Knowledge (XXG)

Yang–Mills equations

Source 📝

3313: 42: 51: 2733: 3308:{\displaystyle {\begin{aligned}{\frac {d}{dt}}\left(\operatorname {YM} (A+ta)\right)_{t=0}&={\frac {d}{dt}}\left(\int _{X}\langle F_{A}+t\,d_{A}a+t^{2}a\wedge a,F_{A}+t\,d_{A}a+t^{2}a\wedge a\rangle \,d\mathrm {vol} _{g}\right)_{t=0}\\&={\frac {d}{dt}}\left(\int _{X}\|F_{A}\|^{2}+2t\langle F_{A},d_{A}a\rangle +2t^{2}\langle F_{A},a\wedge a\rangle +t^{4}\|a\wedge a\|^{2}\,d\mathrm {vol} _{g}\right)_{t=0}\\&=2\int _{X}\langle d_{A}^{*}F_{A},a\rangle \,d\mathrm {vol} _{g}.\end{aligned}}} 62: 71: 3644: 5558:
The moduli space of ASD instantons may be used to define further invariants of four-manifolds. Donaldson defined polynomials on the second homology group of a suitably restricted class of four-manifolds, arising from pairings of cohomology classes on the moduli space. This work has subsequently been
1025:
of this functional, either the absolute minima or local minima. That is to say, Yang–Mills connections are precisely those that minimize their curvature. In this sense they are the natural choice of connection on a principal or vector bundle over a manifold from a mathematical point of view.
4795:. For various choices of principal bundle, one obtains moduli spaces with interesting properties. These spaces are Hausdorff, even when allowing reducible connections, and are generically smooth. It was shown by Donaldson that the smooth part is orientable. By the 5554:
in two ways: once using that signature is a cobordism invariant, and another using a Hodge-theoretic interpretation of reducible connections. Interpreting these counts carefully, one can conclude that such a smooth manifold has diagonalisable intersection form.
622:
In addition to the physical origins of the theory, the Yang–Mills equations are of important geometric interest. There is in general no natural choice of connection on a vector bundle or principal bundle. In the special case where this bundle is the
3461: 1965: 2457: 544: 1738: 710: 5770:
The duality observed for these solutions is theorized to hold for arbitrary dual groups of symmetries of a four-manifold. Indeed there is a similar duality between instantons invariant under dual lattices inside
4988: 4793: 4288: 831: 1542: 771:. The first attempt at choosing a canonical connection might be to demand that these forms vanish. However, this is not possible unless the trivialisation is flat, in the sense that the transition functions 5759:, who first described how to construct monopoles from Nahm equation data. Hitchin showed the converse, and Donaldson proved that solutions to the Nahm equations could further be linked to moduli spaces of 3796: 6145:
Atiyah, M. F., & Bott, R. (1983). The Yang–Mills equations over riemann surfaces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 308(1505),
5290: 635:, but in general there is an infinite-dimensional space of possible choices. A Yang–Mills connection gives some kind of natural choice of a connection for a general fibre bundle, as we now describe. 4155: 2712: 2738: 2023: 2567: 5892: 5451:
The moduli space of Yang–Mills equations was used by Donaldson to prove Donaldson's theorem about the intersection form of simply-connected four-manifolds. Using analytical results of
4659: 2335: 922: 378: 4833: 4715: 3453: 1574: 1484: 1323: 5131: 4618: 4587: 301: 6233:
Nahm, W. (1983). All self-dual multimonopoles for arbitrary gauge groups. In Structural elements in particle physics and statistical mechanics (pp. 301–310). Springer, Boston, MA.
4472: 4424: 2202: 612: 4556: 4525: 4009: 3978: 3947: 5552: 5520: 2103: 5831: 5798: 5731: 5672: 5635: 5602: 5379: 5350: 743: 6018: 3868: 3844: 3820: 3726: 2497: 2349:
class of a differential form. The analogy being that a Yang–Mills connection is like a harmonic representative in the set of all possible connections on a principal bundle.
4034:, which was proved in this form relating Yang–Mills connections to holomorphic vector bundles by Donaldson. In this setting the moduli space has the structure of a compact 5753: 2283: 858: 4875: 5928:
of Ward. In this sense it is a 'master theory' for integrable systems, allowing many known systems to be recovered by picking appropriate parameters, such as choice of
2151: 5087: 5027: 3699: 1777: 5972: 5188: 4311: 2043: 769: 5431: 5321: 1859: 1828: 1641: 1393: 1264: 1019: 953: 448: 3639:{\displaystyle \operatorname {YM} (g\cdot A)=\int _{X}\|gF_{A}g^{-1}\|^{2}\,d\mathrm {vol} _{g}=\int _{X}\|F_{A}\|^{2}\,d\mathrm {vol} _{g}=\operatorname {YM} (A)} 2596: 5922: 5571:
Through the process of dimensional reduction, the Yang–Mills equations may be used to derive other important equations in differential geometry and gauge theory.
5214: 5402: 4205: 5481: 5155: 5051: 4679: 4379: 4359: 4339: 4182: 4088: 4056: 3916: 3892: 3750: 3667: 3421: 3401: 3356: 3336: 2616: 2517: 1801: 1614: 1594: 1448: 1413: 1363: 1343: 1288: 1234: 1211: 1187: 1167: 1147: 1127: 1104: 1084: 1052: 973: 413: 328: 1867: 6061: 387:
The essential points of the work of Yang and Mills are as follows. One assumes that the fundamental description of a physical model is through the use of
2369: 456: 1649: 251:
developed (essentially independent of the mathematical literature) the theory of principal bundles and connections in order to explain the concept of
5933: 641: 6320: 6185:
Donaldson, S. K. (1986). Connections, cohomology and the intersection forms of 4-manifolds. Journal of Differential Geometry, 24(3), 275–341.
833:
are constant functions. Not every bundle is flat, so this is not possible in general. Instead one might ask that the local connection forms
4883: 1214: 6056: 6066: 5844:
is that in fact all known integrable ODEs and PDEs come from symmetry reduction of ASDYM. For example reductions of SU(2) ASDYM give the
4724: 4213: 6176:
Donaldson, S. K. (1983). An application of gauge theory to four-dimensional topology. Journal of Differential Geometry, 18(2), 279–315.
774: 6251:
Donaldson, S. K. (1984). Nahm's equations and the classification of monopoles. Communications in Mathematical Physics, 96(3), 387–408.
6206:
Taubes, C. H. (1982). Self-dual Yang–Mills connections on non-self-dual 4-manifolds. Journal of Differential Geometry, 17(1), 139–170.
1489: 6294:
Axelrod, S., Della Pietra, S., & Witten, E. (1991). Geometric quantization of Chern Simons gauge theory. representations, 34, 39.
6270: 5975: 2052:
Assuming the above set up, the Yang–Mills equations are a system of (in general non-linear) partial differential equations given by
143:(bottom right). The BPST instanton is a solution to the anti-self duality equations, and therefore of the Yang–Mills equations, on 3755: 395:(change of local trivialisation of principal bundle), these physical fields must transform in precisely the way that a connection 4796: 4031: 6155:
Donaldson, S. K. (1983). A new proof of a theorem of Narasimhan and Seshadri. Journal of Differential Geometry, 18(2), 269–277.
6164:
Friedman, R., & Morgan, J. W. (1998). Gauge theory and the topology of four-manifolds (Vol. 4). American Mathematical Soc.
5849: 5219: 6310: 6109:
Yang, C.N. and Mills, R.L., 1954. Conservation of isotopic spin and isotopic gauge invariance. Physical review, 96(1), p.191.
5134: 4096: 133: 6285:
Hitchin, N. J. (1990). Flat connections and geometric quantization. Communications in mathematical physics, 131(2), 347–380.
6224:
Uhlenbeck, K. K. (1982). Removable singularities in Yang–Mills fields. Communications in Mathematical Physics, 83(1), 11–29.
5560: 2624: 5381:
may be extended across the point at infinity using Uhlenbeck's removable singularity theorem. More generally, for positive
6315: 6046: 1366: 1190: 182: 558: 2718: 1022: 198: 6215:
Uhlenbeck, K. K. (1982). Connections with L bounds on curvature. Communications in Mathematical Physics, 83(1), 31–42.
1974: 450:
of the connection, and the energy of the gauge field is given (up to a constant) by the Yang–Mills action functional
2526: 6041: 5855: 2286: 174: 41: 50: 30:
This article discusses the Yang–Mills equations from a mathematical perspective. For the physics perspective, see
3729: 550: 339: 6242:
Hitchin, N. J. (1983). On the construction of monopoles. Communications in Mathematical Physics, 89(2), 145–190.
4623:
The moduli space of ASD connections, or instantons, was most intensively studied by Donaldson in the case where
4058:
is four. Here the Yang–Mills equations admit a simplification from a second-order PDE to a first-order PDE, the
5488: 244: 186: 6118:
Pauli, W., 1941. Relativistic field theories of elementary particles. Reviews of Modern Physics, 13(3), p.203.
5979: 5949: 4626: 860:
are themselves constant. On a principal bundle the correct way to phrase this condition is that the curvature
307:
and others. The novelty of the work of Yang and Mills was to define gauge theories for an arbitrary choice of
2295: 863: 345: 5925: 5460: 4802: 4688: 3426: 1547: 1457: 1296: 5092: 4592: 4561: 274: 6136:
Donaldson, S. K., & Kronheimer, P. B. (1990). The geometry of four-manifolds. Oxford University Press.
6021: 5678: 5446: 4429: 1780: 1424: 632: 268: 227: 5677:
By requiring the self-duality equations to be invariant under translation in two directions, one obtains
5608:
By requiring the anti-self-duality equations to be invariant under translations in a single direction of
4384: 2161: 925: 571: 31: 4530: 4499: 3983: 3952: 3921: 170: 5525: 5493: 2060: 990:
The best one can hope for is then to ask that instead of vanishing curvature, the bundle has curvature
5807: 5774: 5707: 5648: 5611: 5578: 5355: 5326: 5845: 5841: 715: 5985: 5463:) the moduli space of ASD instantons on a smooth, compact, oriented, simply-connected four-manifold 3849: 3825: 3801: 3707: 2478: 380:
corresponding to electromagnetism, and the right framework to discuss such objects is the theory of
6197:
Donaldson, S. K. (1990). Polynomial invariants for smooth four-manifolds. Topology, 29(3), 257–315.
5937: 5638: 2046: 1416: 1063: 628: 554: 264: 5736: 5696:
By requiring the anti-self-duality equations to be invariant in three directions, one obtains the
4038:. Moduli of Yang–Mills connections have been most studied when the dimension of the base manifold 2245: 5895: 5642: 4014:
Moduli spaces of Yang–Mills connections have been intensively studied in specific circumstances.
