Knowledge

Osgood curve

Source đź“ť

27: 154:
and space-filling curves to obtain an Osgood curve. For instance, Knopp's construction involves recursively splitting triangles into pairs of smaller triangles, meeting at a shared vertex, by removing triangular wedges. When each level of this construction removes the same fraction of the area of its
30:
Example of an Osgood curve, constructed by recursively removing wedges from triangles. The wedge angles shrink exponentially, as does the fraction of area removed in each level, leaving nonzero area in the final
403: 163:. Instead, reducing the fraction of area removed per level, rapidly enough to leave a constant fraction of the area unremoved, produces an Osgood curve. 167: 556: 472: 20: 492: 103: 52: 134:, who found a curve that has positive area in every neighborhood of each of its points, based on an earlier construction of 332: 467:, American Mathematical Society Colloquium Publications, vol. 30, American Mathematical Society, New York, p. 157, 130:). Both examples have positive area in parts of the curve, but zero area in other parts; this flaw was corrected by 175: 138:. Knopp's example has the additional advantage that its area can be made arbitrarily close to the area of its 135: 609: 36: 171: 583: 398: 115: 95: 91: 60: 56: 517: 438: 349: 99: 330:
Lance, Timothy; Thomas, Edward (1991), "Arcs with positive measure and a space-filling curve",
552: 468: 462: 422: 232: 156: 544: 525: 501: 430: 412: 385: 341: 316:(1917), "Einheitliche Erzeugung und Darstellung der Kurven von Peano, Osgood und von Koch", 293: 84: 566: 513: 482: 450: 361: 305: 75:
is defined to be an Osgood curve when it is non-self-intersecting (that is, it is either a
562: 529: 509: 478: 446: 434: 357: 301: 72: 369: 160: 123: 417: 614: 603: 521: 458: 166:
Another way to construct an Osgood curve is to form a two-dimensional version of the
313: 76: 83:) and it has positive area. More formally, it must have positive two-dimensional 179: 139: 548: 80: 426: 182:
and totally disconnected subset of the plane is a subset of a Jordan curve.
490:
Sagan, Hans (1993), "A geometrization of Lebesgue's space-filling curve",
26: 297: 505: 442: 353: 151: 390: 538: 51:. Despite its area, it is not possible for such a curve to cover any 345: 44: 25: 48: 150:
It is possible to modify the recursive construction of certain
281: 373: 282:"On uncountable unions and intersections of measurable sets" 231:, Section 8.3, The Osgood Curves of SierpĂ­nski and Knopp, 263: 102:, covering all of the points of the plane, or of any 98:. However, they cannot be space-filling curves: by 114:The first examples of Osgood curves were found by 404:Transactions of the American Mathematical Society 174:point set with non-zero area, and then apply the 106:of the plane, would lead to self-intersections. 23:relating stress to strain in material science. 378:Bulletin de la SociĂ©tĂ© MathĂ©matique de France 8: 16:Non-self-intersecting curve of positive area 543:, Universitext, New York: Springer-Verlag, 401:(1903), "A Jordan Curve of Positive Area", 248: 416: 389: 280:Balcerzak, M.; Kharazishvili, A. (1999), 220: 218: 127: 190: 119: 252: 244: 228: 224: 209: 131: 7: 264:Balcerzak & Kharazishvili (1999) 197: 14: 585:Knopp's Osgood Curve Construction 418:10.1090/S0002-9947-1903-1500628-5 588:, Wolfram Demonstrations Project 318:Archiv der Mathematik und Physik 59:. Osgood curves are named after 493:The Mathematical Intelligencer 1: 333:American Mathematical Monthly 286:Georgian Mathematical Journal 19:Not to be confused with the 374:"Sur le problème des aires" 155:triangles, the result is a 55:, distinguishing them from 43:is a non-self-intersecting 631: 18: 549:10.1007/978-1-4612-0871-6 249:Lance & Thomas (1991) 178:according to which every 168:Smith–Volterra–Cantor set 67:Definition and properties 116:William Fogg Osgood 104:two-dimensional region 53:two-dimensional region 32: 37:mathematical analysis 29: 