Knowledge (XXG)

Atiyah algebroid

Source đź“ť

2097:
While any transitive Lie groupoid is isomorphic to some gauge groupoid, not all transitive Lie algebroids are Atiyah algebroids of some principal bundle. Integrability is the crucial property to distinguish the two concepts: a transitive Lie algebroid is integrable if and only if it is isomorphic to
2396: 269: 897: 483: 2264: 1832: 687: 2059: 1383: 1338: 802: 2502: 1911: 1600: 2440: 2142: 713: 1280: 1794: 405: 932: 1070: 1689: 1239: 2196: 2169: 1996: 1866: 1766: 1658: 1568: 1210: 1169: 1013: 1630: 555: 373: 2269: 650: 532: 2083: 2021: 1969: 1933: 1738: 1716: 1540: 1505: 1483: 1457: 1435: 1409: 1300: 1139: 1114: 1092: 1042: 986: 957: 822: 761: 739: 623: 601: 579: 506: 347: 327: 190: 160: 126: 104: 79: 56: 2090:
Note that these two properties are independent. Integrable Lie algebroids does not need to be transitive; conversely, transitive Lie algebroids (often called
827: 17: 1508:-invariant vertical vector fields. In algebraic or analytic contexts, it is often convenient to view the Atiyah sequence as an exact sequence of 2647: 2628: 199: 2584:
Janusz Grabowski; Alexei Kotov & Norbert Poncin (2011), "Geometric structures encoded in the lie structure of an Atiyah algebroid",
413: 2201: 626: 350: 1801: 656: 2027: 1348: 1306: 770: 282: 285:. It plays a crucial example in the integrability of (transitive) Lie algebroids, and it has applications in 1873: 2445: 1575: 1387: 2705: 2676: 2112: 694: 164: 1244: 2408: 1509: 290: 2522: 1773: 2666: 2593: 378: 2657:
Tom Mestdag & Bavo Langerock (2005), "A Lie algebroid framework for non-holonomic systems",
903: 1049: 2643: 2624: 2544: 1695: 1665: 1215: 2684: 2603: 2570: 2534: 2175: 2148: 1975: 1845: 1745: 1637: 1547: 1178: 1148: 992: 279: 36: 1609: 537: 355: 2107: 509: 16:"Atiyah sequence" redirects here. For the spectral sequence of Atiyah and Hirzebruch, see 2680: 632: 514: 2068: 2006: 1954: 1918: 1723: 1701: 1525: 1490: 1468: 1442: 1420: 1394: 1285: 1124: 1099: 1077: 1027: 971: 942: 807: 765: 746: 724: 608: 586: 564: 491: 332: 312: 275: 175: 168: 145: 111: 89: 64: 41: 2575: 2539: 2699: 2688: 1142: 134: 1838: 1016: 307: 286: 138: 1461: 1413: 717: 24: 1390:
of the vector bundles. More precisely, the sections of the Atiyah algebroid of
2607: 2548: 2198:. Similarly, the curvatures of such connections correspond to the two forms 629:
on the vector bundles in this sequence. Moreover, since the vertical bundle
130: 2561:
Michael F. Atiyah (1957), "Complex analytic connections in fibre bundles",