2346: 984: 836: 4838: 4035: 3874:
or a smooth manifold. However, by restricting to irreducible connections, that is, connections
2124: 6266: 5837: 5801: 5056: 4996: 3678: 1746: 1267: 987:
to the existence of flat connections: not every principal bundle can have a flat connection.
61: 5957: 5160: 259:
as it applies to physical theories. The gauge theories Yang and Mills discovered, now called
128:(bottom left). A visual representation of the field strength of a BPST instanton with center 17: 6051: 4682: 4296: 2240: 2028: 1831: 1451: 748: 381: 194: 116:
coefficient (top right). These coefficients determine the restriction of the BPST instanton
5459:, Donaldson was able to show that in specific circumstances (when the intersection form is 5407: 5299: 1837: 1806: 1619: 1371: 1242: 1066:. The Yang–Mills equations can be phrased for a connection on a vector bundle or principal 997: 931: 426: 5764: 5456: 5452: 4023: 3871: 3704:
There is a moduli space of Yang–Mills connections modulo gauge transformations. Denote by
3373: 2572: 223: 148: 5901: 5193: 5384: 4187: 3338:
is a critical point of the Yang–Mills functional if and only if this vanishes for every
5697: 5690: 5466: 5293: 5140: 5036: 4664: 4364: 4344: 4324: 4167: 4073: 4041: 4015: 3901: 3877: 3735: 3652: 3406: 3386: 3341: 3321: 2601: 2502: 1786: 1599: 1579: 1433: 1398: 1348: 1328: 1291: 1273: 1237: 1219: 1196: 1172: 1152: 1132: 1112: 1089: 1069: 1037: 958: 624: 398: 313: 304: 248: 87: 6304: 6029: 6025: 5682: 1960:{\displaystyle \langle d_{A}s,t\rangle _{L^{2}}=\langle s,d_{A}^{*}t\rangle _{L^{2}}} 1420: 1059: 1055: 190: 5604:, and imposing that the solutions be invariant under a symmetry group. For example: 4090:
is four, a coincidence occurs: the Hodge star operator maps two-forms to two-forms,
3918:, one does obtain Hausdorff spaces. The space of irreducible connections is denoted 994:. The Yang–Mills action functional described above is precisely (the square of) the 5760: 5704:
There is a duality between solutions of the dimensionally reduced ASD equations on
5686: 5030: 4027: 3381: 2520: 2452:{\displaystyle \operatorname {YM} (A)=\int _{X}\|F_{A}\|^{2}\,d\mathrm {vol} _{g}.} 2342: 539:{\displaystyle \operatorname {YM} (A)=\int _{X}\|F_{A}\|^{2}\,d\mathrm {vol} _{g}.} 219: 106: 5575:
is the process of taking the Yang–Mills equations over a four-manifold, typically
4480:), the connection is a Yang–Mills connection. These connections are called either 1733:{\displaystyle \langle s,t\rangle _{L^{2}}=\int _{X}\langle s,t\rangle \,dvol_{g}} 151:'s removable singularity theorem to a topologically non-trivial ASD connection on 5929: 5756: 4718: 980: 166: 4162: 4019: 3798:
classifies all connections modulo gauge transformations, and the moduli space
705:{\displaystyle A_{\alpha }\in \Omega ^{1}(U_{\alpha },\operatorname {ad} (P))} 5487:
between a copy of the manifold itself, and a disjoint union of copies of the
5484: 1107: 308: 214: 70: 1743:
where inside the integral the fiber-wise inner product is being used, and
342:
for more details). This group could be non-Abelian as opposed to the case
4161:
The Hodge star operator squares to the identity in this case, and so has
3895: 5954:
The moduli space of Yang–Mills equations over a compact Riemann surface
4496:. The spaces of self-dual and anti-self-dual connections are denoted by 2341:
In this sense the search for Yang–Mills connections can be compared to
162: 5216:, the intersection form is trivial and the moduli space has dimension 1021:-norm of the curvature, and its Euler–Lagrange equations describe the 4983:{\displaystyle \dim {\mathcal {M}}_{k}^{-}=8k-3(1-b_{1}(X)+b_{+}(X))} 6086: 2285:, so Yang–Mills connections can be seen as a non-linear analogue of 2121:
Since the Hodge star is an isomorphism, by the explicit formula for
4788:{\displaystyle c_{2}(P)\in H^{4}(X,\mathbb {Z} )\cong \mathbb {Z} } 2475:
To derive the equations from the functional, recall that the space
5836:
Symmetry reductions of the ASD equations also lead to a number of
4283:{\displaystyle \Omega ^{2}(X)=\Omega _{+}(X)\oplus \Omega _{-}(X)} 1236:
on the total space of the principal bundle. This connection has a
4026:. There the moduli space obtains an alternative description as a 2357:
The Yang–Mills equations are the Euler–Lagrange equations of the
826:{\displaystyle g_{\alpha \beta }:U_{\alpha }\cap U_{\beta }\to G} 1537:{\displaystyle \operatorname {ad} (P)\otimes \Lambda ^{2}T^{*}X} 124:
to this slice. The corresponding field strength centered around
5932:
and symmetry reduction scheme. Other such master theories are
27:
Partial differential equations whose solutions are instantons
5232: 4896: 4809: 4599: 4568: 4537: 4506: 3990: 3959: 3928: 3855: 3831: 3807: 3791:{\displaystyle {\mathcal {B}}={\mathcal {A}}/{\mathcal {G}}} 3783: 3771: 3761: 3713: 2484: 243:
In their foundational paper on the topic of gauge theories,
4022:
studied the Yang–Mills equations for bundles over compact
3822:
of Yang–Mills connections is a subset. In general neither
979:), then the underlying principal bundle must have trivial 5285:{\displaystyle \dim {\mathcal {M}}_{1}^{-}(S^{4})=8-3=5} 1643:-inner product on the sections of this bundle. Namely, 205:. They have also found significant use in mathematics. 4150:{\displaystyle \star :\Omega ^{2}(X)\to \Omega ^{2}(X)} 561:
of this functional, which are the Yang–Mills equations
5089:
is the dimension of the positive-definite subspace of
2707:{\displaystyle F_{A+ta}=F_{A}+td_{A}a+t^{2}a\wedge a.} 6265:. Oxford: Oxford University Press. pp. 151–154. 5988: 5960: 5904: 5858: 5810: 5804:
can be thought of as a duality between instantons on
5777: 5739: 5710: 5651: 5614: 5581: 5528: 5496: 5469: 5410: 5387: 5358: 5329: 5302: 5222: 5196: 5163: 5143: 5095: 5059: 5039: 4999: 4886: 4841: 4805: 4727: 4691: 4667: 4629: 4595: 4564: 4533: 4502: 4432: 4387: 4367: 4347: 4327: 4299: 4216: 4190: 4170: 4099: 4076: 4044: 3986: 3955: 3924: 3904: 3880: 3852: 3828: 3804: 3758: 3738: 3710: 3681: 3655: 3464: 3429: 3409: 3389: 3344: 3324: 2736: 2627: 2604: 2575: 2529: 2505: 2481: 2372: 2298: 2248: 2164: 2153:
the Yang–Mills equations can equivalently be written
2127: 2063: 2031: 1977: 1870: 1840: 1809: 1789: 1749: 1652: 1622: 1602: 1582: 1550: 1492: 1460: 1436: 1401: 1395:, defined on the adjoint bundle. Additionally, since 1374: 1351: 1331: 1299: 1276: 1245: 1222: 1199: 1175: 1155: 1135: 1115: 1092: 1072: 1040: 1000: 961: 934: 866: 839: 777: 751: 718: 644: 574: 459: 429: 401: 348: 316: 277: 5800:, instantons on dual four-dimensional tori, and the 2618:
in this affine space, the curvatures are related by
