Knowledge

Atmospheric model

Source đź“ť

560:, used to predict the future state of the atmosphere. These equations are initialized from the analysis data and rates of change are determined. These rates of change predict the state of the atmosphere a short time into the future, with each time increment known as a time step. The equations are then applied to this new atmospheric state to find new rates of change, and these new rates of change predict the atmosphere at a yet further time into the future. 307: 1157: 525: 31: 512:. Reconnaissance aircraft are also flown over the open oceans during the cold season into systems which cause significant uncertainty in forecast guidance, or are expected to be of high impact from three to seven days into the future over the downstream continent. Sea ice began to be initialized in forecast models in 1971. Efforts to involve 640:, by processes of various sophistication. In the earliest models, if a column of air in a model gridbox was unstable (i.e., the bottom warmer than the top) then it would be overturned, and the air in that vertical column mixed. More sophisticated schemes add enhancements, recognizing that only some portions of the box might 425: 1069:
technique, which assumes that the output of numerical weather prediction guidance is perfect. MOS can correct for local effects that cannot be resolved by the model due to insufficient grid resolution, as well as model biases. Forecast parameters within MOS include maximum and minimum temperatures,
685:
models, or LAMs. Regional models use finer grid spacing to resolve explicitly smaller-scale meteorological phenomena, since their smaller domain decreases computational demands. Regional models use a compatible global model for initial conditions of the edge of their domain. Uncertainty and errors
664:
The amount of solar radiation reaching ground level in rugged terrain, or due to variable cloudiness, is parameterized as this process occurs on the molecular scale. Also, the grid size of the models is large when compared to the actual size and roughness of clouds and topography. Sun angle as well
143:
Forecasts are computed using mathematical equations for the physics and dynamics of the atmosphere. These equations are nonlinear and are impossible to solve exactly. Therefore, numerical methods obtain approximate solutions. Different models use different solution methods. Global models often use
297:
for air assuming it is incompressible, or elastically, meaning it solves the complete continuity equation for air and is fully compressible. Nonhydrostatic models use altitude or sigma altitude for their vertical coordinates. Altitude coordinates can intersect land while sigma-altitude coordinates
292:
vertical coordinates. Pressure coordinates intersect topography while sigma coordinates follow the contour of the land. Its hydrostatic assumption is reasonable as long as horizontal grid resolution is not small, which is a scale where the hydrostatic assumption fails. Models which use the entire
945:
is a regional climate model developed at the Danish Meteorological Institute and the Alfred Wegener Institute in Potsdam. It is also based on the HIRLAM dynamics with physical schemes based on those in the ECHAM model. Like the RACMO model HIRHAM has been used widely in many different parts of the
3461:
Edward N. Rappaport; James L. Franklin; Lixion A. Avila; Stephen R. Baig; John L. Beven II; Eric S. Blake; Christopher A. Burr; Jiann-Gwo Jiing; Christopher A. Juckins; Richard D. Knabb; Christopher W. Landsea; Michelle Mainelli; Max Mayfield; Colin J. McAdie; Richard J. Pasch; Christopher Sisko;
1049:
Because forecast models based upon the equations for atmospheric dynamics do not perfectly determine weather conditions near the ground, statistical corrections were developed to attempt to resolve this problem. Statistical models were created based upon the three-dimensional fields produced by
912:
model developed by a large consortium of European weather forecastign and research institutes . It is a model system that like WRF can be run in many configurations, including at high resolution with the non-hydrostatic Arome physics or at lower resolutions with hydrostatic physics based on the
540: 595:
partial differential equations which are impossible to solve exactly through analytical methods, with the exception of a few idealized cases. Therefore, numerical methods obtain approximate solutions. Different models use different solution methods: some global models use
1120:
in the model's atmosphere gave a roughly 2 Â°C rise in global temperature. Several other kinds of computer models gave similar results: it was impossible to make a model that gave something resembling the actual climate and not have the temperature rise when the
992:
is a comprehensive multi-scale nonhydrostatic simulation and prediction system that can be used for regional-scale weather prediction up to the tornado-scale simulation and prediction. Advanced radar data assimilation for thunderstorm prediction is a key part of the
665:
as the impact of multiple cloud layers is taken into account. Soil type, vegetation type, and soil moisture all determine how much radiation goes into warming and how much moisture is drawn up into the adjacent atmosphere. Thus, they are important to parameterize.
1033:
The Meso-NH Model is a limited-area non-hydrostatic model developed jointly by the Centre National de Recherches Météorologiques and the Laboratoire d'Aérologie (France, Toulouse) since 1998. Its application is from mesoscale to centimetric scales weather
265:. This latter equation can be solved over a single layer of the atmosphere. Since the atmosphere at a height of approximately 5.5 kilometres (3.4 mi) is mostly divergence-free, the barotropic model best approximates the state of the atmosphere at a 1136:. The latest update (version 3.1) of the standalone CAM was issued on 1 February 2006. In 1986, efforts began to initialize and model soil and vegetation types, resulting in more realistic forecasts. Coupled ocean-atmosphere climate models, such as the 644:
and that entrainment and other processes occur. Weather models that have gridboxes with sides between 5 kilometres (3.1 mi) and 25 kilometres (16 mi) can explicitly represent convective clouds, although they still need to parameterize
958:
operates over the North American domain. NCEP began using this designation system in January 2005. Between January 2005 and May 2006 the Eta model used this designation. Beginning in May 2006, NCEP began to use the WRF-NMM as the operational
1001:
High Resolution Limited Area Model, is developed by the European NWP research consortia co-funded by 10 European weather services. The meso-scale HIRLAM model is known as HARMONIE and developed in collaboration with Meteo France and ALADIN
741:. The first model used for operational forecasts, the single-layer barotropic model, used a single pressure coordinate at the 500-millibar (15 inHg) level, and thus was essentially two-dimensional. High-resolution models—also called 460:. On land, terrain maps available at resolutions down to 1 kilometer (0.6 mi) globally are used to help model atmospheric circulations within regions of rugged topography, in order to better depict features such as downslope winds, 3391:
Alexander Baklanov; Alix Rasmussen; Barbara Fay; Erik Berge; Sandro Finardi (September 2002). "Potential and Shortcomings of Numerical Weather Prediction Models in Providing Meteorological Data for Urban Air Pollution Forecasting".