2391:{\displaystyle \Omega _{\sigma }(X,Y):=_{A}-\sigma (_{{\mathfrak {X}}(M)})} 83: 1302:-invariant. Last, the kernel of the anchor is isomorphic precisely to 2671: 443: 264:{\displaystyle 0\to P\times _{G}{\mathfrak {g}}\to TP/G\to TM\to 0.} 892:{\displaystyle 0\to P\times _{G}{\mathfrak {g}}\to TP/G\to TM\to 0} 278:, who introduced the construction to study the existence theory of 2612: 2598: 478:{\displaystyle 0\to VP\to TP{\xrightarrow {d\pi }}\pi ^{*}TM\to 0} 2642:, London Mathematical Society lecture notes, vol. 213, CUP, 2623:, London Mathematical Society lecture notes, vol. 124, CUP, 1464:, which is an extension of the Lie algebra of vector fields on 2172:
are in bijective correspondence with principal connections on
2024:
and its isotropy Lie algebra bundle is the associated bundle
1797:
of the action at an arbitrary point, is the action algebroid
1355: 824:
of the exact sequence above yields a short exact sequence:
2621:
Lie groupoids and Lie algebroids in differential geometry
1095:, with source and target given by the two projections of 2442:
of principal bundles induces a Lie algebroid morphism
1045:, and whose morphisms are elements of the quotient of 2448: 2411: 2272: 2259:{\displaystyle \Omega _{\sigma }\in \Omega ^{2}(M,P)} 2204: 2178: 2151: 2115: 2071: 2030: 2009: 1978: 1957: 1921: 1876: 1848: 1804: 1776: 1748: 1726: 1704: 1668: 1640: 1612: 1578: 1550: 1528: 1493: 1471: 1445: 1423: 1397: 1351: 1344:
The Atiyah sequence yields a short exact sequence of
1309: 1288: 1247: 1218: 1181: 1151: 1127: 1102: 1080: 1052: 1030: 995: 974: 945: 906: 830: 810: 773: 749: 727: 697: 659: 635: 611: 589: 567: 540: 517: 494: 416: 381: 358: 335: 315: 202: 178: 148: 114: 92: 67: 44: 2640:General theory of lie groupoids and lie algebroids 2496: 2434: 2390: 2258: 2190: 2163: 2136: 2077: 2053: 2015: 1990: 1963: 1927: 1905: 1860: 1826: 1788: 1760: 1732: 1710: 1683: 1652: 1624: 1594: 1562: 1534: 1499: 1477: 1451: 1429: 1403: 1377: 1332: 1294: 1274: 1233: 1204: 1163: 1133: 1108: 1086: 1064: 1036: 1007: 980: 951: 926: 891: 816: 796: 755: 733: 707: 681: 644: 617: 595: 573: 549: 526: 500: 477: 399: 367: 341: 321: 263: 184: 154: 120: 98: 73: 50: 2527:Transactions of the American Mathematical Society 2523:"Complex analytic connections in fibre bundles" 2098:the Atiyah algebroid of some principal bundle. 1741:, the Atiyah algebroid of the principal bundle 2002:Transitive (so its unique orbit is the entire 2144:of the Atiyah sequence of a principal bundle 8: 1827:{\displaystyle {\mathfrak {h}}\times M\to M} 1619: 1613: 682:{\displaystyle P\times {\mathfrak {g}}\to P} 2054:{\displaystyle P\times _{G}{\mathfrak {g}}} 1914:(sometimes also called Atiyah algebroid of 1378:{\displaystyle {\mathcal {C}}^{\infty }(M)} 1333:{\displaystyle P\times _{G}{\mathfrak {g}}} 797:{\displaystyle P\times _{G}{\mathfrak {g}}} 652:is isomorphic to the trivial vector bundle 163:. Explicitly, it is given by the following 2504:between the respective Atiyah algebroids. 