540:Space-filling curves 537:Sagan, Hans (1994), 298:10.1515/GMJ.1999.201 176:Denjoy–Riesz theorem 172:totally disconnected 96:space-filling curves 57:space-filling curves 21:Ramberg–Osgood curve 92:Hausdorff dimension 90:Osgood curves have 61:William Fogg Osgood 506:10.1007/BF03024322 399:Osgood, William F. 124:Henri Lebesgue 47:that has positive 33: 391:10.24033/bsmf.694 136:WacĹ‚aw SierpiĹ„ski 622: 596: 595: 593: 582:Dickau, Robert, 569: 532: 485: 453: 420: 394: 393: 364: 325: 308: 267: 261: 255: 242: 236: 233:pp. 136–140 222: 213: 207: 201: 195: 85:Lebesgue measure 630: 629: 625: 624: 623: 621: 620: 619: 600: 599: 591: 589: 581: 578: 573: 559: 536: 489: 475: 464:Length and Area 457: 397: 368: 346:10.2307/2323941 329: 312: 279: 275: 270: 262: 258: 243: 239: 223: 216: 208: 204: 196: 192: 188: 148: 112: 100:Netto's theorem 73:Euclidean plane 71:A curve in the 69: 24: 17: 12: 11: 5: 628: 626: 618: 617: 612: 602: 601: 598: 597: 577: 576:External links 574: 572: 571: 557: 534: 487: 473: 455: 411:(1): 107–112, 395: 366: 340:(2): 124–127, 327: 310: 292:(3): 201–212, 276: 274: 271: 269: 268: 256: 237: 214: 202: 189: 187: 184: 161:Koch snowflake 157:CesĂ ro fractal 147: 144: 111: 108: 68: 65: 15: 13: 10: 9: 6: 4: 3: 2: 627: 616: 613: 611: 608: 607: 605: 587: 586: 580: 579: 575: 568: 564: 560: 558:0-387-94265-3 554: 550: 546: 542: 541: 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 494: 488: 484: 480: 476: 474:9780821846216 470: 466: 465: 460: 456: 452: 448: 444: 440: 436: 432: 428: 424: 419: 414: 410: 406: 405: 400: 396: 392: 387: 383: 380:(in French), 379: 375: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 334: 328: 323: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 278: 277: 272: 265: 260: 257: 254: 250: 246: 241: 238: 234: 230: 226: 221: 219: 215: 211: 206: 203: 199: 194: 191: 185: 183: 181: 177: 173: 169: 164: 162: 158: 153: 145: 143: 141: 137: 133: 129: 125: 121: 117: 109: 107: 105: 101: 97: 93: 88: 86: 82: 78: 74: 66: 64: 62: 58: 54: 50: 46: 42: 38: 28: 22: 610:Plane curves 590:, retrieved 584: 539: 500:(4): 37–43, 497: 491: 463: 408: 402: 381: 377: 370:Lebesgue, H. 337: 331: 321: 317: 289: 285: 259: 253:Sagan (1993) 245:Knopp (1917) 240: 229:Sagan (1994) 225:Knopp (1917) 210:Sagan (1994) 205: 193: 165: 159:such as the 149: 146:Construction 132:Knopp (1917) 113: 89: 77:Jordan curve 70: 41:Osgood curve 40: 34: 459:RadĂł, Tibor 384:: 197–203, 198:RadĂł (1948) 140:convex hull 604:Categories 592:20 October 530:0795.54022 435:34.0533.02 273:References 94:two, like 81:Jordan arc 522:122497728 427:0002-9947 324:: 103–115 314:Knopp, K. 461:(1948), 372:(1903), 212:, p. 131 152:fractals 567:1299533 514:1240667 483:0024511 451:1500628 443:1986455 362:1089456 354:2323941 306:1679442 180:bounded 126: ( 118: ( 110:History 565:  555:  528:  520:  512:  481:  471:  449:  441:  433:  425:  360:  352:  304:  122:) and 31:curve. 518:S2CID 439:JSTOR 350:JSTOR 186:Notes 79:or a 45:curve 39:, an 615:Area 594:2013 553:ISBN 469:ISBN 423:ISSN 170:, a 128:1903 120:1903 49:area 545:doi 526:Zbl 502:doi 431:JFM 413:doi 386:doi 342:doi 294:doi 35:In 606:: 563:MR 561:, 551:, 524:, 516:, 510:MR 508:, 498:15 496:, 479:MR 477:, 447:MR 445:, 437:, 429:, 421:, 407:, 382:31 376:, 358:MR 356:, 348:, 338:98 336:, 322:26 320:, 302:MR 300:, 288:, 284:, 251:; 247:; 227:; 217:^ 142:. 87:. 63:. 570:. 547:: 533:. 504:: 486:. 454:. 415:: 409:4 388:: 365:. 344:: 326:. 309:. 296:: 290:6 266:. 235:. 200:.

Index

Ramberg–Osgood curve

mathematical analysis
curve
area
two-dimensional region
space-filling curves
William Fogg Osgood
Euclidean plane
Jordan curve
Jordan arc
Lebesgue measure
Hausdorff dimension
space-filling curves
Netto's theorem
two-dimensional region
William Fogg Osgood
1903
Henri Lebesgue
1903
Knopp (1917)
Wacław Sierpiński
convex hull
fractals
CesĂ ro fractal
Koch snowflake
Smith–Volterra–Cantor set
totally disconnected
Denjoy–Riesz theorem
bounded

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