1024:
The COSMO Model, formerly known as LM, aLMo or LAMI, is a limited-area non-hydrostatic model developed within the framework of the Consortium for Small-Scale Modelling (Germany, Switzerland, Italy, Greece, Poland, Romania, and
3586: 564:
is repeated until the solution reaches the desired forecast time. The length of the time step chosen within the model is related to the distance between the points on the computational grid, and is chosen to maintain
488:
and objective analysis methods, which perform quality control and obtain values at locations usable by the model's mathematical algorithms. The data are then used in the model as the starting point for a forecast.
569:. Time steps for global models are on the order of tens of minutes, while time steps for regional models are between one and four minutes. The global models are run at varying times into the future. The 544: 542: 3022:
Lac, C., Chaboureau, P., Masson, V., Pinty, P., Tulet, P., Escobar, J., ... & Aumond, P. (2018). Overview of the Meso-NH model version 5.4 and its applications. Geoscientific Model Development, 11,
1175:
information for tracking the movement of pollutants. In 1970, a private company in the U.S. developed the regional Urban Airshed Model (UAM), which was used to forecast the effects of air pollution and
1070:
percentage chance of rain within a several hour period, precipitation amount expected, chance that the precipitation will be frozen in nature, chance for thunderstorms, cloudiness, and surface winds.
604:
for the vertical dimension, while regional models and other global models usually use finite-difference methods in all three dimensions. The visual output produced by a model solution is known as a
661:
can be related to a critical relative humidity of 70% for stratus-type clouds, and at or above 80% for cumuliform clouds, reflecting the sub grid scale variation that would occur in the real world.
630:
has a scale of less than 1 kilometre (0.62 mi), and would require a grid even finer than this to be represented physically by the equations of fluid motion. Therefore, the processes that such
343:
created the first computer forecasts in 1950, and more powerful computers later increased the size of initial datasets and included more complicated versions of the equations of motion. In 1966,
686:
within LAMs are introduced by the global model used for the boundary conditions of the edge of the regional model, as well as within the creation of the boundary conditions for the LAMs itself.
3579: 1207:
or simple dynamical models. Predicting the intensity of tropical cyclones using NWP has also been challenging. As of 2009, dynamical guidance remained less skillful than statistical methods.
3032:
Lafore, Jean Philippe, et al. "The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations." Annales geophysicae. Vol. 16. No. 1. Copernicus GmbH, 1998.
913:
ALADIN physical schemes. It has mostly been used in Europe and the Arctic for climate studies including 3km downscaling over Scandinavia and in studies looking at extreme weather events.
543: 1199:. Despite the constantly improving dynamical model guidance made possible by increasing computational power, it was not until the 1980s that numerical weather prediction (NWP) showed 390:
used to calculate the forecast—introduce errors which double every five days. The use of model ensemble forecasts since the 1990s helps to define the forecast uncertainty and extend
3572: 4110: 1682: 1473: 1018:
The high-resolution limited-area hydrostatic and non-hydrostatic model developed and operated by several European and North African countries under the leadership of Météo-France
973:
for numerical simulations of atmospheric meteorology and other environmental phenomena on scales from meters to hundreds of kilometers – now supported in the public domain
818: 577: 946:
world under the CORDEX scheme to provide regional climate projections. It also has a polar mode that has been used for polar ice sheet studies in Greenland and Antarctica
1137: 140:, hydrostatic, and nonhydrostatic. Some of the model types make assumptions about the atmosphere which lengthens the time steps used and increases computational speed. 217:
of the geostrophic wind. It also implies that thickness contours (a proxy for temperature) are parallel to upper level height contours. In this type of atmosphere,
657:
reaches some prescribed value. Still, sub grid scale processes need to be taken into account. Rather than assuming that clouds form at 100% relative humidity, the
3771: 3301: 3268: 3166: 2354: 2315: 2265: 2219: 2173: 2077: 1596: 1106: 1093:
In 1956, Norman Phillips developed a mathematical model that realistically depicted monthly and seasonal patterns in the troposphere. This was the first successful
1050:
numerical weather models, surface observations, and the climatological conditions for specific locations. These statistical models are collectively referred to as
2722:"3.7 Improving Precipitation Forecasts by the Operational Nonhydrostatic Mesoscale Model with the Kain-Fritsch Convective Parameterization and Cloud Microphysics" 1978: 4429: 1181: 955: 727: 707: 4224: 927:
is a polar version of the model used in many studies to provide surface mass balance of the polar ice sheets that was developed at the University of Utrecht
492:
A variety of methods are used to gather observational data for use in numerical models. Sites launch radiosondes in weather balloons which rise through the
4184: 2957: 541: 464:
and related cloudiness that affects incoming solar radiation. The main inputs from country-based weather services are observations from devices (called
3261: 937:(Modele Atmospherique Regionale) is a regional climate model developed at the University of Grenoble in France and the University of Liege in Belgium. 1184:
took over the development of the UAM and then used the results from a regional air pollution study to improve it. Although the UAM was developed for
2964: 1129: 919:
was developed at the Netherlands Meteorological Institute, KNMI and is based on the dynamics of the HIRLAM model with physical schemes from the IFS
895: 770: 3791: 2073: 324: 318: 112:, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion. They can predict microscale phenomena such as 4352: 3843: 3710: 3675: 909: 879: 860: 746: 636: 311: 3867: 3776: 3522: 3143: 3107: 3080: 3053: 2940: 2913: 2884: 2853: 2826: 2799: 2753: 2704: 2677: 2648: 2618: 2591: 2564: 2532: 2505: 2478: 2449: 2420: 2393: 2053: 1887: 1820: 1735: 1574: 1543: 1450: 1370: 1345: 1102: 804: 382:
of numerical weather models only extends to about two weeks into the future, since the density and quality of observations—together with the
293:
vertical momentum equation are known as nonhydrostatic. A nonhydrostatic model can be solved anelastically, meaning it solves the complete
4388: 3838: 2007:
Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. (January 1996). "The ECMWF Ensemble Prediction System: Methodology and validation".