1769:, with structure group the isotropy group 2670: 2597: 2574: 2538: 2481: 2464: 2447: 2410: 2368: 2367: 2366: 2335: 2277: 2271: 2244: 2243: 2222: 2209: 2203: 2177: 2150: 2114: 2070: 2045: 2044: 2038: 2029: 2008: 1977: 1956: 1920: 1877: 1875: 1847: 1806: 1805: 1803: 1775: 1747: 1725: 1703: 1667: 1639: 1611: 1580: 1579: 1577: 1549: 1527: 1492: 1470: 1444: 1422: 1396: 1360: 1354: 1353: 1350: 1324: 1323: 1317: 1308: 1287: 1246: 1217: 1194: 1180: 1150: 1126: 1101: 1079: 1051: 1029: 994: 973: 944: 910: 905: 866: 851: 850: 844: 829: 809: 788: 787: 781: 772: 748: 726: 699: 698: 696: 667: 666: 658: 634: 610: 588: 566: 539: 516: 493: 457: 438: 415: 380: 357: 334: 314: 238: 223: 222: 216: 201: 177: 147: 113: 91: 66: 43: 18:Atiyah–Hirzebruch spectral sequence 2513: 1906:{\displaystyle \mathrm {Der} (E)\to M} 1605:The Atiyah algebroid of the principal 1521:The Atiyah algebroid of the principal 2064:Integrable (to the gauge groupoid of 1512:of local sections of vector bundles. 7: 2497:{\displaystyle d\phi :TP/G\to TP/G'} 1950:The Atiyah algebroid of a principal 1595:{\displaystyle {\mathfrak {g}}\to *} 2369: 2245: 2046: 1807: 1581: 1325: 852: 789: 700: 668: 224: 2274: 2219: 2206: 2094:) are not necessarily integrable. 1884: 1881: 1878: 1361: 14: 2576:10.1090/s0002-9947-1957-0086359-5 2540:10.1090/S0002-9947-1957-0086359-5 804:. In conclusion, the quotient by 1869:is the general linear algebroid 1386:-modules by taking the space of 407:defines a short exact sequence: 2137:{\displaystyle \sigma :TM\to A} 742:, its quotient by the diagonal 708:{\displaystyle {\mathfrak {g}}} 2472: 2421: 2385: 2380: 2374: 2363: 2350: 2347: 2332: 2328: 2322: 2313: 2307: 2301: 2295: 2283: 2253: 2250: 2240: 2228: 2182: 2155: 2128: 1982: 1946:Transitivity and integrability 1897: 1894: 1888: 1852: 1818: 1752: 1675: 1644: 1586: 1554: 1372: 1366: 1275:{\displaystyle d\pi :TP\to TM} 1263: 1222: 1155: 1023:, whose objects are points of 999: 883: 874: 857: 834: 673: 469: 429: 420: 391: 255: 246: 229: 206: 1: 2435:{\displaystyle \phi :P\to P'} 1241:is given by the differential 1837:The Atiyah algebroid of the 1789:{\displaystyle H\subseteq G} 1438:-invariant vector fields on 400:{\displaystyle \pi :P\to M} 2722: 2689:10.1088/0305-4470/38/5/011 2102:Relations with connections 1073:by the diagonal action of 967:Recall that any principal 927:{\displaystyle P/G\cong M} 15: 2638:Kirill Mackenzie (2005), 2619:Kirill Mackenzie (1987), 2608:10.1007/s00031-011-9126-9 2092:abstract Atiyah sequences 1661:is the tangent algebroid 1065:{\displaystyle P\times P} 604:-bundle, then the group 2563:Trans. Amer. Math. Soc. 1684:{\displaystyle TM\to M} 1234:{\displaystyle A\to TM} 1212:, while the anchor map 1172:of its gauge groupoid. 899:of vector bundles over 488:of vector bundles over 2659:J. Phys. A: Math. Gen. 2521:Atiyah, M. F. (1957). 