1454:, and combined with the invariant inner product on 6012: 5966: 5916: 5886: 5825: 5792: 5747: 5725: 5666: 5629: 5596: 5546: 5514: 5475: 5425: 5396: 5373: 5344: 5323:up to a 5 parameter family defining its centre in 5315: 5284: 5208: 5182: 5149: 5125: 5081: 5045: 5021: 4982: 4869: 4827: 4787: 4709: 4673: 4653: 4612: 4581: 4550: 4519: 4466: 4418: 4373: 4353: 4333: 4305: 4282: 4199: 4176: 4149: 4082: 4050: 4003: 3972: 3941: 3910: 3886: 3862: 3838: 3814: 3790: 3744: 3720: 3693: 3661: 3638: 3455:is invariant, the Yang–Mills functional satisfies 3447: 3415: 3395: 3350: 3330: 3307: 2706: 2610: 2590: 2561: 2511: 2491: 2451: 2329: 2277: 2196: 2145: 2097: 2037: 2017: 1959: 1853: 1822: 1795: 1771: 1732: 1635: 1608: 1588: 1568: 1536: 1478: 1442: 1407: 1387: 1357: 1337: 1317: 1282: 1258: 1228: 1205: 1181: 1161: 1141: 1121: 1098: 1078: 1046: 1013: 967: 947: 916: 852: 825: 763: 737: 704: 606: 538: 442: 407: 372: 322: 295: 5685:. These equations naturally lead to the study of 4059: 1450:is Riemannian, there is an inner product on the 557:for this physical theory should be given by the 2345:, which seeks a harmonic representative in the 2018:{\displaystyle d_{A}^{*}=\pm \star d_{A}\star } 1129:. Here the latter convention is presented. Let 4293:into the positive and negative eigenspaces of 2562:{\displaystyle \Omega ^{1}(P;{\mathfrak {g}})} 271:, which had been phrased in the language of a 5887:{\displaystyle \mathrm {SL} (3,\mathbb {R} )} 5833:and dual algebraic data over a single point. 5567:Dimensional reduction and other moduli spaces 2239:Every connection automatically satisfies the 8: 3587: 3573: 3529: 3499: 3273: 3239: 3168: 3155: 3139: 3114: 3095: 3066: 3048: 3034: 2951: 2841: 2415: 2401: 1941: 1913: 1894: 1871: 1707: 1695: 1666: 1653: 732: 719: 502: 488: 4835:, the moduli space of ASD connections when 638:A connection is defined by its local forms 4207:. In particular, there is a decomposition 4028:moduli space of holomorphic vector bundles 6020:. In this case the moduli space admits a 5987: 5959: 5903: 5877: 5876: 5859: 5857: 5817: 5813: 5812: 5809: 5784: 5780: 5779: 5776: 5741: 5740: 5738: 5717: 5713: 5712: 5709: 5658: 5654: 5653: 5650: 5621: 5617: 5616: 5613: 5588: 5584: 5583: 5580: 5538: 5534: 5531: 5530: 5527: 5506: 5502: 5499: 5498: 5495: 5468: 5409: 5386: 5365: 5361: 5360: 5357: 5336: 5332: 5331: 5328: 5307: 5301: 5255: 5242: 5237: 5231: 5230: 5221: 5195: 5174: 5162: 5142: 5116: 5115: 5100: 5094: 5064: 5058: 5038: 5004: 4998: 4962: 4940: 4906: 4901: 4895: 4894: 4885: 4846: 4840: 4819: 4814: 4808: 4807: 4804: 4781: 4780: 4770: 4769: 4754: 4732: 4726: 4690: 4666: 4628: 4604: 4598: 4597: 4594: 4573: 4567: 4566: 4563: 4542: 4536: 4535: 4532: 4511: 4505: 4504: 4501: 4457: 4449: 4437: 4431: 4409: 4401: 4392: 4386: 4366: 4346: 4326: 4298: 4265: 4243: 4221: 4215: 4189: 4169: 4132: 4110: 4098: 4075: 4043: 3995: 3989: 3988: 3985: 3964: 3958: 3957: 3954: 3933: 3927: 3926: 3923: 3903: 3879: 3854: 3853: 3851: 3830: 3829: 3827: 3806: 3805: 3803: 3782: 3781: 3776: 3770: 3769: 3760: 3759: 3757: 3737: 3712: 3711: 3709: 3680: 3654: 3612: 3601: 3596: 3590: 3580: 3567: 3554: 3543: 3538: 3532: 3519: 3509: 3493: 3463: 3428: 3408: 3388: 3343: 3323: 3292: 3281: 3276: 3261: 3251: 3246: 3233: 3204: 3193: 3182: 3177: 3171: 3149: 3121: 3108: 3086: 3073: 3051: 3041: 3028: 3003: 2981: 2970: 2959: 2954: 2936: 2920: 2915: 2903: 2881: 2865: 2860: 2848: 2835: 2810: 2791: 2741: 2737: 2735: 2686: 2670: 2654: 2632: 2626: 2603: 2574: 2550: 2549: 2534: 2528: 2504: 2483: 2482: 2480: 2440: 2429: 2424: 2418: 2408: 2395: 2371: 2312: 2297: 2263: 2253: 2247: 2182: 2169: 2163: 2137: 2132: 2126: 2083: 2073: 2068: 2062: 2030: 2006: 1987: 1982: 1976: 1949: 1944: 1931: 1926: 1902: 1897: 1878: 1869: 1845: 1839: 1814: 1808: 1788: 1763: 1748: 1724: 1710: 1689: 1674: 1669: 1651: 1627: 1621: 1601: 1581: 1549: 1525: 1515: 1491: 1459: 1435: 1400: 1379: 1373: 1350: 1330: 1298: 1275: 1250: 1244: 1221: 1198: 1174: 1154: 1134: 1114: 1091: 1071: 1039: 1005: 999: 960: 939: 933: 889: 871: 865: 844: 838: 811: 798: 782: 776: 750: 726: 717: 675: 662: 649: 643: 592: 579: 573: 527: 516: 511: 505: 495: 482: 458: 434: 428: 400: 347: 315: 276: 4799:, one may compute that the dimension of 4654:{\displaystyle G=\operatorname {SU} (2)} 4070:When the dimension of the base manifold 1486:there is an inner product on the bundle 419:) on a principal bundle transforms. The 6102: 6085:For a proof of this fact, see the post 6078: 6062:Deformed Hermitian Yang–Mills equations 5522:. We can count the number of copies of 5296:, which is the unique ASD instanton on 3949:, and so the moduli spaces are denoted 2330:{\displaystyle d\omega =d^{*}\omega =0} 917:{\displaystyle F_{A}=dA+{\frac {1}{2}}} 373:{\displaystyle G=\operatorname {U} (1)} 6193: 6191: 6172: 6170: 4828:{\displaystyle {\mathcal {M}}_{k}^{-}} 4710:{\displaystyle \operatorname {SU} (2)} 3448:{\displaystyle \operatorname {ad} (P)} 3368:Moduli space of Yang–Mills connections 1569:{\displaystyle \operatorname {ad} (P)} 1479:{\displaystyle \operatorname {ad} (P)} 1318:{\displaystyle \operatorname {ad} (P)} 631:, there is such a natural choice, the 208:Solutions of the equations are called 5126:{\displaystyle H_{2}(X,\mathbb {R} )} 4613:{\displaystyle {\mathcal {M}}^{\pm }} 4582:{\displaystyle {\mathcal {B}}^{\pm }} 296:{\displaystyle \operatorname {U} (1)} 7: 6132: 6130: 6128: 6126: 6124: 5934:four-dimensional Chern–Simons theory 5292:. This agrees with existence of the 4717:-bundle is classified by its second 4467:{\displaystyle F_{A}=-{\star F_{A}}} 2363: 2155: 2054: 1215:Lie algebra-valued differential form 263:, generalised the classical work of 4419:{\displaystyle F_{A}={\star F_{A}}} 2551: 2197:{\displaystyle d_{A}\star F_{A}=0.} 607:{\displaystyle d_{A}\star F_{A}=0.} 147:. This solution can be extended by 6263:Solitons, instantons, and twistors 5989: 5961: 5863: 5860: 5352:and its scale. Such instantons on 4551:{\displaystyle {\mathcal {A}}^{-}} 4520:{\displaystyle {\mathcal {A}}^{+}} 4262: 4240: 4218: 4129: 4107: 4004:{\displaystyle {\mathcal {M}}^{*}} 3973:{\displaystyle {\mathcal {B}}^{*}} 3942:{\displaystyle {\mathcal {A}}^{*}} 3608: 3605: 3602: 3550: 3547: 3544: 3358:, and this occurs precisely when ( 3288: 3285: 3282: 3189: 3186: 3183: 2966: 2963: 2960: 2531: 2436: 2433: 2430: 1512: 659: 523: 520: 517: 355: 278: 25: 6087:https://mathoverflow.net/a/265399 5755:called the Nahm transform, after 5547:{\displaystyle \mathbb {CP} ^{2}} 5515:{\displaystyle \mathbb {CP} ^{2}} 4685:. In this setting, the principal 4494:anti-self-duality (ASD) equations 3423:, and since the inner product on 2098:{\displaystyle d_{A}^{*}F_{A}=0.} 5898:, and a particular reduction to 5826:{\displaystyle \mathbb {R} ^{4}} 5793:{\displaystyle \mathbb {R} ^{4}} 5726:{\displaystyle \mathbb {R} ^{3}} 5667:{\displaystyle \mathbb {R} ^{3}} 5630:{\displaystyle \mathbb {R} ^{4}} 5597:{\displaystyle \mathbb {R} ^{4}} 5374:{\displaystyle \mathbb {R} ^{4}} 5345:{\displaystyle \mathbb {R} ^{4}} 69: 60: 49: 40: 5404:the moduli space has dimension 1345:. Associated to the connection 738:{\displaystyle \{U_{\alpha }\}} 197:. They arise in physics as the 6321:Partial differential equations 6057:Hermitian Yang–Mills equations 6024:, discovered independently by 6013:{\displaystyle \Sigma \times } 6007: 5995: 5881: 5867: 5261: 5248: 5120: 5106: 5076: 5070: 5016: 5010: 4977: 4974: 4968: 4952: 4946: 4927: 4858: 4852: 4774: 4760: 4744: 4738: 4704: 4698: 4648: 4642: 4277: 4271: 4255: 4249: 4233: 4227: 4144: 4138: 4125: 4122: 4116: 3863:{\displaystyle {\mathcal {M}}} 3839:{\displaystyle {\mathcal {B}}} 3815:{\displaystyle {\mathcal {M}}} 3721:{\displaystyle {\mathcal {G}}} 3633: 3627: 3483: 3471: 3442: 3436: 2783: 2768: 2556: 2540: 