966: 476:
acts to standardize the instrumentation, observing practices and timing of these observations worldwide. Stations either report hourly in
152:
for the vertical dimension, while regional models usually use finite-difference methods in all three dimensions. For specific locations,
3539: 2102: 3904: 2169: 1291: 2192: 1506: 3985: 3786: 355:
led to the first climate models. The development of limited area (regional) models facilitated advances in forecasting the tracks of
1101:. The first general circulation climate model combined oceanic and atmospheric processes and was developed in the late 1960s at the 473: 452:
to estimate the state of the fluid at some time in the future. The process of entering observation data into the model to generate
284:
from the vertical momentum equation, which significantly increases the time step used within the model's run. This is known as the
233:
have strengthening winds with height, with the reverse true for cold-core highs (shallow arctic highs) and warm-core lows (such as
626:
Weather and climate model gridboxes have sides of between 5 kilometres (3.1 mi) and 300 kilometres (190 mi). A typical
1481: 1009: 882:
was developed cooperatively by NCEP, NCAR, and the meteorological research community. WRF has several configurations, including:
808: 444:. As such, the idea of numerical weather prediction is to sample the state of the fluid at a given time and use the equations of 258: 120:, sub-microscale turbulent flow over buildings, as well as synoptic and global flows. The horizontal domain of a model is either 3439: 4316: 4177: 3796: 3645: 3640: 3620: 3331: 2732: 1192: 2524:
Developments in teracomputing: proceedings of the ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology
888:
The WRF Nonhydrostatic Mesoscale Model is the primary short-term weather forecast model for the U.S., replacing the Eta model.
3889: 3828: 3735: 3427: 1133: 950: 3549: 3323: 468:) in weather balloons that measure various atmospheric parameters and transmits them to a fixed receiver, as well as from 4062: 2330: 3909: 3809: 2069: 585: 387: 262: 4285: 4239: 4234: 4201: 4057: 3740: 3635: 3544: 1226: 689:
The vertical coordinate is handled in various ways. Some models, such as Richardson's 1922 model, use geometric height (
407: 157: 2497:
Computational Science – ICCS 2005: 5th International Conference, Atlanta, GA, USA, May 22–25, 2005, Proceedings, Part 1
4229: 1986: 1469: 1132:
had developed the Community Atmosphere Model (CAM), which can be run by itself or as the atmospheric component of the
556:
information for future times at given locations and altitudes. Within any model is a set of equations, known as the
161: 93: 4342: 4170: 3766: 3135: 2905: 2876: 2385: 2126: 1906: 1535: 1261: 500:. Information from weather satellites is used where traditional data sources are not available. Commerce provides 269:
corresponding to that altitude, which corresponds to the atmosphere's 500 mb (15 inHg) pressure surface.
4214: 3670: 3435: 1241: 1203:
in forecasting the track of tropical cyclones. And it was not until the 1990s that NWP consistently outperformed
1168: 1098: 1088: 970: 621: 548:
Supercomputers are capable of running highly complex models to help scientists better understand Earth's climate.
73: 3221: 3192: 1956: 1785: 1758: 1313: 1286: 516:
in model initialization began in 1972 due to its role in modulating weather in higher latitudes of the Pacific.
4260: 3655: 3650: 3170: 2968: 2760: 1236: 1231: 1161: 1055: 601: 149: 69: 3564: 2286: 737:, greatly simplifying the primitive equations. This follows since pressure decreases with height through the 3462:
Stacy R. Stewart; Ahsha N. Tribble (April 2009). "Advances and Challenges at the National Hurricane Center".
1008:
Global Environmental Multiscale Limited Area Model, the high resolution 2.5 km (1.6 mi) GEM by the
3980: 3745: 3665: 3464: 1763: 1059: 1051: 1044: 513: 371: 289: 285: 153: 4367: 3272: 3781: 3481: 3348: 1942: 1925: 1267: 1216: 989: 842: 782: 581: 505: 46: 1674: 4393: 4337: 3894: 1754: 1649: 453: 774: 738: 2081: 4347: 4193: 4146: 4078: 3660: 3473: 3340: 3208: 2228: 2135: 2016: 1934: 1772: 1691: 1605: 1490: 1411: 1300: 1196: 1113: 367: 328: 238: 85: 3486: 1947: 1287:"A Test of Numerical Prediction Methods Based on the Barotropic and Two-Parameter Baroclinic Models" 845:, DWD, jointly with the Max-Planck-Institute (MPI) for Meteorology, Hamburg, NWP Global model of DWD 4290: 4151: 4100: 3899: 3353: 1590:
Harper, Kristine; Uccellini, Louis W.; Kalnay, Eugenia; Carey, Kenneth; Morone, Lauren (May 2007).
980: 730: 566: 557: 532: 391: 348: 336: 294: 277: 266: 242: 194: 65: 53: 38: 2764: 1904:
The Use of Ensemble Forecasts to Produce Improved Medium Range (3–15 days) Weather Forecasts.
4383: 4280: 4270: 4136: 4115: 3409: 2151: 1879: 1873: 1727: 1721: 1566: 1560: 734: 646: 351:
models, followed by the United Kingdom in 1972 and Australia in 1977. The development of global
254: 218: 61: 2992: 2521:
Zwieflhofer, Walter; Norbert Kreitz; European Centre for Medium Range Weather Forecasts (2001).
852: 4031: 3070: 2358: 4295: 4275: 4141: 4105: 3518: 3139: 3127: 3103: 3097: 3076: 3049: 3043: 2936: 2930: 2909: 2880: 2870: 2849: 2822: 2818:
Short-wave solar radiation in the earth's atmosphere: calculation, observation, interpretation
2816: 2795: 2700: 2694: 2673: 2644: 2638: 2614: 2608: 2587: 2581: 2560: 2554: 2528: 2522: 2501: 2495: 2474: 2445: 2416: 2389: 2379: 2309: 2290: 2110: 2049: 1960: 1883: 1816: 1790: 1731: 1570: 1539: 1446: 1366: 1341: 1318: 1204: 751: 654: 485: 469: 403: 226: 222: 4036: 2843: 2789: 2410: 2177: 2043: 4408: 4403: 4321: 3491: 3401: 3358: 3216: 2236: 2196: 2143: 2024: 1952: 1780: 1699: 1635:"Real-time limited area numerical weather prediction in Australia: a historical perspective" 1613: 1498: 1419: 1395: 1308: 605: 592: 509: 356: 332: 234: 210: 306: 4311: 4219: 597: 250: 190: 145: 117: 164:
to develop statistical relationships which account for model bias and resolution issues.