2498: 2436: 2392: 2260: 2192: 2191:{\displaystyle P\to M} 2165: 2164:{\displaystyle P\to M} 2138: 2079: 2055: 2017: 1992: 1991:{\displaystyle P\to M} 1965: 1929: 1907: 1862: 1861:{\displaystyle E\to M} 1828: 1790: 1762: 1761:{\displaystyle G\to M} 1734: 1712: 1685: 1654: 1653:{\displaystyle M\to M} 1626: 1596: 1564: 1563:{\displaystyle G\to *} 1536: 1501: 1479: 1453: 1431: 1405: 1379: 1334: 1296: 1276: 1235: 1206: 1205:{\displaystyle A=TP/G} 1165: 1164:{\displaystyle A\to M} 1135: 1110: 1088: 1066: 1038: 1009: 1008:{\displaystyle P\to M} 982: 953: 935:, which is called the 928: 893: 818: 798: 757: 735: 709: 683: 646: 619: 597: 575: 551: 528: 502: 479: 401: 369: 343: 323: 265: 186: 156: 122: 100: 75: 52: 2586:Transformation Groups 2499: 2437: 2393: 2261: 2193: 2166: 2139: 2080: 2056: 2018: 1993: 1966: 1930: 1908: 1863: 1829: 1791: 1763: 1735: 1713: 1686: 1655: 1627: 1625:{\displaystyle \{e\}} 1597: 1565: 1537: 1502: 1480: 1454: 1432: 1406: 1380: 1335: 1297: 1277: 1236: 1207: 1166: 1136: 1117:. By definition, the 1111: 1089: 1067: 1039: 1010: 983: 954: 929: 894: 819: 799: 758: 736: 710: 684: 647: 620: 598: 576: 552: 550:{\displaystyle d\pi } 529: 503: 480: 402: 370: 368:{\displaystyle d\pi } 344: 324: 266: 187: 157: 123: 101: 76: 53: 2446: 2409: 2270: 2202: 2176: 2149: 2113: 2069: 2028: 2007: 1976: 1955: 1919: 1874: 1846: 1802: 1774: 1746: 1724: 1702: 1666: 1638: 1610: 1576: 1548: 1526: 1491: 1469: 1443: 1421: 1395: 1349: 1307: 1286: 1245: 1216: 1179: 1149: 1125: 1100: 1078: 1050: 1028: 993: 972: 943: 904: 828: 808: 771: 747: 725: 695: 657: 633: 609: 587: 565: 538: 515: 492: 414: 379: 356: 333: 313: 200: 176: 165:short exact sequence 146: 112: 90: 65: 42: 2681:2005JPhA...38.1097M 1841:of a vector bundle 1571:is the Lie algebra 450: 291:geometric mechanics 2494: 2432: 2388: 2256: 2188: 2161: 2134: 2075: 2051: 2013: 1988: 1961: 1925: 1903: 1858: 1824: 1786: 1758: 1730: 1708: 1681: 1650: 1622: 1592: 1560: 1532: 1497: 1475: 1449: 1427: 1401: 1375: 1330: 1292: 1272: 1231: 1202: 1161: 1131: 1106: 1084: 1062: 1034: 1015:has an associated 1005: 978: 963:As a Lie algebroid 949: 924: 889: 814: 794: 753: 731: 705: 679: 645:{\displaystyle VP} 642: 615: 593: 571: 547: 527:{\displaystyle VP} 524: 498: 475: 397: 375:of the projection 365: 339: 319: 274:It is named after 261: 182: 152: 118: 96: 71: 48: 2649:978-0-521-49928-6 2630:978-0-521-34882-9 2078:{\displaystyle P} 2016:{\displaystyle M} 1964:{\displaystyle G} 1928:{\displaystyle E} 1733:{\displaystyle M} 1711:{\displaystyle G} 1535:{\displaystyle G} 1500:{\displaystyle G} 1478:{\displaystyle M} 1452:{\displaystyle P} 1430:{\displaystyle G} 1404:{\displaystyle P} 1295:{\displaystyle G} 1134:{\displaystyle P} 1109:{\displaystyle M} 1087:{\displaystyle G} 1037:{\displaystyle M} 981:{\displaystyle G} 952:{\displaystyle P} 817:{\displaystyle G} 756:{\displaystyle G} 734:{\displaystyle G} 618:{\displaystyle G} 596:{\displaystyle G} 574:{\displaystyle P} 534:is the kernel of 501:{\displaystyle P} 451: 342:{\displaystyle M} 322:{\displaystyle P} 185:{\displaystyle M} 155:{\displaystyle P} 121:{\displaystyle G} 