2492:{\displaystyle {\mathcal {A}}} 2385: 2379: 1563: 1557: 1505: 1499: 1473: 1467: 1312: 1306: 911: 899: 817: 755: 712:for a trivialising open cover 699: 696: 690: 668: 562: 472: 466: 367: 361: 290: 284: 183:partial differential equations 1: 6047:Connection (principal bundle) 4361:-bundle over a four-manifold 3372:The Yang–Mills equations are 2523:modelled on the vector space 1367:exterior covariant derivative 18:Atiyah–Hitchin–Singer theorem 5748:{\displaystyle \mathbb {R} } 2569:. Given a small deformation 2278:{\displaystyle d_{A}F_{A}=0} 1971:Explicitly this is given by 203:Yang–Mills action functional 4797:Atiyah–Singer index theorem 4490:self-duality (SD) equations 4476: 4321:two-forms. If a connection 4066:Anti-self-duality equations 4060:anti-self-duality equations 4032:Narasimhan–Seshadri theorem 3671: 3360: 2723: 2287:harmonic differential forms 2228: 2222: 1830:-inner product, the formal 1415:is compact, its associated 853:{\displaystyle A_{\alpha }} 391:, and derives that under a 6337: 6067:Yang–Mills–Higgs equations 6042:Connection (vector bundle) 5947: 5850:Korteweg–de Vries equation 5444: 4870:{\displaystyle c_{2}(P)=k} 4486:anti-self-dual connections 955:vanishes (that is to say, 553:dictates that the correct 393:local gauge transformation 222:of instantons was used by 29: 6261:Dunajski, Maciej (2010). 6028:and Axelrod–Della Pietra– 5561:Seiberg–Witten invariants 3898:group is given by all of 2220:A connection satisfying ( 2146:{\displaystyle d_{A}^{*}} 1616:is oriented, there is an 551:principle of least action 340:Gauge group (mathematics) 5489:complex projective plane 5082:{\displaystyle b_{+}(X)} 5022:{\displaystyle b_{1}(X)} 4488:, and the equations the 3694:{\displaystyle g\cdot A} 3403:of the principal bundle 1772:{\displaystyle dvol_{g}} 559:Euler–Lagrange equations 199:Euler–Lagrange equations 5967:{\displaystyle \Sigma } 5926:integrable chiral model 5765:complex projective line 5440: 5183:{\displaystyle X=S^{4}} 985:topological obstruction 6022:geometric quantization 6014: 5968: 5918: 5888: 5827: 5794: 5749: 5727: 5681:first investigated by 5668: 5631: 5598: 5548: 5516: 5477: 5427: 5398: 5375: 5346: 5317: 5286: 5210: 5184: 5151: 5127: 5083: 5047: 5023: 4984: 4871: 4829: 4789: 4711: 4675: 4655: 4614: 4583: 4552: 4521: 4468: 4420: 4375: 4355: 4335: 4307: 4306:{\displaystyle \star } 4284: 4201: 4178: 4151: 4084: 4052: 4005: 3974: 3943: 3912: 3888: 3864: 3840: 3816: 3792: 3746: 3722: 3695: 3663: 3640: 3449: 3417: 3397: 3352: 3332: 3309: 2708: 2612: 2592: 2563: 2513: 2499:of all connections on 2493: 2453: 2331: 2279: 2198: 2147: 2099: 2039: 2038:{\displaystyle \star } 2019: 1961: 1855: 1824: 1797: 1781:Riemannian volume form 1773: 1734: 1637: 1610: 1590: 1570: 1538: 1480: 1444: 1425:adjoint representation 1409: 1389: 1359: 1339: 1319: 1284: 1260: 1230: 1213:may be specified by a 1207: 1183: 1163: 1143: 1123: 1100: 1080: 1048: 1015: 969: 949: 924:vanishes. However, by 918: 854: 827: 765: 764:{\displaystyle P\to X} 739: 706: 633:Levi-Civita connection 608: 540: 444: 409: 374: 324: 297: 210:Yang–Mills connections 6311:Differential geometry 6015: 5974:can be viewed as the 5969: 5924:dimensions gives the 5919: 5889: 5828: 5795: 5750: 5728: 5669: 5632: 5599: 5573:Dimensional reduction 5549: 5517: 5478: 5428: 5426:{\displaystyle 8k-3.} 5399: 5376: 5347: 5318: 5316:{\displaystyle S^{4}} 5287: 5211: 5185: 5152: 5128: 5084: 5048: 5024: 4985: 4872: 4830: 4790: 4712: 4676: 4656: 4615: 4584: 4553: 4522: 4482:self-dual connections 4469: 4421: 4376: 4356: 4336: 4308: 4285: 4202: 4179: 4152: 4085: 4053: 4006: 3975: 3944: 3913: 3889: 3865: 3841: 3817: 3793: 3747: 3723: 3696: 3664: 3641: 3450: 3418: 3398: 3353: 3333: 3310: 2709: 2613: 2593: 2564: 2514: 2494: 2454: 2359:Yang–Mills functional 2332: 2280: 2234:Yang–Mills connection 2199: 2148: 2100: 2049:acting on two-forms. 2040: 2020: 1962: 1856: 1854:{\displaystyle d_{A}} 1825: 1823:{\displaystyle L^{2}} 1798: 1774: 1735: 1638: 1636:{\displaystyle L^{2}} 1611: 1591: 1576:-valued two-forms on 1571: 1539: 1481: 1445: 1410: 1390: 1388:{\displaystyle d_{A}} 1360: 1340: 1320: 1285: 1261: 1259:{\displaystyle F_{A}} 1231: 1208: 1184: 1164: 1144: 1124: 1101: 1081: 1049: 1016: 1014:{\displaystyle L^{2}} 970: 950: 948:{\displaystyle F_{A}} 919: 855: 828: 766: 740: 707: 609: 541: 445: 443:{\displaystyle F_{A}} 410: 375: 325: 298: 171:differential geometry 6316:Mathematical physics 5986: 5958: 5902: 5856: 5808: 5775: 5737: 5708: 5649: 5612: 5579: 5526: 5494: 5467: 5408: 5385: 5356: 5327: 5300: 5220: 5194: 5161: 5157:. For example, when 5141: 5133:with respect to the 5093: 5057: 5037: 4997: 4884: 4839: 4803: 4725: 4689: 4665: 4627: 4593: 4562: 4558:, and similarly for 4531: 4500: 4430: 4385: 4365: 4345: 4325: 4297: 4214: 4188: 4168: 4097: 4074: 4042: 3984: 3953: 3922: 3902: 3878: 3850: 3826: 3802: 3756: 3736: 3732:of automorphisms of 3708: 3679: 3653: 3462: 3427: 3407: 3387: 3378:gauge transformation 3376:. Mathematically, a 3342: 3322: 2734: 2625: 2602: 2591:{\displaystyle A+ta} 2573: 2527: 2503: 2479: 2370: 2296: 2246: 2162: 2125: 2061: 2029: 1975: 1868: 1838: 1807: 1787: 1747: 1650: 1620: 1600: 1580: 1548: 1490: 1458: 1434: 1419:admits an invariant 1399: 1372: 1349: 1329: 1297: 1274: 1243: 1220: 1197: 1173: 1153: 1133: 1113: 1090: 1070: 1038: 998: 992:as small as possible 959: 932: 864: 837: 775: 749: 716: 642: 572: 457: 427: 421:gauge field strength 399: 346: 314: 275: 179:Yang–Mills equations 5980:Chern–Simons theory 5976:configuration space 5950:Chern–Simons theory 5944:Chern–Simons theory 5938:affine Gaudin model 5917:{\displaystyle 2+1} 5679:Hitchin's equations 5639:Bogomolny equations 5447:Donaldson's theorem 5441:Donaldson's theorem 5247: 5209:{\displaystyle k=1} 4911: 4824: 3256: 2142: 2078: 2047:Hodge star operator 1992: 1936: 1417:compact Lie algebra 1290:with values in the 1149:denote a principal 1106:, for some compact 1064:Riemannian manifold 629:Riemannian manifold 555:equations of motion 334:(or in physics the 269:Maxwell's equations 261:Yang–Mills theories 228:Donaldson's theorem 6010: 5964: 5914: 5896:Tzitzeica equation 5884: 5838:integrable systems 5823: 5790: 5745: 5723: 5664: 5643:magnetic monopoles 5637:, one obtains the 5627: 5594: 5544: 5512: 5473: 5423: 5397:{\displaystyle k,} 5394: 5371: 5342: 5313: 5282: 5229: 5206: 5180: 5147: 5123: 5079: 5043: 5019: 4980: 4893: 4867: 4825: 4806: 4785: 4707: 4671: 4651: 4610: 4579: 4548: 4517: 4464: 4416: 4371: 4351: 4331: 4303: 4280: 4200:{\displaystyle -1} 4197: 4174: 4147: 4080: 4048: 4001: 3970: 3939: 3908: 3884: 3860: 3836: 3812: 3788: 3742: 3718: 3691: 3659: 3636: 3445: 3413: 3393: 3348: 3328: 3305: 3303: 3242: 2704: 2608: 2588: 2559: 2509: 2489: 2449: 2347:de Rham cohomology 2327: 2275: 2194: 2143: 2128: 2095: 2064: 2035: 2015: 1978: 1957: 1922: 1851: 1820: 1793: 1769: 1730: 1633: 1606: 1586: 1566: 1534: 1476: 1440: 1405: 1385: 1355: 1335: 1315: 1280: 1256: 1226: 1203: 1179: 1159: 1139: 1119: 1096: 1076: 1044: 1011: 965: 945: 914: 850: 823: 761: 735: 702: 604: 536: 440: 405: 370: 320: 293: 5842:Ward's conjecture 5802:ADHM construction 5476:{\displaystyle X} 5150:{\displaystyle X} 5135:intersection form 5046:{\displaystyle