136:), covering only part of the Earth. The different types of models run are thermotropic, 3477: 3344: 3212: 2232: 2147: 2139: 2020: 1938: 1776: 1695: 1609: 1494: 1415: 1304: 1263:
Results Of Numerical Forecasting With The Barotropic And Thermotropic Atmospheric Models
941: 249:
of the air in the atmosphere is small. If the assumption is made that the atmosphere is
4398: 4362: 4209: 4026: 2669: 2470: 2441: 1920: 1200: 1156: 1145: 830: 712: 692: 658: 553: 449: 445: 379: 177:
The main assumption made by the thermotropic model is that while the magnitude of the
4423: 4357: 4265: 3833: 3801: 3630: 3431: 2155: 1843:. United States Air Force Environmental Technical Applications Center. pp. 1–16. 1221: 1094: 1084: 826: 650: 627: 573: 504:
along aircraft routes and ship reports along shipping routes. Research projects use
281: 246: 230: 97: 3413: 3236: 2211: 904: 424: 3960: 2845:
Parameterization schemes: keys to understanding numerical weather prediction models
2791:
Parameterization schemes: keys to understanding numerical weather prediction models
2381:
Parameterization schemes: keys to understanding numerical weather prediction models
2045:
Parameterization schemes: keys to understanding numerical weather prediction models
1902:
Weickmann, Klaus, Jeff Whitaker, Andres Roubicek and Catherine Smith (2001-12-01).
1634: 1391: 501: 497: 383: 344: 178: 225:
are centers of warm and cold temperature anomalies. Warm-core highs (such as the
17: 3366: 2721: 1440: 493: 429: 360: 352: 182: 42: 2494:
Sunderam, V. S.; G. Dick van Albada; Peter M. A. Sloot; J. J. Dongarra (2005).
1759:"History of Numerical Weather Prediction at the National Meteorological Center" 1116:
that gave a roughly accurate representation of the current climate. Doubling CO
1062:
developed its own set of MOS based upon their dynamical weather model by 1983.
181:
may change, its direction does not change with respect to height, and thus the
3990: 3970: 3950: 3725: 3625: 3405: 1903: 1502: 1424: 1399: 1185: 1172: 833: 641: 465: 437: 214: 206: 186: 137: 105: 77: 3495: 1964: 1794: 1322: 1188:, it was during the 1980s used elsewhere in North America, Europe, and Asia. 484:
reports. These observations are irregularly spaced, so they are processed by
2359:"NOAA Dispatches High-Tech Research Plane to Improve Winter Storm Forecasts" 1177: 339:
that computation time was reduced to less than the forecast period itself.
113: 81: 3297: 2261: 2240: 2028: 1852: 1850: 1703: 1618: 1591: 1191:
The Movable Fine-Mesh model, which began operating in 1978, was the first
954:
The term North American Mesoscale model refers to whatever regional model
4000: 1923:(December 1997). "Ensemble Forecasting at NCEP and the Breeding Method". 529: 461: 72:
which govern atmospheric motions. It can supplement these equations with
35: 3515:
Invisible in the Storm: the role of mathematics in understanding weather
1271: 4162: 3995: 3975: 3955: 3720: 2193:"Radiosonde Observations and Their Use in SPARC-Related Investigations" 795: 524: 109: 30: 3362: 3945: 3940: 3935: 3919: 3851: 3715: 2106: 1141: 997: 709:) as the vertical coordinate. Later models substituted the geometric 681:, covering only part of the Earth. Regional models also are known as 631: 347:
and the United States began producing operational forecasts based on
89: 3324:"Impact of vegetation properties on U. S. summer weather prediction" 2556:
Global Perspectives on Tropical Cyclones: From Science to Mitigation
2124:
Krishnamurti, T. N. (January 1995). "Numerical Weather Prediction".
1592:"2007: 50th Anniversary of Operational Numerical Weather Prediction" 923: 378:(locations). Even with the increasing power of supercomputers, the 1675:"The general circulation of the atmosphere: a numerical experiment" 1363:
Atmosphere, ocean, and climate dynamics : an introductory text
4052: 4021: 4005: 3914: 3750: 2294: 1982: 1155: 570: 538: 523: 481: 477: 441: 423: 340: 125: 29: 3132:
The Emergence of Numerical Weather Prediction: Richardson's Dream
1474:"The origins of computer weather prediction and climate modeling" 1029: 3965: 3862: 3730: 2956:
Janjic, Zavisa; Gall, Robert; Pyle, Matthew E. (February 2010).
2212:"Systematic Differences in Aircraft and Radiosonde Temperatures" 1530:
Lynch, Peter (2006). "Weather Prediction by Numerical Process".
1112:
By 1975, Manabe and Wetherald had developed a three-dimensional
786: 432:, provide data that is then used in numerical weather forecasts. 101: 4166: 3692: 3604: 3568: 3545:
RAMS source code available under the GNU General Public License
3554: 3262:"Description of the NCAR Community Atmosphere Model (CAM 3.0)" 3010: 3072:
Fog and boundary layer clouds: fog visibility and forecasting
771:
Vorticity-divergence semi-Lagrangian global atmospheric model
3197:
Concentration on the Climate of a General Circulation Model"
2640:
Finite difference schemes and partial differential equations
1806: 1804: 1400:"Numerical Integration of the Barotropic Vorticity Equation" 580:
model is run out to 10 days into the future, while the
3595:
Atmospheric, oceanographic, cryospheric, and climate models
3559: 3222:
10.1175/1520-0469(1975)032<0003:teodtc>2.0.co;2
1957:
10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
1786:
10.1175/1520-0434(1989)004<0286:HONWPA>2.0.CO;2
1314:
10.1175/1520-0469(1956)013<0127:ATONPM>2.0.CO;2
1270:: Air Force Cambridge Research Laboratories. Archived from 749:
tend to use normalized pressure coordinates referred to as
729:
coordinate with a pressure coordinate system, in which the
653:-type) clouds is more physically based, they form when the 374:(MOS) were developed in the 1970s and 1980s for individual 2932:
Essentials of meteorology: an invitation to the atmosphere
2696:
Essentials of meteorology: an invitation to the atmosphere
2103:"SYNOP Data Format (FM-12): Surface Synoptic Observations" 508:
to fly in and around weather systems of interest, such as
237:). A barotropic model tries to solve a simplified form of 3322:
Yongkang Xue & Michael J. Fennessey (20 March 1996).
