5981:n 5952:n 5948:P 5944:3 5936:n 5932:N 5926:n 5922:P 5918:+ 5913:n 5909:Q 5905:2 5902:= 5897:1 5894:+ 5891:n 5887:Q 5865:n 5861:N 5855:n 5851:Q 5845:2 5842:1 5837:= 5832:n 5828:P 5806:n 5802:Q 5795:T 5789:n 5785:Q 5781:= 5776:n 5772:N 5756:M 5744:M 5740:0 5737:Q 5720:1 5712:) 5706:n 5702:Q 5695:T 5690:M 5686:+ 5683:M 5678:1 5670:n 5666:Q 5661:( 5656:M 5653:2 5650:= 5645:1 5642:+ 5639:n 5635:Q 5608:2 5605:1 5595:) 5591:M 5585:T 5580:M 5575:( 5570:M 5567:= 5564:Q 5550:R 5546:M 5534:M 5530:Q 5516:n 5510:n 5506:n 5499:n 5495:n 5493:( 5477:R 5427:] 5395:[ 5385:] 5379:5 5374:7 5367:1 5362:3 5356:[ 5328:] 5296:[ 5286:] 5254:[ 5244:] 5238:5 5233:7 5226:1 5221:3 5215:[ 5201:γ 5185:] 5153:[ 5137:] 5108:[ 5098:] 5092:5 5087:7 5080:1 5075:3 5069:[ 5048:( 5018:A 5010:A 5002:b 4999:U 4997:Σ 4995:V 4989:x 4984:Σ 4979:U 4977:Σ 4975:V 4965:V 4963:Σ 4961:U 4956:A 4944:R 4941:R 4933:) 4931:Q 4928:R 4924:A 4921:A 4914:( 4908:R 4903:R 4900:R 4894:n 4890:n 4884:A 4881:A 4875:b 4872:A 4868:x 4865:A 4862:A 4857:R 4853:A 4849:A 4844:b 4836:b 4832:x 4829:A 4821:x 4800:. 4795:] 4789:0 4784:0 4779:0 4772:0 4767:0 4762:0 4750:0 4745:0 4728:0 4705:[ 4700:= 4697:R 4687:R 4679:A 4675:R 4671:A 4662:n 4658:m 4652:n 4648:m 4643:A 4638:b 4634:x 4631:A 4613:S 4609:Q 4600:M 4588:Λ 4584:Q 4580:S 4575:Q 4573:Λ 4571:Q 4567:S 4562:) 4550:Σ 4546:V 4542:U 4537:V 4535:Σ 4533:U 4529:M 4517:R 4513:Q 4504:M 4486:( 4464:n 4459:n 4446:n 4393:. 4388:] 4380:2 4376:s 4370:2 4366:z 4362:2 4359:+ 4354:2 4350:s 4346:2 4340:1 4335:c 4332:s 4329:x 4326:2 4323:+ 4318:2 4314:s 4310:z 4307:y 4304:2 4299:c 4296:s 4293:y 4290:2 4282:2 4278:s 4274:z 4271:x 4268:2 4261:c 4258:s 4255:x 4252:2 4244:2 4240:s 4236:z 4233:y 4230:2 4223:2 4219:s 4213:2 4209:y 4205:2 4202:+ 4197:2 4193:s 4189:2 4183:1 4178:c 4175:s 4172:z 4169:2 4166:+ 4161:2 4157:s 4153:y 4150:x 4147:2 4140:c 4137:s 4134:y 4131:2 4128:+ 4123:2 4119:s 4115:z 4112:x 4109:2 4104:c 4101:s 4098:z 4095:2 4087:2 4083:s 4079:y 4076:x 4073:2 4066:2 4062:s 4056:2 4052:x 4048:2 4045:+ 4040:2 4036:s 4032:2 4026:1 4020:[ 4015:= 4012:) 4006:( 3986:2 3983:/ 3979:θ 3971:s 3962:2 3959:/ 3955:θ 3947:c 3942:θ 3937:v 3920:. 3915:] 3909:0 3901:x 3893:y 3880:x 3872:0 3864:z 3854:y 3846:z 3838:0 3832:[ 3827:= 3813:ω 3808:) 3806:z 3802:y 3798:x 3794:v 3789:) 3775:ω 3756:) 3753:3 3750:( 3745:o 3742:s 3699:. 3690:Q 3681:= 3675:T 3664:Q 3649:I 3645:Q 3642:( 3638:t 3621:0 3618:= 3609:Q 3600:T 3595:Q 3591:+ 3588:Q 3582:T 3571:Q 3547:I 3544:= 3541:Q 3535:T 3530:Q 3518:I 3514:Q 3507:t 3502:t 3498:Q 3482:n 3464:k 3460:R 3456:1 3453:R 3436:, 3431:] 3421:1 3398:1 3386:0 3379:0 3368:k 3364:R 3341:1 3337:R 3326:[ 3321:= 3318:P 3315:Q 3309:T 3304:P 3288:I 3286:± 3276:k 3272:R 3268:1 3265:R 3248:. 3245:) 3237:n 3234:( 3226:] 3220:1 3207:k 3203:R 3178:1 3174:R 3167:[ 3162:= 3159:P 3156:Q 3150:T 3145:P 3138:, 3135:) 3127:n 3124:( 3116:] 3108:k 3104:R 3081:1 3077:R 3070:[ 3065:= 3062:P 3059:Q 3053:T 3048:P 3035:Q 3027:P 3023:Q 3004:2 3001:/ 2998:! 