X} 4674:{\displaystyle X} 4381:satisfies either 4374:{\displaystyle X} 4354:{\displaystyle G} 4334:{\displaystyle A} 4177:{\displaystyle 1} 4083:{\displaystyle X} 4051:{\displaystyle X} 3911:{\displaystyle G} 3887:{\displaystyle A} 3745:{\displaystyle P} 3662:{\displaystyle A} 3416:{\displaystyle P} 3396:{\displaystyle g} 3351:{\displaystyle a} 3331:{\displaystyle A} 3016: 2823: 2754: 2717:To determine the 2611:{\displaystyle A} 2512:{\displaystyle P} 2473: 2472: 2218: 2217: 2119: 2118: 1796:{\displaystyle X} 1609:{\displaystyle X} 1589:{\displaystyle X} 1443:{\displaystyle X} 1408:{\displaystyle G} 1358:{\displaystyle A} 1338:{\displaystyle P} 1283:{\displaystyle X} 1229:{\displaystyle A} 1206:{\displaystyle P} 1182:{\displaystyle X} 1162:{\displaystyle G} 1142:{\displaystyle P} 1122:{\displaystyle G} 1099:{\displaystyle X} 1079:{\displaystyle G} 1047:{\displaystyle X} 968:{\displaystyle A} 928:if the curvature 926:Chern–Weil theory 897: 423:is the curvature 408:{\displaystyle A} 382:principal bundles 323:{\displaystyle G} 169:, and especially 86:coefficient of a 32:Yang–Mills theory 16:(Redirected from 6328: 6295: 6292: 6286: 6283: 6277: 6276: 6258: 6252: 6249: 6243: 6240: 6234: 6231: 6225: 6222: 6216: 6213: 6207: 6204: 6198: 6195: 6186: 6183: 6177: 6174: 6165: 6162: 6156: 6153: 6147: 6143: 6137: 6134: 6119: 6116: 6110: 6107: 6090: 6083: 6052:Donaldson theory 6019: 6017: 6016: 6011: 5973: 5971: 5970: 5965: 5923: 5921: 5920: 5915: 5894:ASDYM gives the 5893: 5891: 5890: 5885: 5880: 5866: 5832: 5830: 5829: 5824: 5822: 5821: 5816: 5799: 5797: 5796: 5791: 5789: 5788: 5783: 5754: 5752: 5751: 5746: 5744: 5732: 5730: 5729: 5724: 5722: 5721: 5716: 5673: 5671: 5670: 5665: 5663: 5662: 5657: 5636: 5634: 5633: 5628: 5626: 5625: 5620: 5603: 5601: 5600: 5595: 5593: 5592: 5587: 5553: 5551: 5550: 5545: 5543: 5542: 5537: 5521: 5519: 5518: 5513: 5511: 5510: 5505: 5482: 5480: 5479: 5474: 5432: 5430: 5429: 5424: 5403: 5401: 5400: 5395: 5380: 5378: 5377: 5372: 5370: 5369: 5364: 5351: 5349: 5348: 5343: 5341: 5340: 5335: 5322: 5320: 5319: 5314: 5312: 5311: 5291: 5289: 5288: 5283: 5260: 5259: 5246: 5241: 5236: 5235: 5215: 5213: 5212: 5207: 5189: 5187: 5186: 5181: 5179: 5178: 5156: 5154: 5153: 5148: 5132: 5130: 5129: 5124: 5119: 5105: 5104: 5088: 5086: 5085: 5080: 5069: 5068: 5052: 5050: 5049: 5044: 5028: 5026: 5025: 5020: 5009: 5008: 4989: 4987: 4986: 4981: 4967: 4966: 4945: 4944: 4910: 4905: 4900: 4899: 4876: 4874: 4873: 4868: 4851: 4850: 4834: 4832: 4831: 4826: 4823: 4818: 4813: 4812: 4794: 4792: 4791: 4786: 4784: 4773: 4759: 4758: 4737: 4736: 4716: 4714: 4713: 4708: 4683:simply-connected 4680: 4678: 4677: 4672: 4660: 4658: 4657: 4652: 4619: 4617: 4616: 4611: 4609: 4608: 4603: 4602: 4588: 4586: 4585: 4580: 4578: 4577: 4572: 4571: 4557: 4555: 4554: 4549: 4547: 4546: 4541: 4540: 4526: 4524: 4523: 4518: 4516: 4515: 4510: 4509: 4473: 4471: 4470: 4465: 4463: 4462: 4461: 4442: 4441: 4425: 4423: 4422: 4417: 4415: 4414: 4413: 4397: 4396: 4380: 4378: 4377: 4372: 4360: 4358: 4357: 4352: 4340: 4338: 4337: 4332: 4312: 4310: 4309: 4304: 4289: 4287: 4286: 4281: 4270: 4269: 4248: 4247: 4226: 4225: 4206: 4204: 4203: 4198: 4183: 4181: 4180: 4175: 4156: 4154: 4153: 4148: 4137: 4136: 4115: 4114: 4089: 4087: 4086: 4081: 4057: 4055: 4054: 4049: 4024:Riemann surfaces 4010: 4008: 4007: 4002: 4000: 3999: 3994: 3993: 3979: 3977: 3976: 3971: 3969: 3968: 3963: 3962: 3948: 3946: 3945: 3940: 3938: 3937: 3932: 3931: 3917: 3915: 3914: 3909: 3893: 3891: 3890: 3885: 3869: 3867: 3866: 3861: 3859: 3858: 3845: 3843: 3842: 3837: 3835: 3834: 3821: 3819: 3818: 3813: 3811: 3810: 3797: 3795: 3794: 3789: 3787: 3786: 3780: 3775: 3774: 3765: 3764: 3751: 3749: 3748: 3743: 3727: 3725: 3724: 3719: 3717: 3716: 3700: 3698: 3697: 3692: 3668: 3666: 3665: 3660: 3645: 3643: 3642: 3637: 3617: 3616: 3611: 3595: 3594: 3585: 3584: 3572: 3571: 3559: 3558: 3553: 3537: 3536: 3527: 3526: 3514: 3513: 3498: 3497: 3454: 3452: 3451: 3446: 3422: 3420: 3419: 3414: 3402: 3400: 3399: 3394: 3364:) is satisfied. 3357: 3355: 3354: 3349: 3337: 3335: 3334: 3329: 3314: 3312: 3311: 3306: 3304: 3297: 3296: 3291: 3266: 3265: 3255: 3250: 3238: 3237: 3219: 3215: 3214: 3203: 3199: 3198: 3197: 3192: 3176: 3175: 3154: 3153: 3126: 3125: 3113: 3112: 3091: 3090: 3078: 3077: 3056: 3055: 3046: 3045: 3033: 3032: 3017: 3015: 3004: 2996: 2992: 2991: 2980: 2976: 2975: 2974: 2969: 2941: 2940: 2925: 2924: 2908: 2907: 2886: 2885: 2870: 2869: 2853: 2852: 2840: 2839: 2824: 2822: 2811: 2802: 2801: 2790: 2786: 2755: 2753: 2742: 2713: 2711: 2710: 2705: 2691: 2690: 2675: 2674: 2659: 2658: 2646: 2645: 2617: 2615: 2614: 2609: 2598:of a connection 2597: 2595: 2594: 2589: 2568: 2566: 2565: 2560: 2555: 2554: 2539: 2538: 2518: 2516: 2515: 2510: 2498: 2496: 2495: 2490: 2488: 2487: 2467: 2458: 2456: 2455: 2450: 2445: 2444: 2439: 2423: 2422: 2413: 2412: 2400: 2399: 2364: 2336: 2334: 2333: 2328: 2317: 2316: 2289:, which satisfy 2284: 2282: 2281: 2276: 2268: 2267: 2258: 2257: 2241:Bianchi identity 2212: 2203: 2201: 2200: 2195: 2187: 2186: 2174: 2173: 2156: 2152: 2150: 2149: 2144: 2141: 2136: 2113: 2104: 2102: 2101: 2096: 2088: 2087: 2077: 2072: 2055: 2044: 2042: 2041: 2036: 2024: 2022: 2021: 2016: 2011: 2010: 1991: 1986: 1966: 1964: 1963: 1958: 1956: 1955: 1954: 1953: 1935: 1930: 1909: 1908: 1907: 1906: 1883: 1882: 1860: 1858: 1857: 1852: 1850: 1849: 1832:adjoint operator 1829: 1827: 1826: 1821: 1819: 1818: 1802: 1800: 1799: 1794: 1778: 1776: 1775: 1770: 1768: 1767: 1739: 1737: 1736: 1731: 1729: 1728: 1694: 1693: 1681: 1680: 1679: 1678: 1642: 1640: 1639: 1634: 1632: 1631: 1615: 1613: 1612: 1607: 1595: 1593: 1592: 1587: 1575: 1573: 1572: 1567: 1543: 1541: 1540: 1535: 1530: 1529: 1520: 1519: 1485: 1483: 1482: 1477: 1452:cotangent bundle 1449: 1447: 1446: 1441: 1414: 1412: 1411: 1406: 1394: 1392: 1391: 1386: 1384: 1383: 1364: 1362: 1361: 1356: 1344: 1342: 1341: 1336: 1324: 1322: 1321: 1316: 1289: 1287: 1286: 1281: 1265: 1263: 1262: 1257: 1255: 1254: 1235: 1233: 1232: 1227: 1212: 1210: 1209: 1204: 1188: 1186: 1185: 1180: 1168: 1166: 1165: 1160: 1148: 1146: 1145: 1140: 1128: 1126: 1125: 1120: 1105: 1103: 1102: 1097: 1085: 1083: 1082: 1077: 1053: 1051: 1050: 1045: 1020: 1018: 1017: 1012: 1010: 1009: 974: 972: 971: 966: 954: 952: 951: 946: 944: 943: 923: 921: 920: 915: 898: 890: 876: 875: 859: 857: 856: 851: 849: 848: 832: 830: 829: 824: 816: 815: 803: 802: 790: 789: 770: 768: 767: 762: 744: 742: 741: 736: 731: 730: 711: 709: 708: 703: 680: 679: 667: 666: 654: 653: 613: 611: 610: 605: 597: 596: 584: 583: 545: 543: 542: 537: 532: 531: 526: 510: 509: 500: 499: 487: 486: 449: 447: 446: 441: 439: 438: 414: 412: 411: 406: 379: 377: 376: 371: 329: 327: 326: 321: 303:gauge theory by 302: 300: 299: 294: 257:gauge invariance 195:principal bundle 181:are a system of 134:compactification 109:(top left). The 73: 64: 53: 44: 21: 6336: 6335: 6331: 6330: 6329: 6327: 6326: 6325: 6301: 6300: 6299: 6298: 6293: 6289: 6284: 6280: 6273: 6260: 6259: 6255: 6250: 6246: 6241: 6237: 6232: 6228: 6223: 6219: 6214: 6210: 6205: 6201: 6196: 6189: 6184: 6180: 6175: 6168: 6163: 6159: 6154: 6150: 6144: 6140: 6135: 6122: 6117: 6113: 6108: 6104: 6099: 6094: 6093: 6084: 6080: 6075: 6038: 5984: 5983: 5956: 5955: 5952: 5946: 5900: 5899: 5854: 5853: 5811: 5806: 5805: 5778: 5773: 5772: 5735: 5734: 5711: 5706: 5705: 5700:on an interval. 