2815:
MelĘąnikova, Irina N. & Alexander V. Vasilyev (2005).
1813:
Air pollution modeling and its application VIII, Volume 8
2170:"The WRF Variational Data Assimilation System (WRF-Var)" 1361:
Marshall, John; Plumb, R. Alan (2008). "Balanced flow".
1164:
within the National Hurricane Center limited area models
871:
Some of the better known regional numerical models are:
213:
are independent of height. In other words, no vertical
2210:
Ballish, Bradley A.; V. Krishna Kumar (November 2008).
1365:. Amsterdam: Elsevier Academic Press. pp. 109–12. 988:
the Advanced Region Prediction System developed at the
933: 417: 413: 2415:. Cambridge University Press archive. pp. 49–50. 894:
Advanced Research WRF developed primarily at the U.S.
763:
Some of the better known global numerical models are:
185:
in the atmosphere can be simulated using the 500 
3096:
Barry, Roger Graham & Richard J. Chorley (2003).
2996: 2009:
Quarterly Journal of the Royal Meteorological Society
1683:
Quarterly Journal of the Royal Meteorological Society
715: 695: 535:
prediction from a numerical weather prediction model.
3540:
WRF Source Codes and Graphics Software Download Page
2610:
Famine early warning systems and remote sensing data
1058:
for their suite of weather forecasting models. The
335:. It was not until the advent of the computer and 197:
surfaces and the average thermal wind between them.
4376: 4330: 4304: 4248: 4200: 4087: 4071: 4045: 4014: 3928: 3879: 3821: 3759: 3703: 2553:Chan, Johnny C. L. & Jeffrey D. Kepert (2010). 1859:
Air Weather Service Model Output Statistics Systems
3045:When nature strikes: weather disasters and the law 2900:Lynch, Peter (2006). "The Fundamental Equations". 1861:. Air Force Global Weather Central. pp. 1–90. 1633:Leslie, L.M.; Dietachmeyer, G.S. (December 1992). 819:European Centre for Medium-Range Weather Forecasts 721: 701: 578:European Centre for Medium-Range Weather Forecasts 241:based on the assumption that the atmosphere is in 209:, which means that the direction and speed of the 205:Barotropic models assume the atmosphere is nearly 3432:"National Hurricane Center Forecast Verification" 1749: 1747: 1285:Thompson, P. D.; W. Lawrence Gates (April 1956). 1138:Hadley Centre for Climate Prediction and Research 394:farther into the future than otherwise possible. 2720:Narita, Masami & Shiro Ohmori (2007-08-06). 2583:An introduction to dynamic meteorology, Volume 1 2331:"Drone, Sensors May Open Path Into Eye of Storm" 2262:"The WMO Voluntary Observing Ships (VOS) Scheme" 1445:. Cambridge University Press. pp. 138–143. 981:Fifth Generation Penn State/NCAR Mesoscale Model 3302:University Corporation for Atmospheric Research 3269:University Corporation for Atmospheric Research 3167:National Oceanic and Atmospheric Administration 2355:National Oceanic and Atmospheric Administration 2266:National Oceanic and Atmospheric Administration 2220:Bulletin of the American Meteorological Society 2174:University Corporation for Atmospheric Research 2078:National Oceanic and Atmospheric Administration 1597:Bulletin of the American Meteorological Society 1107:National Oceanic and Atmospheric Administration 366:Because the output of forecast models based on 2848:. Cambridge University Press. pp. 12–14. 2754:"The Diagnostic Cloud Parameterization Scheme" 1386: 1384: 1382: 1336:Wallace, John M. & Peter V. Hobbs (1977). 1097:. Several groups then began working to create 428:Weather reconnaissance aircraft, such as this 4178: 3580: 3260:William D. Collins; et al. (June 2004). 3121: 3119: 2958:"Scientific Documentation for the NMM Solver" 2902:The Emergence of Numerical Weather Prediction 1532:The Emergence of Numerical Weather Prediction 1182:United States Environmental Protection Agency 908:is a limited area climate model based on the 288:. Hydrostatic models use either pressure or 8: 552:A model is a computer program that produces 3048:. Greenwood Publishing Group. p. 189. 2314:: CS1 maint: numeric names: authors list ( 2074:"Key to METAR Surface Weather Observations" 1668: 1666: 1464: 1462: 1338:Atmospheric Science: An Introductory Survey 673:The horizontal domain of a model is either 4185: 4171: 4163: 3700: 3689: 3601: 3587: 3573: 3565: 2048:. Cambridge University Press. p. 56. 327:began in the 1920s through the efforts of 3517:. Princeton: Princeton University Press. 3485: 3352: 3220: 2794:. Cambridge University Press. p. 6. 2632: 2630: 2548: 2546: 2544: 1946: 1857:L. Best, D. L. & S. P. Pryor (1983). 1841:Model output statistics forecast guidance 1784: 1715: 1713: 1617: 1423: 1340:. Academic Press, Inc. pp. 384–385. 1312: 851:developed by the French Weather Service, 714: 694: 27:Mathematical model of atmospheric motions 2965:National Center for Atmospheric Research 2872:Numerical Weather and Climate Prediction 2260:National Data Buoy Center (2009-01-28). 1171:depend on atmospheric models to provide 1130:National Center for Atmospheric Research 1065:Model output statistics differ from the 896:National Center for Atmospheric Research 370:requires corrections near ground level, 305: 3394:Water, Air, & Soil Pollution: Focus 1878:. John Wiley & Sons, Inc. pp.  1252: 325:history of numerical weather prediction 319:History of numerical weather prediction 4353:Construction and management simulation 3513:Roulstone, Ian; Norbury, John (2013). 