99:{\displaystyle M} 74:{\displaystyle P} 51:{\displaystyle G} 2713: 2691: 2674: 2652: 2633: 2610: 2601: 2579: 2578: 2553: 2552: 2542: 2518: 2503: 2501: 2500: 2495: 2493: 2485: 2468: 2441: 2439: 2438: 2433: 2431: 2397: 2395: 2394: 2389: 2384: 2383: 2373: 2372: 2340: 2339: 2282: 2281: 2265: 2263: 2262: 2257: 2249: 2248: 2227: 2226: 2214: 2213: 2197: 2195: 2194: 2189: 2170: 2168: 2167: 2162: 2143: 2141: 2140: 2135: 2084: 2082: 2081: 2076: 2060: 2058: 2057: 2052: 2050: 2049: 2043: 2042: 2022: 2020: 2019: 2014: 1997: 1995: 1994: 1989: 1970: 1968: 1967: 1962: 1934: 1932: 1931: 1926: 1912: 1910: 1909: 1904: 1887: 1867: 1865: 1864: 1859: 1833: 1831: 1830: 1825: 1811: 1810: 1795: 1793: 1792: 1787: 1767: 1765: 1764: 1759: 1739: 1737: 1736: 1731: 1717: 1715: 1714: 1709: 1690: 1688: 1687: 1682: 1659: 1657: 1656: 1651: 1631: 1629: 1628: 1623: 1601: 1599: 1598: 1593: 1585: 1584: 1569: 1567: 1566: 1561: 1541: 1539: 1538: 1533: 1506: 1504: 1503: 1498: 1484: 1482: 1481: 1476: 1458: 1456: 1455: 1450: 1436: 1434: 1433: 1428: 1410: 1408: 1407: 1402: 1384: 1382: 1381: 1376: 1365: 1364: 1359: 1358: 1339: 1337: 1336: 1331: 1329: 1328: 1322: 1321: 1301: 1299: 1298: 1293: 1281: 1279: 1278: 1273: 1240: 1238: 1237: 1232: 1211: 1209: 1208: 1203: 1198: 1175:It follows that 1170: 1168: 1167: 1162: 1140: 1138: 1137: 1132: 1119:Atiyah algebroid 1115: 1113: 1112: 1107: 1093: 1091: 1090: 1085: 1071: 1069: 1068: 1063: 1043: 1041: 1040: 1035: 1014: 1012: 1011: 1006: 987: 985: 984: 979: 958: 956: 955: 950: 933: 931: 930: 925: 914: 898: 896: 895: 890: 870: 856: 855: 849: 848: 823: 821: 820: 815: 803: 801: 800: 795: 793: 792: 786: 785: 762: 760: 759: 754: 740: 738: 737: 732: 714: 712: 711: 706: 704: 703: 688: 686: 685: 680: 672: 671: 651: 649: 648: 643: 624: 622: 621: 616: 602: 600: 599: 594: 580: 578: 577: 572: 556: 554: 553: 548: 533: 531: 530: 525: 507: 505: 504: 499: 484: 482: 481: 476: 462: 461: 452: 439: 406: 404: 403: 398: 374: 372: 371: 366: 348: 346: 345: 340: 329:over a manifold 328: 326: 325: 320: 280:complex analytic 270: 268: 267: 262: 242: 228: 227: 221: 220: 191: 189: 188: 183: 161: 159: 158: 153: 127: 125: 124: 119: 105: 103: 102: 97: 80: 78: 77: 72: 57: 55: 54: 49: 29:Atiyah algebroid 2721: 2720: 2716: 2715: 2714: 2712: 2711: 2710: 2696: 2695: 2656: 2650: 2637: 2631: 2618: 2613:arXiv:0905.1226 2611:, available as 2583: 2560: 2557: 2556: 2520: 2519: 2515: 2510: 2486: 2444: 2443: 2424: 2407: 2406: 2403: 2362: 2331: 2273: 2268: 2267: 2218: 2205: 2200: 2199: 2174: 2173: 2147: 2146: 2111: 2110: 2104: 2067: 2066: 2034: 2026: 2025: 2005: 2004: 1974: 1973: 1953: 1952: 1948: 1943: 1917: 1916: 1872: 1871: 1844: 1843: 1800: 1799: 1772: 1771: 1744: 1743: 1722: 1721: 1700: 1699: 1664: 1663: 1636: 1635: 1608: 1607: 1574: 1573: 1546: 1545: 1524: 1523: 1518: 1489: 1488: 1467: 1466: 1441: 1440: 1419: 1418: 1393: 1392: 1352: 1347: 1346: 1313: 