5652: 5647: 5646: 5641:which describe 5615: 5610: 5609: 5582: 5577: 5576: 5569: 5529: 5524: 5523: 5497: 5492: 5491: 5465: 5464: 5457:Karen Uhlenbeck 5453:Clifford Taubes 5449: 5443: 5438: 5406: 5405: 5383: 5382: 5359: 5354: 5353: 5330: 5325: 5324: 5303: 5298: 5297: 5251: 5218: 5217: 5192: 5191: 5170: 5159: 5158: 5139: 5138: 5096: 5091: 5090: 5060: 5055: 5054: 5035: 5034: 5000: 4995: 4994: 4958: 4936: 4882: 4881: 4842: 4837: 4836: 4801: 4800: 4750: 4728: 4723: 4722: 4687: 4686: 4663: 4662: 4625: 4624: 4596: 4591: 4590: 4565: 4560: 4559: 4534: 4529: 4528: 4503: 4498: 4497: 4453: 4433: 4428: 4427: 4405: 4388: 4383: 4382: 4363: 4362: 4343: 4342: 4341:on a principal 4323: 4322: 4295: 4294: 4261: 4239: 4217: 4212: 4211: 4186: 4185: 4166: 4165: 4128: 4106: 4095: 4094: 4072: 4071: 4068: 4040: 4039: 4036:Kähler manifold 3987: 3982: 3981: 3956: 3951: 3950: 3925: 3920: 3919: 3900: 3899: 3876: 3875: 3848: 3847: 3824: 3823: 3800: 3799: 3754: 3753: 3734: 3733: 3706: 3705: 3677: 3676: 3651: 3650: 3600: 3586: 3576: 3563: 3542: 3528: 3515: 3505: 3489: 3460: 3459: 3425: 3424: 3405: 3404: 3385: 3384: 3374:gauge invariant 3370: 3340: 3339: 3320: 3319: 3318:The connection 3302: 3301: 3280: 3257: 3229: 3217: 3216: 3181: 3167: 3145: 3117: 3104: 3082: 3069: 3047: 3037: 3024: 3023: 3019: 3018: 3008: 2994: 2993: 2958: 2932: 2916: 2899: 2877: 2861: 2844: 2831: 2830: 2826: 2825: 2815: 2803: 2761: 2757: 2756: 2746: 2732: 2731: 2719:critical points 2682: 2666: 2650: 2628: 2623: 2622: 2600: 2599: 2571: 2570: 2530: 2525: 2524: 2501: 2500: 2477: 2476: 2465: 2428: 2414: 2404: 2391: 2368: 2367: 2355: 2308: 2294: 2293: 2259: 2249: 2244: 2243: 2210: 2178: 2165: 2160: 2159: 2123: 2122: 2111: 2079: 2059: 2058: 2027: 2026: 2002: 1973: 1972: 1945: 1940: 1898: 1893: 1874: 1866: 1865: 1841: 1836: 1835: 1810: 1805: 1804: 1785: 1784: 1759: 1745: 1744: 1720: 1685: 1670: 1665: 1648: 1647: 1623: 1618: 1617: 1598: 1597: 1578: 1577: 1546: 1545: 1521: 1511: 1488: 1487: 1456: 1455: 1432: 1431: 1397: 1396: 1375: 1370: 1369: 1347: 1346: 1327: 1326: 1295: 1294: 1272: 1271: 1246: 1241: 1240: 1218: 1217: 1195: 1194: 1171: 1170: 1151: 1150: 1131: 1130: 1111: 1110: 1088: 1087: 1068: 1067: 1036: 1035: 1032: 1023:critical points 1001: 996: 995: 977:flat connection 957: 956: 935: 930: 929: 867: 862: 861: 840: 835: 834: 807: 794: 778: 773: 772: 747: 746: 745:for the bundle 722: 714: 713: 671: 658: 645: 640: 639: 620: 588: 575: 570: 569: 515: 501: 491: 478: 455: 454: 430: 425: 424: 415:(in physics, a 397: 396: 344: 343: 332:structure group 312: 311: 273: 272: 241: 236: 224:Simon Donaldson 159: 158: 157: 156: 114: 103: 84: 76: 75: 74: 66: 65: 56: 55: 54: 46: 45: 34: 28: 23: 22: 15: 12: 11: 5: 6334: 6332: 6324: 6323: 6318: 6313: 6303: 6302: 6297: 6296: 6287: 6278: 6271: 6253: 6244: 6235: 6226: 6217: 6208: 6199: 6187: 6178: 6166: 6157: 6148: 6138: 6120: 6111: 6101: 6100: 6098: 6095: 6092: 6091: 6077: 6076: 6074: 6071: 6070: 6069: 6064: 6059: 6054: 6049: 6044: 6037: 6034: 6009: 6006: 6003: 6000: 5997: 5994: 5991: 5982:on a cylinder 5963: 5948:Main article: 5945: 5942: 5913: 5910: 5907: 5883: 5879: 5875: 5872: 5869: 5865: 5862: 5820: 5815: 5787: 5782: 5743: 5720: 5715: 5702: 5701: 5698:Nahm equations 5694: 5691:Hitchin system 5675: 5661: 5656: 5624: 5619: 5591: 5586: 5568: 5565: 5541: 5536: 5533: 5509: 5504: 5501: 5472: 5445:Main article: 5442: 5439: 5437: 5434: 5422: 5419: 5416: 5413: 5393: 5390: 5368: 5363: 5339: 5334: 5310: 5306: 5294:BPST instanton 5281: 5278: 5275: 5272: 5269: 5266: 5263: 5258: 5254: 5250: 5245: 5240: 5234: 5228: 5225: 5205: 5202: 5199: 5177: 5173: 5169: 5166: 5146: 5122: 5118: 5114: 5111: 5108: 5103: 5099: 5078: 5075: 5072: 5067: 5063: 5042: 5018: 5015: 5012: 5007: 5003: 4991: 4990: 4979: 4976: 4973: 4970: 4965: 4961: 4957: 4954: 4951: 4948: 4943: 4939: 4935: 4932: 4929: 4926: 4923: 4920: 4917: 4914: 4909: 4904: 4898: 4892: 4889: 4866: 4863: 4860: 4857: 4854: 4849: 4845: 4822: 4817: 4811: 4783: 4779: 4776: 4772: 4768: 4765: 4762: 4757: 4753: 4749: 4746: 4743: 4740: 4735: 4731: 4706: 4703: 4700: 4697: 4694: 4670: 4650: 4647: 4644: 4641: 4638: 4635: 4632: 4607: 4601: 4576: 4570: 4545: 4539: 4514: 4508: 4460: 4456: 4452: 4448: 4445: 4440: 4436: 4412: 4408: 4404: 4400: 4395: 4391: 4370: 4350: 4330: 4319:anti-self-dual 4302: 4291: 4290: 4279: 4276: 4273: 4268: 4264: 4260: 4257: 4254: 4251: 4246: 4242: 4238: 4235: 4232: 4229: 4224: 4220: 4196: 4193: 4173: 4159: 4158: 4146: 4143: 4140: 4135: 4131: 4127: 4124: 4121: 4118: 4113: 4109: 4105: 4102: 4079: 4067: 4064: 4047: 4030:. This is the 4016:Michael Atiyah 3998: 3992: 3967: 3961: 3936: 3930: 3907: 3883: 3857: 3833: 3809: 3785: 3779: 3773: 3768: 3763: 3741: 3715: 3690: 3687: 3684: 3658: 3647: 3646: 3635: 3632: 3629: 3626: 3623: 3620: 3615: 3610: 3607: 3604: 3599: 3593: 3589: 3583: 3579: 3575: 3570: 3566: 3562: 3557: 3552: 3549: 3546: 3541: 3535: 3531: 3525: 3522: 3518: 3512: 3508: 3504: 3501: 3496: 3492: 3488: 3485: 3482: 3479: 3476: 3473: 3470: 3467: 3444: 3441: 3438: 3435: 3432: 3412: 3392: 3369: 3366: 3347: 3327: 3316: 3315: 3300: 3295: 3290: 3287: 3284: 3279: 3275: 3272: 3269: 3264: 3260: 3254: 3249: 3245: 3241: 3236: 3232: 3228: 3225: 3222: 3220: 3218: 3213: 3210: 3207: 3202: 3196: 3191: 3188: 3185: 3180: 3174: 3170: 3166: 3163: 3160: 3157: 3152: 3148: 3144: 3141: 3138: 3135: 3132: 3129: 3124: 3120: 3116: 3111: 3107: 3103: 3100: 3097: 3094: 3089: 3085: 3081: 3076: 3072: 3068: 3065: 3062: 3059: 3054: 3050: 3044: 3040: 3036: 3031: 3027: 3022: 3014: 3011: 3007: 3002: 2999: 2997: 2995: 2990: 2987: 2984: 2979: 2973: 2968: 2965: 2962: 2957: 2953: 2950: 2947: 2944: 2939: 2935: 2931: 2928: 2923: 2919: 2914: 2911: 2906: 2902: 2898: 2895: 2892: 2889: 2884: 2880: 2876: 2873: 2868: 2864: 2859: 2856: 2851: 2847: 2843: 2838: 2834: 2829: 2821: 2818: 2814: 2809: 2806: 2804: 2800: 2797: 2794: 2789: 2785: 2782: 2779: 2776: 2773: 2770: 2767: 2764: 2760: 2752: 2749: 2745: 2740: 2739: 2715: 2714: 2703: 2700: 2697: 2694: 2689: 2685: 2681: 2678: 2673: 2669: 2665: 2662: 2657: 2653: 2649: 2644: 2641: 2638: 2635: 2631: 2607: 2587: 2584: 2581: 2578: 2558: 2553: 2548: 2545: 2542: 2537: 2533: 2508: 2486: 2471: 2470: 2461: 2459: 2448: 2443: 2438: 2435: 2432: 2427: 2421: 2417: 2411: 2407: 2403: 2398: 2394: 2390: 2387: 2384: 2381: 2378: 2375: 2354: 2351: 2339: 2338: 2326: 2323: 2320: 2315: 2311: 2307: 2304: 2301: 2274: 2271: 2266: 2262: 2256: 2252: 2232:) is called a 2216: 2215: 2206: 2204: 2193: 2190: 2185: 2181: 2177: 2172: 2168: 2140: 2135: 2131: 2117: 2116: 2107: 2105: 2094: 2091: 2086: 2082: 2076: 2071: 2067: 2034: 2014: 2009: 2005: 2001: 1998: 1995: 1990: 1985: 1981: 1969: 1968: 1952: 1948: 1943: 1939: 1934: 1929: 1925: 1921: 1918: 1915: 1912: 1905: 1901: 1896: 1892: 1889: 1886: 1881: 1877: 1873: 1861:is defined by 1848: 1844: 1817: 1813: 1792: 1766: 1762: 1758: 1755: 1752: 1741: 1740: 1727: 1723: 1719: 1716: 1713: 1709: 1706: 1703: 1700: 1697: 1692: 1688: 1684: 1677: 1673: 1668: 1664: 1661: 1658: 1655: 1630: 1626: 1605: 1585: 1565: 1562: 1559: 1556: 1553: 1533: 1528: 1524: 1518: 1514: 1510: 1507: 1504: 