2729:12th Conference on Mesoscale Processes 2559:. World Scientific. pp. 295–301. 2307: 1979:"The Ensemble Prediction System (EPS)" 1834: 1832: 1726:. John Wiley & Sons, Inc. p.  1565:. John Wiley & Sons, Inc. p.  880:Weather Research and Forecasting model 861:Intermediate General Circulation Model 747:Weather Research and Forecasting model 312:Moore School of Electrical Engineering 3009:Consortium on Small Scale Modelling. 1103:Geophysical Fluid Dynamics Laboratory 805:Global Environmental Multiscale Model 733:of constant-pressure surfaces become 588:is run 16 days into the future. 576:is run six days into the future, the 331:who utilized procedures developed by 156:use climate information, output from 7: 4430:Numerical climate and weather models 4389:List of computer simulation software 3880:Regional and mesoscale oceanographic 3011:Consortium for Small-scale Modeling. 2291:53rd Weather Reconnaissance Squadron 1442:Fundamentals of atmospheric modeling 1144:model, are being used as inputs for 967:Regional Atmospheric Modeling System 310:The ENIAC main control panel at the 3442:from the original on 2 January 2011 3298:"CAM3.0 COMMUNITY ATMOSPHERE MODEL" 3201:Journal of the Atmospheric Sciences 3191:Manabe S.; Wetherald R. T. (1975). 2148:10.1146/annurev.fl.27.010195.001211 193:) and 1,000 mb (30 inHg) 64:constructed around the full set of 3822:Regional and mesoscale atmospheric 1642:Australian Meteorological Magazine 1260:Gates, W. Lawrence (August 1955). 600:for the horizontal dimensions and 148:for the horizontal dimensions and 25: 3102:. Psychology Press. p. 172. 2699:. Cengage Learning. p. 244. 2666:Mesoscale Meteorological Modeling 2527:. World Scientific. p. 276. 2467:Mesoscale Meteorological Modeling 2438:Mesoscale Meteorological Modeling 1673:Norman A. Phillips (April 1956). 1180:. In the mid- to late-1970s, the 1054:(MOS), and were developed by the 649:. The formation of large-scale ( 474:World Meteorological Organization 298:follow the contours of the land. 104:, vegetation, surface water, the 3099:Atmosphere, weather, and climate 2967:. pp. 12–13. Archived from 2935:. Cengage Learning. p. 10. 2409:Houghton, John Theodore (1985). 2127:Annual Review of Fluid Mechanics 1815:. Birkhäuser. pp. 241–242. 1482:Journal of Computational Physics 1010:Meteorological Service of Canada 809:Meteorological Service of Canada 785:(previously AVN) – developed by 677:, covering the entire Earth, or 4317:Integrated assessment modelling 3646:Atmospheric dispersion modeling 3641:Tropical cyclone forecast model 3332:Journal of Geophysical Research 3193:"The Effects of Doubling the CO 2869:Warner, Thomas Tomkins (2010). 2752:Frierson, Dargan (2000-09-14). 2733:American Meteorological Society 2586:. Academic Press. p. 480. 2329:Lee, Christopher (2007-10-08). 1439:Jacobson, Mark Zachary (2005). 1193:tropical cyclone forecast model 480:reports, or every six hours in 2821:. Springer. pp. 226–228. 2763:. pp. 4–5. Archived from 2191:Gaffen, Dian J. (2007-06-07). 1134:Community Climate System Model 388:partial differential equations 1: 2070:National Climatic Data Center 1128:By the early 1980s, the U.S. 1125:concentration was increased. 586:Environmental Modeling Center 280:filter out vertically moving 263:barotropic vorticity equation 229:and Bermuda-Azores high) and 4286:Hydrological transport model 4240:Protein structure prediction 4235:Modelling biological systems 4046:Land surface parametrization 3636:Numerical weather prediction 2637:Strikwerda, John C. (2004). 2176:. 2007-08-14. Archived from 2109:. 2008-05-25. Archived from 1227:Numerical weather prediction 408:Numerical weather prediction 162:surface weather observations 158:numerical weather prediction 4230:Metabolic network modelling 2842:Stensrud, David J. (2007). 2788:Stensrud, David J. (2007). 2378:Stensrud, David J. (2007). 2042:Stensrud, David J. (2007). 4446: 4343:Business process modelling 3136:Cambridge University Press 3075:. Springer. p. 1144. 2929:Ahrens, C. Donald (2008). 2906:Cambridge University Press 2877:Cambridge University Press 2693:Ahrens, C. Donald (2008). 2643:. SIAM. pp. 165–170. 2386:Cambridge University Press 1907:Climate Diagnostics Center 1536:Cambridge University Press 1105:, a component of the U.S. 1099:general circulation models 1082: 1042: 619: 401: 316: 34:A 96-hour forecast of 850 4215:Chemical process modeling 4132: 3699: 3688: 3671:Meteorological reanalysis 3611: 3600: 3436:National Hurricane Center 3171:"The First Climate Model" 2664:Pielke, Roger A. (2002). 2613:. Springer. p. 121. 2580:Holton, James R. (2004). 2500:. Springer. p. 132. 2465:Pielke, Roger A. (2002). 2436:Pielke, Roger A. (2002). 