2996:n 2984:n 2981:S 2975:n 2972:S 2966:n 2963:S 2956:! 2954:n 2945:) 2943:n 2925:2 2921:) 2918:1 2912:n 2909:( 2906:n 2900:= 2897:1 2894:+ 2888:+ 2885:) 2882:2 2876:n 2873:( 2870:+ 2867:) 2864:1 2858:n 2855:( 2845:) 2843:n 2836:n 2832:n 2825:n 2819:S 2815:n 2811:n 2799:n 2793:) 2791:n 2782:) 2780:n 2773:S 2762:n 2754:n 2748:) 2746:n 2718:] 2712:1 2707:0 2697:0 2690:0 2674:) 2671:n 2668:( 2664:O 2655:0 2646:[ 2630:n 2624:) 2622:n 2615:n 2611:n 2603:n 2599:n 2597:( 2586:n 2574:) 2572:n 2562:) 2560:n 2542:) 2540:n 2536:n 2527:) 2525:n 2512:) 2510:n 2494:) 2492:n 2478:2 2475:/ 2470:n 2468:( 2466:n 2445:n 2441:n 2391:] 2383:2 2380:1 2373:0 2366:0 2361:2 2355:[ 2331:. 2326:2 2320:) 2314:) 2311:Q 2308:( 2300:( 2295:= 2292:) 2289:Q 2286:( 2279:) 2273:T 2268:Q 2264:( 2257:= 2253:) 2249:Q 2243:T 2238:Q 2233:( 2226:= 2223:) 2220:I 2217:( 2211:= 2208:1 2187:D 2182:D 2178:M 2175:M 2169:R 2159:R 2103:2 2100:/ 2095:n 2093:( 2091:n 2081:n 2077:n 2065:n 2060:n 2056:n 2046:I 2042:Q 2036:v 2030:v 2024:v 2018:v 2001:. 1993:v 1985:T 1978:v 1967:T 1960:v 1952:v 1944:2 1938:I 1935:= 1932:Q 1921:v 1907:n 1901:n 1897:n 1866:z 1836:] 1830:1 1822:0 1817:0 1810:0 1805:0 1800:1 1793:0 1788:1 1780:0 1774:[ 1762:] 1756:1 1748:0 1743:0 1736:0 1731:1 1723:0 1716:0 1711:0 1706:1 1697:[ 1646:. 1641:] 1635:0 1630:1 1623:1 1618:0 1612:[ 1596:y 1592:x 1587:x 1583:y 1576:θ 1552:] 1496:[ 1483:] 1427:[ 1409:2 1406:/ 1402:θ 1391:θ 1386:θ 1381:p 1377:u 1371:q 1367:t 1361:p 1357:u 1351:q 1347:t 1341:θ 1337:q 1331:θ 1327:p 1306:. 1303:u 1300:t 1297:+ 1294:q 1291:p 1288:= 1281:0 1274:, 1269:2 1265:u 1261:+ 1256:2 1252:q 1248:= 1241:1 1234:, 1229:2 1225:t 1221:+ 1216:2 1212:p 1208:= 1201:1 1177:, 1172:] 1166:u 1161:q 1154:t 1149:p 1143:[ 1094:] 1088:0 1083:0 1078:1 1073:0 1066:0 1061:0 1056:0 1051:1 1044:0 1039:1 1034:0 1029:0 1022:1 1017:0 1012:0 1007:0 1001:[ 987:x 971:] 965:1 957:0 950:0 945:1 939:[ 913:] 857:[ 831:] 825:1 820:0 813:0 808:1 802:[ 760:) 758:n 743:n 739:n 714:. 709:v 704:Q 698:T 693:Q 686:T 679:v 673:= 670:) 665:v 660:Q 657:( 651:T 646:) 640:v 635:Q 632:( 629:= 624:v 616:T 609:v 595:v 592:Q 586:v 583:v 577:v 568:n 563:v 558:Q 543:) 537:v 532:Q 528:( 520:) 514:u 509:Q 505:( 501:= 496:v 486:u 471:n 466:v 460:u 422:) 420:n 407:) 405:n 395:n 391:n 338:Q 335:Q 332:( 326:Q 320:( 313:Q 307:Q 303:Q 300:( 293:Q 289:Q 284:Q 277:Q 272:Q 257:, 252:1 245:Q 241:= 235:T 230:Q 215:Q 204:I 200:Q 191:Q 176:, 173:I 170:= 164:T 159:Q 155:Q 152:= 149:Q 143:T 138:Q 94:) 88:( 83:) 79:( 65:. 38:. 20:)

Index

Orthogonal transform
complex number
unitary matrix
references
inline citations
improve
introducing
Learn how and when to remove this message
linear algebra
square matrix
orthonormal
vectors
transpose
identity matrix
inverse
unitary
Hermitian adjoint
conjugate transpose
normal
real numbers
determinant
linear transformation
inner product
isometry
Euclidean space
rotation
reflection
rotoreflection
unitary transformation
group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.