1501: 1498: 1495: 1475: 1472: 1469: 1466: 1463: 1439: 1404: 1382: 1378: 1354: 1334: 1314: 1311: 1308: 1305: 1302: 1292:adjoint bundle 1279: 1253: 1249: 1238:curvature form 1225: 1202: 1178: 1158: 1138: 1118: 1095: 1075: 1043: 1031: 1028: 1008: 1004: 964: 942: 938: 913: 910: 907: 904: 901: 896: 893: 888: 885: 882: 879: 874: 870: 847: 843: 822: 819: 814: 810: 806: 801: 797: 793: 788: 785: 781: 760: 757: 754: 734: 729: 725: 721: 701: 698: 695: 692: 689: 686: 683: 678: 674: 670: 665: 661: 657: 652: 648: 625:tangent bundle 619: 616: 615: 614: 603: 600: 595: 591: 587: 582: 578: 547: 546: 535: 530: 525: 522: 519: 514: 508: 504: 498: 494: 490: 485: 481: 477: 474: 471: 468: 465: 462: 437: 433: 404: 369: 366: 363: 360: 357: 354: 351: 319: 305:Wolfgang Pauli 292: 289: 286: 283: 280: 253:gauge symmetry 249:Chen-Ning Yang 240: 237: 235: 232: 112: 101: 88:BPST instanton 82: 78: 77: 68: 67: 59: 58: 57: 48: 47: 39: 38: 37: 36: 35: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6333: 6322: 6319: 6317: 6314: 6312: 6309: 6308: 6306: 6291: 6288: 6282: 6279: 6274: 6272:9780198570639 6268: 6264: 6257: 6254: 6248: 6245: 6239: 6236: 6230: 6227: 6221: 6218: 6212: 6209: 6203: 6200: 6194: 6192: 6188: 6182: 6179: 6173: 6171: 6167: 6161: 6158: 6152: 6149: 6142: 6139: 6133: 6131: 6129: 6127: 6125: 6121: 6115: 6112: 6106: 6103: 6096: 6088: 6082: 6079: 6072: 6068: 6065: 6063: 6060: 6058: 6055: 6053: 6050: 6048: 6045: 6043: 6040: 6039: 6035: 6033: 6031: 6027: 6026:Nigel Hitchin 6023: 6004: 6001: 5998: 5992: 5981: 5977: 5951: 5943: 5941: 5939: 5935: 5931: 5927: 5911: 5908: 5905: 5897: 5873: 5870: 5851: 5847: 5843: 5839: 5834: 5818: 5803: 5785: 5768: 5766: 5762: 5761:rational maps 5758: 5718: 5699: 5695: 5692: 5688: 5687:Higgs bundles 5684: 5680: 5676: 5659: 5644: 5640: 5622: 5607: 5606: 5605: 5589: 5574: 5566: 5564: 5562: 5559:surpassed by 5556: 5539: 5507: 5490: 5486: 5470: 5462: 5458: 5454: 5448: 5435: 5433: 5420: 5417: 5414: 5411: 5391: 5388: 5366: 5337: 5308: 5304: 5295: 5279: 5276: 5273: 5270: 5267: 5264: 5256: 5252: 5243: 5238: 5226: 5223: 5203: 5200: 5197: 5175: 5171: 5167: 5164: 5144: 5136: 5112: 5109: 5101: 5097: 5073: 5065: 5061: 5040: 5032: 5029:is the first 5013: 5005: 5001: 4971: 4963: 4959: 4955: 4949: 4941: 4937: 4933: 4930: 4924: 4921: 4918: 4915: 4912: 4907: 4902: 4890: 4887: 4880: 4879: 4878: 4864: 4861: 4855: 4847: 4843: 4820: 4815: 4798: 4777: 4766: 4763: 4755: 4751: 4747: 4741: 4733: 4729: 4720: 4701: 4695: 4692: 4684: 4668: 4645: 4639: 4636: 4633: 4630: 4621: 4605: 4574: 4543: 4512: 4495: 4491: 4487: 4483: 4479: 4478: 4458: 4454: 4450: 4446: 4443: 4438: 4434: 4410: 4406: 4402: 4398: 4393: 4389: 4368: 4348: 4328: 4320: 4316: 4300: 4274: 4266: 4258: 4252: 4244: 4236: 4230: 4222: 4210: 4209: 4208: 4194: 4191: 4171: 4164: 4141: 4133: 4119: 4111: 4103: 4100: 4093: 4092: 4091: 4077: 4065: 4063: 4061: 4045: 4037: 4033: 4029: 4025: 4021: 4017: 4012: 3996: 3965: 3934: 3905: 3897: 3881: 3873: 3777: 3766: 3739: 3731: 3702: 3688: 3685: 3682: 3674: 3673: 3656: 3630: 3624: 3621: 3618: 3613: 3597: 3591: 3581: 3577: 3568: 3564: 3560: 3555: 3539: 3533: 3523: 3520: 3516: 3510: 3506: 3502: 3494: 3490: 3486: 3480: 3477: 3474: 3468: 3465: 3458: 3457: 3456: 3439: 3433: 3430: 3410: 3390: 3383: 3379: 3375: 3367: 3365: 3363: 3362: 3345: 3325: 3298: 3293: 3277: 3270: 3267: 3262: 3258: 3252: 3247: 3243: 3234: 3230: 3226: 3223: 3221: 3211: 3208: 3205: 3200: 3194: 3178: 3172: 3164: 3161: 3158: 3150: 3146: 3142: 3136: 3133: 3130: 3127: 3122: 3118: 3109: 3105: 3101: 3098: 3092: 3087: 3083: 3079: 3074: 3070: 3063: 3060: 3057: 3052: 3042: 3038: 3029: 3025: 3020: 3012: 3009: 3005: 3000: 2998: 2988: 2985: 2982: 2977: 2971: 2955: 2948: 2945: 2942: 2937: 2933: 2929: 2926: 2921: 2917: 2912: 2909: 2904: 2900: 2896: 2893: 2890: 2887: 2882: 2878: 2874: 2871: 2866: 2862: 2857: 2854: 2849: 2845: 2836: 2832: 2827: 2819: 2816: 2812: 2807: 2805: 2798: 2795: 2792: 2787: 2780: 2777: 2774: 2771: 2765: 2762: 2758: 2750: 2747: 2743: 2730: 2729: 2728: 2726: 2725: 2720: 2701: 2698: 2695: 2692: 2687: 2683: 2679: 2676: 2671: 2667: 2663: 2660: 2655: 2651: 2647: 2642: 2639: 2636: 2633: 2629: 2621: 2620: 2619: 2605: 2585: 2582: 2579: 2576: 2546: 2543: 2535: 2522: 2506: 2469: 2462: 2460: 2446: 2441: 2425: 2419: 2409: 2405: 2396: 2392: 2388: 2382: 2376: 2373: 2366: 2365: 2362: 2361:, defined by 2360: 2352: 2350: 2348: 2344: 2324: 2321: 2318: 2313: 2309: 2305: 2302: 2299: 2292: 2291: 2290: 2288: 2272: 2269: 2264: 2260: 2254: 2250: 2242: 2237: 2235: 2231: 2230: 2225: 2224: 2214: 2207: 2205: 2191: 2188: 2183: 2179: 2175: 2170: 2166: 2158: 2157: 2154: 2138: 2133: 2129: 2115: 2108: 2106: 2092: 2089: 2084: 2080: 2074: 2069: 2065: 2057: 2056: 2053: 2050: 2048: 2032: 2012: 2007: 2003: 1999: 1996: 1993: 1988: 1983: 1979: 1950: 1946: 1937: 1932: 1927: 1923: 1919: 1916: 1910: 1903: 1899: 1890: 1887: 1884: 1879: 1875: 1864: 1863: 1862: 1846: 1842: 1833: 1815: 1811: 1803:. Using this 1790: 1782: 1764: 1760: 1756: 1753: 1750: 1725: 1721: 1717: 1714: 1711: 1704: 1701: 1698: 1690: 1686: 1682: 1675: 1671: 1662: 1659: 1656: 1646: 1645: 1644: 1628: 1624: 1603: 1583: 1560: 1554: 1551: 1531: 1526: 1522: 1516: 1508: 1502: 1496: 1493: 1470: 1464: 1461: 1453: 1437: 1428: 1426: 1422: 1421:inner product 1418: 1402: 1380: 1376: 1368: 1352: 1332: 1309: 1303: 1300: 1293: 1277: 1269: 1266:, which is a 1251: 1247: 1239: 1223: 1216: 1200: 1192: 1176: 1169:-bundle over 1156: 1136: 1116: 1109: 1093: 1086:-bundle over 1073: 1065: 1061: 1057: 1041: 1029: 1027: 1024: 1006: 1002: 993: 988: 986: 983:, which is a 982: 981:Chern classes 978: 962: 940: 936: 927: 908: 905: 902: 894: 891: 886: 883: 880: 877: 872: 868: 845: 841: 820: 812: 808: 804: 799: 795: 791: 786: 783: 779: 758: 752: 727: 723: 693: 687: 684: 681: 676: 672: 663: 655: 650: 646: 636: 634: 630: 626: 617: 601: 598: 593: 589: 585: 580: 576: 568: 567: 566: 564: 563:derived below 560: 556: 552: 533: 528: 512: 506: 496: 492: 483: 479: 475: 469: 463: 460: 453: 452: 451: 435: 431: 422: 418: 402: 394: 390: 385: 383: 364: 358: 352: 349: 341: 337: 333: 330:, called the 317: 310: 306: 287: 281: 270: 266: 265:James Maxwell 262: 258: 254: 250: 246: 238: 233: 231: 229: 225: 221: 217: 216: 211: 206: 204: 200: 196: 192: 191:vector bundle 188: 184: 180: 176: 172: 168: 164: 154: 150: 146: 142: 138: 135: 131: 127: 123: 119: 115: 108: 105:is the third 104: 97: 93: 89: 85: 72: 63: 52: 43: 33: 19: 6290: 6281: 6262: 6256: 6247: 6238: 6229: 6220: 6211: 6202: 6181: 6160: 6151: 6141: 6114: 6105: 6081: 5953: 5835: 5769: 5703: 5572: 5570: 5557: 5450: 5436:Applications 5031:Betti number 4992: 4622: 4493: 4489: 4485: 4481: 4475: 4318: 4314: 4292: 4160: 4069: 4013: 3703: 3670: 3648: 3382:automorphism 3377: 3371: 3359: 3317: 2722: 2716: 2521:affine space 2474: 2463: 2358: 2356: 2343:Hodge theory 2340: 2238: 2233: 2227: 2221: 2219: 2208: 2120: 2109: 2051: 1970: 1742: 1429: 1033: 991: 989: 976: 637: 621: 548: 420: 416: 392: 388: 386: 335: 331: 260: 256: 252: 245:Robert Mills 242: 220:moduli space 213: 209: 207: 202: 178: 175:gauge theory 160: 152: 144: 140: 136: 129: 125: 122:g=2, ρ=1,z=0 121: 117: 110: 107:Pauli matrix 99: 95: 91: 80: 5930:gauge group 5846:sine-Gordon 5767:to itself. 