1503:10.1016/j.jcp.2007.02.034 1425:10.3402/tellusa.v2i4.8607 1242:Chemistry transport model 1089:General circulation model 971:Colorado State University 622:Parametrization (climate) 602:finite difference methods 286:hydrostatic approximation 150:finite-difference methods 4261:Chemical transport model 4225:Infectious disease model 3656:Upper-atmospheric models 3651:Chemical transport model 3550:MM5 Source Code download 3496:10.1175/2008WAF2222128.1 3128:"The ENIAC Integrations" 3069:Gultepe, Ismail (2007). 3042:Baum, Marsha L. (2007). 3013:Retrieved on 2008-01-13. 2761:University of Washington 2607:Brown, Molly E. (2008). 1237:Static atmospheric model 1232:Upper-atmospheric models 1162:Hurricane Ernesto (2006) 1056:National Weather Service 905:HARMONIE-Climate (HCLIM) 363:in the 1970s and 1980s. 3666:Model output statistics 3555:The source code of ARPS 3465:Weather and Forecasting 3406:10.1023/A:1021394126149 2287:"The Hurricane Hunters" 1909:. Retrieved 2007-02-16. 1764:Weather and Forecasting 1169:Air pollution forecasts 1060:United States Air Force 1052:model output statistics 1045:Model output statistics 1039:Model output statistics 798:to compare with the GFS 591:The equations used are 514:sea surface temperature 506:reconnaissance aircraft 372:model output statistics 154:model output statistics 3929:Atmospheric dispersion 2241:10.1175/2008BAMS2332.1 2029:10.1002/qj.49712252905 1926:Monthly Weather Review 1704:10.1002/qj.49708235202 1292:Journal of Meteorology 1268:Hanscom Air Force Base 1217:Atmospheric reanalysis 1165: 990:University of Oklahoma 843:German Weather Service 783:Global Forecast System 723: 703: 582:Global Forecast System 549: 536: 433: 314: 124:, covering the entire 49: 47:Global Forecast System 4394:Mathematical modeling 4338:Biopsychosocial model 1872:Cox, John D. (2002). 1839:Harry Hughes (1976). 1811:Steyn, D. G. (1991). 1650:Bureau of Meteorology 1619:10.1175/BAMS-88-5-639 1559:Cox, John D. (2002). 1159: 1152:Limited area modeling 724: 704: 547: 527: 427: 309: 118:boundary layer eddies 33: 4348:Catastrophe modeling 4194:Scientific modelling 4147:Scientific modelling 3661:Ensemble forecasting 3278:on 26 September 2019 3126:Peter Lynch (2006). 2473:. pp. 285–287. 1755:Shuman, Frederick G. 1720:John D. Cox (2002). 1394:; Fjörtoft, Ragnar; 1197:atmospheric dynamics 1114:global climate model 731:geopotential heights 713: 693: 368:atmospheric dynamics 329:Lewis Fry Richardson 245:; that is, that the 239:atmospheric dynamics 4291:Modular Ocean Model 4152:Computer simulation 3621:Oceanographic model 3560:Model Visualisation 3478:2009WtFor..24..395R 3345:1996JGR...101.7419X 3213:1975JAtS...32....3M 2335:The Washington Post 2285:403rd Wing (2011). 2233:2008BAMS...89.1689B 2140:1995AnRFM..27..195K 2021:1996QJRMS.122...73M 1939:1997MWRv..125.3297T 1777:1989WtFor...4..286S 1696:1956QJRMS..82..123P 1610:2007BAMS...88..639H 1495:2008JCoPh.227.3431L 1416:1950Tell....2..237C 1305:1956JAtS...13..127T 807:– developed by the 794:– developed by the 735:dependent variables 567:numerical stability 558:primitive equations 533:geopotential height 392:weather forecasting 337:computer simulation 295:continuity equation 267:geopotential height 243:geostrophic balance 195:geopotential height 70:dynamical equations 54:atmospheric science 39:geopotential height 4384:Data visualization 4368:Input–output model 4281:Hydrological model 4271:Geologic modelling 4137:Mathematical model 4072:Cryospheric models 4015:Chemical transport 3237:"CAM 3.1 Download" 2999:on April 30, 2018. 2908:. pp. 45–46. 2444:. pp. 48–49. 2412:The Global Climate 1989:on 25 January 2011 1757:(September 1989). 1166: 1160:Model spread with 739:Earth's atmosphere 719: 699: 647:cloud microphysics 550: 537: 528:An example of 500 496:and well into the 470:weather satellites 454:initial conditions 434: 353:forecasting models 349:primitive-equation 315: 278:Hydrostatic models 223:low pressure areas 62:mathematical model 50: 18:Atmospheric models 4417: 4416: 4296:Wildfire modeling 4276:Groundwater model 4256:Atmospheric model 4160: 4159: 4142:Statistical model 4128: 4127: 4124: 4123: 3684: 3683: 3626:Cryospheric model 3616:Atmospheric model 3524:978-0-691-15272-1 3430:(20 April 2010). 3363:10.1029/95JD02169 3241:www.cesm.ucar.edu 3145:978-0-521-85729-1 3109:978-0-415-27171-4 3082:978-3-7643-8418-0 3055:978-0-275-22129-4 2942:978-0-495-11558-8 2915:978-0-521-85729-1 2886:978-0-521-51389-0 2855:978-0-521-86540-1 2828:978-3-540-21452-6 2801:978-0-521-86540-1 2706:978-0-495-11558-8 2679:978-0-12-554766-6 2650:978-0-89871-567-5 2620:978-3-540-75367-4 2593:978-0-12-354015-7 2566:978-981-4293-47-1 2534:978-981-02-4761-4 2507:978-3-540-26032-5 2480:978-0-12-554766-6 2451:978-0-12-554766-6 2422:978-0-521-31256-1 2395:978-0-521-86540-1 2227:(11): 1689–1708. 2055:978-0-521-86540-1 1933:(12): 3297–3319. 1889:978-0-471-38108-2 1822:978-0-306-43828-8 1737:978-0-471-38108-2 1576:978-0-471-38108-2 1545:978-0-521-85729-1 1538:. pp. 1–27. 1452:978-0-521-83970-9 1398:(November 1950). 1396:von Neumann, John 1372:978-0-12-558691-7 1347:978-0-12-732950-5 1274:on July 22, 2011. 