1305: 1304: 1284: 1283: 1243: 1242: 1214: 1213: 1177: 1176: 1147: 1146: 1123: 1122: 1098: 1097: 1076: 1075: 1048: 1047: 1026: 1025: 991: 990: 970: 969: 965: 941: 940: 937:Atiyah sequence 902: 901: 840: 826: 825: 806: 805: 777: 769: 768: 745: 744: 723: 722: 693: 692: 655: 654: 631: 630: 607: 606: 585: 584: 582:is a principal 563: 562: 536: 535: 513: 512: 510:vertical bundle 490: 489: 453: 412: 411: 377: 376: 354: 353: 331: 330: 311: 310: 304: 299: 212: 198: 197: 174: 173: 144: 143: 110: 109: 88: 87: 63: 62: 40: 39: 33:Atiyah sequence 21: 12: 11: 5: 2719: 2717: 2709: 2708: 2698: 2697: 2694: 2693: 2654: 2648: 2635: 2629: 2616: 2581: 2555: 2554: 2533:(1): 181–207. 2512: 2511: 2509: 2506: 2492: 2489: 2484: 2480: 2477: 2474: 2471: 2467: 2463: 2460: 2457: 2454: 2451: 2430: 2427: 2423: 2420: 2417: 2414: 2402: 2399: 2387: 2382: 2379: 2376: 2371: 2365: 2361: 2358: 2355: 2352: 2349: 2346: 2343: 2338: 2334: 2330: 2327: 2324: 2321: 2318: 2315: 2312: 2309: 2306: 2303: 2300: 2297: 2294: 2291: 2288: 2285: 2280: 2276: 2255: 2252: 2247: 2242: 2239: 2236: 2233: 2230: 2225: 2221: 2217: 2212: 2208: 2187: 2184: 2181: 2160: 2157: 2154: 2133: 2130: 2127: 2124: 2121: 2118: 2103: 2100: 2088: 2087: 2074: 2062: 2048: 2041: 2037: 2033: 2012: 1987: 1984: 1981: 1960: 1947: 1944: 1942: 1939: 1938: 1937: 1924: 1902: 1899: 1896: 1893: 1890: 1886: 1883: 1880: 1857: 1854: 1851: 1835: 1823: 1820: 1817: 1814: 1809: 1785: 1782: 1779: 1757: 1754: 1751: 1729: 1707: 1692: 1680: 1677: 1674: 1671: 1649: 1646: 1643: 1621: 1618: 1615: 1603: 1591: 1588: 1583: 1559: 1556: 1553: 1531: 1517: 1514: 1496: 1474: 1448: 1426: 1400: 1374: 1371: 1368: 1363: 1357: 1327: 1320: 1316: 1312: 1291: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1250: 1230: 1227: 1224: 1221: 1201: 1197: 1193: 1190: 1187: 1184: 1160: 1157: 1154: 1130: 1105: 1083: 1061: 1058: 1055: 1033: 1021:gauge groupoid 1004: 1001: 998: 977: 964: 961: 948: 923: 920: 917: 913: 909: 888: 885: 882: 879: 876: 873: 869: 865: 862: 859: 854: 847: 843: 839: 836: 833: 813: 791: 784: 780: 776: 766:adjoint bundle 764:action is the 752: 730: 702: 678: 675: 670: 665: 662: 641: 638: 614: 592: 570: 546: 543: 523: 520: 497: 486: 485: 474: 471: 468: 465: 460: 456: 449: 446: 442: 437: 434: 431: 428: 425: 422: 419: 396: 393: 390: 387: 384: 364: 361: 338: 318: 303: 300: 298: 295: 276:Michael Atiyah 272: 271: 260: 257: 254: 251: 248: 245: 241: 237: 234: 231: 226: 219: 215: 211: 208: 205: 181: 169:vector bundles 151: 117: 95: 70: 47: 13: 10: 9: 6: 4: 3: 2: 2718: 2707: 2704: 2703: 2701: 2690: 2686: 2682: 2678: 2673: 2668: 2665:: 1097–1111, 2664: 2660: 2655: 2651: 2645: 2641: 2636: 2632: 2626: 2622: 2617: 2614: 2609: 2605: 2600: 2595: 2591: 2587: 2582: 2577: 2572: 2568: 2564: 2559: 2558: 2550: 2546: 2541: 2536: 2532: 2528: 2524: 2517: 2514: 2507: 2505: 2490: 2487: 2482: 2478: 2475: 2469: 2465: 2461: 2458: 2455: 2452: 2449: 