5757:Werner Nahm 4719:Chern class 4474:, then by ( 4163:eigenvalues 3730:gauge group 3675:), so does 3669:satisfies ( 2727:), compute 618:Mathematics 417:gauge field 336:gauge group 167:mathematics 6305:Categories 6097:References 4020:Raoul Bott 3752:. The set 3649:and so if 2353:Derivation 1423:under the 1191:connection 1030:Definition 234:Motivation 215:instantons 187:connection 94:-slice of 5993:× 5990:Σ 5962:Σ 5763:from the 5485:cobordism 5418:− 5271:− 5244:− 5227:⁡ 4934:− 4922:− 4908:− 4891:⁡ 4821:− 4778:≅ 4748:∈ 4696:⁡ 4640:⁡ 4606:± 4575:± 4544:− 4451:⋆ 4447:− 4403:⋆ 4315:self-dual 4301:⋆ 4267:− 4263:Ω 4259:⊕ 4241:Ω 4219:Ω 4192:− 4130:Ω 4126:→ 4108:Ω 4101:⋆ 3997:∗ 3966:∗ 3935:∗ 3872:Hausdorff 3686:⋅ 3625:⁡ 3588:‖ 3574:‖ 3565:∫ 3530:‖ 3521:− 3500:‖ 3491:∫ 3478:⋅ 3469:⁡ 3434:⁡ 3274:⟩ 3253:∗ 3240:⟨ 3231:∫ 3169:‖ 3162:∧ 3156:‖ 3140:⟩ 3134:∧ 3115:⟨ 3096:⟩ 3067:⟨ 3049:‖ 3035:‖ 3026:∫ 2952:⟩ 2946:∧ 2891:∧ 2842:⟨ 2833:∫ 2766:⁡ 2696:∧ 2532:Ω 2416:‖ 2402:‖ 2393:∫ 2377:⁡ 2319:ω 2314:∗ 2303:ω 2176:⋆ 2139:∗ 2075:∗ 2033:⋆ 2013:⋆ 2000:⋆ 1997:± 1989:∗ 1942:⟩ 1933:∗ 1914:⟨ 1895:⟩ 1872:⟨ 1708:⟩ 1696:⟨ 1687:∫ 1667:⟩ 1654:⟨ 1555:⁡ 1527:∗ 1513:Λ 1509:⊗ 1497:⁡ 1465:⁡ 1304:⁡ 1189:. Then a 1108:Lie group 846:α 818:→ 813:β 805:∩ 800:α 787:β 784:α 756:→ 728:α 688:⁡ 677:α 660:Ω 656:∈ 651:α 586:⋆ 503:‖ 489:‖ 480:∫ 464:⁡ 359:⁡ 309:Lie group 282:⁡ 226:to prove 149:Uhlenbeck 6146:523–615. 6036:See also 5936:and the 5689:and the 5483:gives a 5461:definite 4877:, to be 4492:and the 3896:holonomy 1596:. Since 1268:two-form 1060:oriented 5683:Hitchin 2045:is the 1779:is the 1056:compact 239:Physics 201:of the 163:physics 132:on the 90:on the 6269:  6030:Witten 5840:, and 5053:, and 4993:where 4313:, the 3894:whose 3380:is an 2519:is an 2226:) or ( 2025:where 1430:Since 1365:is an 389:fields 338:, see 218:. The 185:for a 177:, the 98:where 6073:Notes 5852:, of 1054:be a 975:is a 627:to a 189:on a 120:with 92:(x,x) 6267:ISBN 5848:and 5733:and 5455:and 5190:and 4661:and 4589:and 4527:and 4317:and 4184:and 4018:and 3980:and 3728:the 2721:of ( 1034:Let 549:The 255:and 247:and 173:and 165:and 111:dx⊗σ 81:dx⊗σ 79:The 5978:of 5645:on 5224:dim 5137:on 5033:of 4888:dim 4681:is 4620:. 4484:or 4426:or 3870:is 3846:or 3701:. 1834:of 1783:of 1544:of 1325:of 1270:on 1193:on 267:on 212:or 193:or 161:In 139:of 126:z=0 6307:: 6190:^ 6169:^ 6123:^ 6032:. 5940:. 5563:. 5421:3. 4721:, 4693:SU 4637:SU 4062:. 4011:. 3622:YM 3466:YM 3431:ad 2763:YM 2374:YM 2236:. 2192:0. 2093:0. 1552:ad 1494:ad 1462:ad 1427:. 1301:ad 1062:, 1058:, 685:ad 602:0. 565:: 461:YM 384:. 230:. 6275:. 6089:. 6008:] 6005:1 6002:, 5999:0 5996:[ 5912:1 5909:+ 5906:2 5882:) 5878:R 5874:, 5871:3 5868:( 5864:L 5861:S 5819:4 5814:R 5786:4 5781:R 5742:R 5719:3 5714:R 5693:. 5674:. 5660:3 5655:R 5623:4 5618:R 5590:4 5585:R 5540:2 5535:P 5532:C 5508:2 5503:P 5500:C 5471:X 5415:k 5412:8 5392:, 5389:k 5367:4 5362:R 5338:4 5333:R 5309:4 5305:S 5280:5 5277:= 5274:3 5268:8 5265:= 5262:) 5257:4 5253:S 5249:( 5239:1 5233:M 5204:1 5201:= 5198:k 5176:4 5172:S 5168:= 5165:X 5145:X 5121:) 5117:R 5113:, 5110:X 5107:( 5102:2 5098:H 5077:) 5074:X 5071:( 5066:+ 5062:b 5041:X 5017:) 5014:X 5011:( 5006:1 5002:b 4978:) 4975:) 4972:X 4969:( 4964:+ 4960:b 4956:+ 4953:) 4950:X 4947:( 4942:1 4938:b 4931:1 4928:( 4925:3 4919:k 4916:8 4913:= 4903:k 4897:M 4865:k 4862:= 4859:) 4856:P 4853:( 4848:2 4844:c 4816:k 4810:M 4782:Z 4775:) 4771:Z 4767:, 4764:X 4761:( 4756:4 4752:H 4745:) 4742:P 4739:( 4734:2 4730:c 4705:) 4702:2 4699:( 4669:X 4649:) 4646:2 4643:( 4634:= 4631:G 4600:M 4569:B 4538:A 4513:+ 4507:A 4477:2 4459:A 4455:F 4444:= 4439:A 4435:F 4411:A 4407:F 4399:= 4394:A 4390:F 4369:X 4349:G 4329:A 4278:) 4275:X 4272:( 4256:) 4253:X 4250:( 4245:+ 4237:= 4234:) 4231:X 4228:( 4223:2 4195:1 4172:1 4157:. 4145:) 4142:X 4139:( 4134:2 4123:) 4120:X 4117:( 4112:2 4104:: 4078:X 4046:X 3991:M 3960:B 3929:A 3906:G 3882:A 3856:M 3832:B 3808:M 3784:G 3778:/ 3772:A 3767:= 3762:B 3740:P 3714:G 3689:A 3683:g 3672:1 3657:A 3634:) 3631:A 3628:( 3619:= 3614:g 3609:l 3606:o 3603:v 3598:d 3592:2 3582:A 3578:F 3569:X 3561:= 3556:g 3551:l 3548:o 3545:v 3540:d 3534:2 3524:1 3517:g 3511:A 3507:F 3503:g 3495:X 3487:= 3484:) 3481:A 3475:g 3472:( 3443:) 3440:P 3437:( 3411:P 3391:g 3361:1 3346:a 3326:A 3299:. 3294:g 3289:l 3286:o 3283:v 3278:d 3271:a 3268:, 3263:A 3259:F 3248:A 3244:d 3235:X 3227:2 3224:= 3212:0 3209:= 3206:t 3201:) 3195:g 3190:l 3187:o 3184:v 3179:d 3173:2 3165:a 3159:a 3151:4 3147:t 3143:+ 3137:a 3131:a 3128:, 3123:A 3119:F 3110:2 3106:t 3102:2 3099:+ 3093:a 3088:A 3084:d 3080:, 3075:A 3071:F 3064:t 3061:2 3058:+ 3053:2 3043:A 3039:F 3030:X 3021:( 3013:t 3010:d 3006:d 3001:= 2989:0 2986:= 2983:t 2978:) 2972:g 2967:l 2964:o 2961:v 2956:d 2949:a 2943:a 2938:2 2934:t 2930:+ 2927:a 2922:A 2918:d 2913:t 2910:+ 2905:A 2901:F 2897:, 2894:a 2888:a 2883:2 2879:t 2875:+ 2872:a 2867:A 2863:d 2858:t 2855:+ 2850:A 2846:F 2837:X 2828:( 2820:t 2817:d 2813:d 2808:= 2799:0 2796:= 2793:t 2788:) 2784:) 2781:a 2778:t 2775:+ 2772:A 2769:( 2759:( 2751:t 2748:d 2744:d 2724:3 2702:. 2699:a 2693:a 2688:2 2684:t 2680:+ 2677:a 2672:A 2668:d 2664:t 2661:+ 2656:A 2652:F 2648:= 2643:a 2640:t 2637:+ 2634:A 2630:F 2606:A 2586:a 2583:t 2580:+ 2577:A 2557:) 2552:g 2547:; 2544:P 2541:( 2536:1 2507:P 2485:A 2468:) 2466:3 2464:( 2447:. 2442:g 2437:l 2434:o 2431:v 2426:d 2420:2 2410:A 2406:F 2397:X 2389:= 2386:) 2383:A 2380:( 2337:. 2325:0 2322:= 2310:d 2306:= 2300:d 2273:0 2270:= 2265:A 2261:F 2255:A 2251:d 2229:2 2223:1 2213:) 2211:2 2209:( 2189:= 2184:A 2180:F 2171:A 2167:d 2134:A 2130:d 2114:) 2112:1 2110:( 2090:= 2085:A 2081:F 2070:A 2066:d 2008:A 2004:d 1994:= 1984:A 1980:d 1967:. 1951:2 1947:L 1938:t 1928:A 1924:d 1920:, 1917:s 1911:= 1904:2 1900:L 1891:t 1888:, 1885:s 1880:A 1876:d 1847:A 1843:d 1816:2 1812:L 1791:X 1765:g 1761:l 1757:o 1754:v 1751:d 1726:g 1722:l 1718:o 1715:v 1712:d 1705:t 1702:, 1699:s 1691:X 1683:= 1676:2 1672:L 1663:t 1660:, 1657:s 1629:2 1625:L 1604:X 1584:X 1564:) 1561:P 1558:( 1532:X 1523:T 1517:2 1506:) 1503:P 1500:( 1474:) 1471:P 1468:( 1438:X 1403:G 1381:A 1377:d 1353:A 1333:P 1313:) 1310:P 1307:( 1278:X 1252:A 1248:F 1224:A 1201:P 1177:X 1157:G 1137:P 1117:G 1094:X 1074:G 1042:X 1007:2 1003:L 963:A 941:A 937:F 912:] 909:A 906:, 903:A 900:[ 895:2 892:1 887:+ 884:A 881:d 878:= 873:A 869:F 842:A 821:G 809:U 796:U 792:: 780:g 759:X 753:P 733:} 724:U 720:{ 700:) 697:) 694:P 691:( 682:, 673:U 669:( 664:1 647:A 599:= 594:A 590:F 581:A 577:d 534:. 529:g 524:l 521:o 518:v 513:d 507:2 497:A 493:F 484:X 476:= 473:) 470:A 467:( 436:A 432:F 403:A 368:) 365:1 362:( 356:U 353:= 350:G 318:G 291:) 288:1 285:( 279:U 155:. 153:S 145:R 141:R 137:S 130:z 118:A 113:3 102:3 100:σ 96:R 83:3 20:)

Index

Atiyah–Hitchin–Singer theorem
Yang–Mills theory




BPST instanton
Pauli matrix
compactification
Uhlenbeck
physics
mathematics
differential geometry
gauge theory
partial differential equations
connection
vector bundle
principal bundle
Euler–Lagrange equations
instantons
moduli space
Simon Donaldson
Donaldson's theorem
Robert Mills
Chen-Ning Yang
James Maxwell
Maxwell's equations
Wolfgang Pauli
Lie group
Gauge group (mathematics)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.