2428: 2425: 2418: 2415: 2412: 2405:Any morphism 2400: 2398: 2377: 2359: 2356: 2353: 2344: 2341: 2336: 2325: 2319: 2316: 2310: 2304: 2298: 2292: 2289: 2286: 2278: 2237: 2234: 2231: 2223: 2215: 2210: 2185: 2179: 2171: 2158: 2152: 2131: 2125: 2122: 2119: 2116: 2109: 2101: 2099: 2095: 2093: 2086: 2072: 2063: 2039: 2035: 2031: 2023: 2010: 2001: 2000: 1999: 1985: 1979: 1971: 1958: 1945: 1940: 1935: 1922: 1913: 1900: 1891: 1868: 1855: 1849: 1840: 1836: 1834: 1821: 1815: 1812: 1796: 1783: 1780: 1777: 1768: 1755: 1749: 1740: 1727: 1718: 1705: 1697: 1693: 1691: 1678: 1672: 1669: 1660: 1647: 1641: 1632: 1616: 1604: 1602: 1589: 1570: 1557: 1551: 1542: 1529: 1520: 1519: 1515: 1513: 1511: 1507: 1494: 1485: 1472: 1463: 1459: 1446: 1437: 1424: 1415: 1411: 1398: 1389: 1385: 1369: 1342: 1340: 1318: 1314: 1310: 1289: 1269: 1266: 1260: 1257: 1254: 1251: 1248: 1228: 1225: 1219: 1199: 1195: 1191: 1188: 1185: 1182: 1173: 1171: 1158: 1152: 1144: 1143:Lie algebroid 1128: 1120: 1116: 1103: 1094: 1081: 1072: 1059: 1056: 1053: 1044: 1031: 1022: 1019:, called its 1018: 1002: 996: 988: 975: 962: 960: 946: 938: 934: 921: 918: 915: 911: 907: 886: 880: 877: 871: 867: 863: 860: 845: 841: 837: 831: 811: 782: 778: 774: 767: 763: 750: 741: 728: 719: 715: 689: 676: 663: 660: 639: 636: 628: 625: 612: 603: 590: 581: 568: 558: 544: 541: 521: 518: 511: 495: 472: 466: 463: 458: 454: 447: 444: 440: 435: 432: 426: 423: 417: 410: 409: 408: 394: 388: 385: 382: 362: 359: 352: 336: 316: 309: 302:As a sequence 301: 296: 294: 292: 288: 284: 281: 277: 258: 252: 249: 243: 239: 235: 232: 217: 213: 209: 203: 196: 195: 194: 192: 179: 170: 166: 162: 149: 140: 137:of the gauge 136: 135:Lie algebroid 132: 128: 115: 106: 93: 85: 81: 68: 60: 58: 45: 34: 30: 26: 19: 2706:Lie algebras 2672:math/0410460 2662: 2658: 2639: 2620: 2589: 2585: 2566: 2562: 2530: 2526: 2516: 2404: 2145: 2105: 2096: 2091: 2089: 2065: 2003: 1951: 1949: 1915: 1870: 1842: 1839:frame bundle 1798: 1770: 1742: 1720: 1698: 1662: 1634: 1606: 1572: 1544: 1522: 1487: 1465: 1439: 1417: 1391: 1345: 1343: 1303: 1174: 1145: 1118: 1096: 1074: 1046: 1024: 1020: 1017:Lie groupoid 968: 966: 936: 900: 743: 721: 691: 653: 605: 583: 561: 559: 508:, where the 487: 351:differential 308:fiber bundle 305: 287:gauge theory 273: 172: 142: 108: 86: 61: 38: 32: 28: 22: 2592:: 137–160, 2569:: 181–207, 2266:defined by: 1998:is always: 1719:-action on 1462:Lie bracket 1414:Lie algebra 1282:, which is 718:Lie algebra 297:Definitions 283:connections 25:mathematics 2508:References 2108:splittings 1941:Properties 1696:transitive 37:principal 2599:0905.1226 2549:0002-9947 2473:→ 2453:ϕ 2422:→ 2413:ϕ 2401:Morphisms 2345:σ 2342:− 2320:σ 2305:σ 2279:σ 2275:Ω 2220:Ω 2216:∈ 2211:σ 2207:Ω 2183:→ 2156:→ 2129:→ 2117:σ 2036:× 1983:→ 1898:→ 1853:→ 1819:→ 1813:× 1781:⊆ 1753:→ 1676:→ 1645:→ 1590:∗ 1587:→ 1558:∗ 1555:→ 1362:∞ 1315:× 1264:→ 1252:π 1223:→ 1156:→ 1057:× 1000:→ 919:≅ 884:→ 875:→ 858:→ 842:× 835:→ 779:× 674:→ 664:× 545:π 470:→ 459:∗ 455:π 448:π 430:→ 421:→ 392:→ 383:π 363:π 256:→ 247:→ 230:→ 214:× 207:→ 133:, is the 131:Lie group 2700:Category 2491:′ 2429:′ 1972:-bundle 1694:Given a 1633:-bundle 1543:-bundle 1516:Examples 1388:sections 989:-bundle 690:, where 441:→ 306:For any 139:groupoid 107:, where 84:manifold 2677:Bibcode 1510:sheaves 1486:by the 1412:is the 1141:is the 716:is the 82:over a 59:-bundle 35:, of a 2646:  2627:  2547:  2106:Right 1460:under 349:, the 27:, the 2667:arXiv 2594:arXiv 171:over 129:is a 31:, or 2644:ISBN 2625:ISBN 2545:ISSN 627:acts 289:and 2685:doi 2604:doi 2571:doi 2535:doi 1416:of 1121:of 939:of 720:of 560:If 167:of 141:of 23:In 2702:: 2683:, 2675:, 2663:38 2661:, 2602:, 2590:16 2588:, 2567:85 2565:, 2543:. 2531:85 2529:. 2525:. 2299::= 1341:. 959:. 557:. 293:. 259:0. 193:: 2692:. 2687:: 2679:: 2669:: 2653:. 2634:. 2615:. 2606:: 2596:: 2580:. 2573:: 2551:. 2537:: 2488:G 2483:/ 2479:P 2476:T 2470:G 2466:/ 2462:P 2459:T 2456:: 2450:d 2426:P 2419:P 2416:: 2386:) 2381:) 2378:M 2375:( 2370:X 2364:] 2360:Y 2357:, 2354:X 2351:[ 2348:( 2337:A 2333:] 2329:) 2326:Y 2323:( 2317:, 2314:) 2311:X 2308:( 2302:[ 2296:) 2293:Y 2290:, 2287:X 2284:( 2254:) 2251:] 2246:g 2241:[ 2238:P 2235:, 2232:M 2229:( 2224:2 2186:M 2180:P 2159:M 2153:P 2132:A 2126:M 2123:T 2120:: 2085:) 2073:P 2061:) 2047:g 2040:G 2032:P 2011:M 1986:M 1980:P 1959:G 1936:) 1923:E 1901:M 1895:) 1892:E 1889:( 1885:r 1882:e 1879:D 1856:M 1850:E 1822:M 1816:M 1808:h 1784:G 1778:H 1756:M 1750:G 1728:M 1706:G 1679:M 1673:M 1670:T 1648:M 1642:M 1620:} 1617:e 1614:{ 1582:g 1552:G 1530:G 1495:G 1473:M 1447:P 1425:G 1399:P 1373:) 1370:M 1367:( 1356:C 1326:g 1319:G 1311:P 1290:G 1270:M 1267:T 1261:P 1258:T 1255:: 1249:d 1229:M 1226:T 1220:A 1200:G 1196:/ 1192:P 1189:T 1186:= 1183:A 1159:M 1153:A 1129:P 1104:M 1082:G 1060:P 1054:P 1032:M 1003:M 997:P 976:G 947:P 922:M 916:G 912:/ 908:P 887:0 881:M 878:T 872:G 868:/ 864:P 861:T 853:g 846:G 838:P 832:0 812:G 790:g 783:G 775:P 751:G 729:G 701:g 677:P 669:g 661:P 640:P 637:V 613:G 591:G 569:P 542:d 522:P 519:V 496:P 473:0 467:M 464:T 445:d 436:P 433:T 427:P 424:V 418:0 395:M 389:P 386:: 360:d 337:M 317:P 253:M 250:T 244:G 240:/ 236:P 233:T 225:g 218:G 210:P 204:0 180:M 150:P 116:G 94:M 69:P 46:G 20:.

Index

Atiyah–Hirzebruch spectral sequence
mathematics
principal G {\displaystyle G} -bundle
manifold
Lie group
Lie algebroid
groupoid
short exact sequence
vector bundles
Michael Atiyah
complex analytic
connections
gauge theory
geometric mechanics
fiber bundle
differential
vertical bundle
acts
Lie algebra
adjoint bundle
Lie groupoid
Lie algebroid
sections
Lie algebra
Lie bracket
sheaves
transitive
frame bundle
splittings
"Complex analytic connections in fibre bundles"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