867:Regional versions 841:developed by the 829:developed by the 817:developed by the 775:Hydrometcenter RF 752:sigma coordinates 722:{\displaystyle z} 702:{\displaystyle z} 655:relative humidity 584:model run by the 545: 510:tropical cyclones 486:data assimilation 261:reduces into the 235:tropical cyclones 227:subtropical ridge 74:parameterizations 58:atmospheric model 16:(Redirected from 4437: 4409:Visual analytics 4404:Systems thinking 4322:Population model 4187: 4180: 4173: 4164: 3701: 3690: 3602: 3589: 3582: 3575: 3566: 3528: 3500: 3499: 3489: 3458: 3452: 3451: 3449: 3447: 3424: 3418: 3417: 3388: 3382: 3381: 3379: 3377: 3371: 3365:. Archived from 3356: 3328: 3319: 3313: 3312: 3310: 3308: 3294: 3288: 3287: 3285: 3283: 3277: 3271:. Archived from 3266: 3257: 3251: 3250: 3248: 3247: 3233: 3227: 3226: 3224: 3188: 3182: 3181: 3179: 3177: 3163: 3157: 3156: 3154: 3152: 3123: 3114: 3113: 3093: 3087: 3086: 3066: 3060: 3059: 3039: 3033: 3030: 3024: 3020: 3014: 3007: 3001: 3000: 2995:. Archived from 2989: 2983: 2982: 2980: 2979: 2973: 2962: 2953: 2947: 2946: 2926: 2920: 2919: 2897: 2891: 2890: 2866: 2860: 2859: 2839: 2833: 2832: 2812: 2806: 2805: 2785: 2779: 2778: 2776: 2775: 2769: 2758: 2749: 2743: 2742: 2740: 2739: 2726: 2717: 2711: 2710: 2690: 2684: 2683: 2661: 2655: 2654: 2634: 2625: 2624: 2604: 2598: 2597: 2577: 2571: 2570: 2550: 2539: 2538: 2518: 2512: 2511: 2491: 2485: 2484: 2462: 2456: 2455: 2433: 2427: 2426: 2406: 2400: 2399: 2375: 2369: 2368: 2366: 2365: 2351: 2345: 2344: 2342: 2341: 2326: 2320: 2319: 2313: 2305: 2303: 2302: 2293:. Archived from 2282: 2276: 2275: 2273: 2272: 2257: 2251: 2250: 2248: 2247: 2216: 2207: 2201: 2200: 2195:. Archived from 2188: 2182: 2181: 2166: 2160: 2159: 2121: 2115: 2114: 2099: 2093: 2092: 2090: 2089: 2080:. Archived from 2066: 2060: 2059: 2039: 2033: 2032: 2004: 1998: 1997: 1995: 1994: 1985:. Archived from 1975: 1969: 1968: 1950: 1916: 1910: 1900: 1894: 1893: 1869: 1863: 1862: 1854: 1845: 1844: 1836: 1827: 1826: 1808: 1799: 1798: 1788: 1751: 1742: 1741: 1717: 1708: 1707: 1690:(352): 123–154. 1679: 1670: 1661: 1660: 1658: 1657: 1639: 1630: 1624: 1623: 1621: 1587: 1581: 1580: 1556: 1550: 1549: 1527: 1521: 1520: 1518: 1517: 1511: 1505:. Archived from 1478: 1466: 1457: 1456: 1436: 1430: 1429: 1427: 1388: 1377: 1376: 1358: 1352: 1351: 1333: 1327: 1326: 1316: 1282: 1276: 1275: 1257: 1079:Climate modeling 743:mesoscale models 728: 726: 725: 720: 708: 706: 705: 700: 616:Parameterization 606:prognostic chart 598:spectral methods 546: 421: 402:This section is 357:tropical cyclone 333:Vilhelm Bjerknes 211:geostrophic wind 146:spectral methods 21: 4445: 4444: 4440: 4439: 4438: 4436: 4435: 4434: 4420: 4419: 4418: 4413: 4372: 4326: 4312:Energy modeling 4300: 4244: 4220:Ecosystem model 4196: 4191: 4161: 4156: 4120: 4083: 4067: 4041: 4010: 3924: 3875: 3817: 3755: 3695: 3694:Specific models 3680: 3676:Parametrization 3607: 3596: 3593: 3536: 3531: 3525: 3512: 3508: 3506:Further reading 3503: 3487:10.1.1.207.4667 3460: 3459: 3455: 3445: 3443: 3426: 3425: 3421: 3390: 3389: 3385: 3375: 3373: 3372:on 10 July 2010 3369: 3326: 3321: 3320: 3316: 3306: 3304: 3296: 3295: 3291: 3281: 3279: 3275: 3264: 3259: 3258: 3254: 3245: 3243: 3235: 3234: 3230: 3196: 3190: 3189: 3185: 3175: 3173: 3169:(22 May 2008). 3165: 3164: 3160: 3150: 3148: 3146: 3138:. p. 208. 3125: 3124: 3117: 3110: 3095: 3094: 3090: 3083: 3068: 3067: 3063: 3056: 3041: 3040: 3036: 3031: 3027: 3021: 3017: 3008: 3004: 2991: 2990: 2986: 2977: 2975: 2971: 2960: 2955: 2954: 2950: 2943: 2928: 2927: 2923: 2916: 2899: 2898: 2894: 2887: 2879:. p. 259. 2868: 2867: 2863: 2856: 2841: 2840: 2836: 2829: 2814: 2813: 2809: 2802: 2787: 2786: 2782: 2773: 2771: 2770:on 1 April 2011 2767: 2756: 2751: 2750: 2746: 2737: 2735: 2724: 2719: 2718: 2714: 2707: 2692: 2691: 2687: 2680: 2663: 2662: 2658: 2651: 2636: 2635: 2628: 2621: 2606: 2605: 2601: 2594: 2579: 2578: 2574: 2567: 2552: 2551: 2542: 2535: 2520: 2519: 2515: 2508: 2493: 2492: 2488: 2481: 2464: 2463: 2459: 2452: 2435: 2434: 2430: 2423: 2408: 2407: 2403: 2396: 2388:. p. 137. 2377: 2376: 2372: 2363: 2361: 2353: 2352: 2348: 2339: 2337: 2328: 2327: 2323: 2306: 2300: 2298: 2284: 2283: 2279: 2270: 2268: 2259: 2258: 2254: 2245: 2243: 2214: 2209: 2208: 2204: 2190: 2189: 2185: 2168: 2167: 2163: 2123: 2122: 2118: 2101: 2100: 2096: 2087: 2085: 2068: 2067: 2063: 2056: 2041: 2040: 2036: 2015:(529): 73–119. 2006: 2005: 2001: 1992: 1990: 1977: 1976: 1972: 1948:10.1.1.324.3941 1921:Kalnay, Eugenia 1918: 1917: 1913: 1901: 1897: 1890: 1871: 1870: 1866: 1856: 1855: 1848: 1838: 1837: 1830: 1823: 1810: 1809: 1802: 1753: 1752: 1745: 1738: 1719: 1718: 1711: 1677: 1672: 1671: 1664: 1655: 1653: 1637: 1632: 1631: 1627: 1589: 1588: 1584: 1577: 1558: 1557: 1553: 1546: 1529: 1528: 1524: 1515: 1513: 1509: 1476: 1468: 1467: 1460: 1453: 1438: 1437: 1433: 1390: 1389: 1380: 1373: 1360: 1359: 1355: 1348: 1335: 1334: 1330: 1284: 1283: 1279: 1259: 1258: 1254: 1250: 1213: 1195:to be based on 1154: 1124: 1119: 1091: 1083:Main articles: 1081: 1076: 1047: 1041: 869: 773:– developed by 761: 759:Global versions 711: 710: 691: 690: 671: 624: 618: 539: 522: 422: 411: 400: 376:forecast points 321: 304: 275: 259:Euler equations 251:divergence-free 203: 175: 170: 86:moist processes 28: 23: 22: 15: 12: 11: 5: 4443: 4441: 4433: 4432: 4422: 4421: 4415: 4414: 4412: 4411: 4406: 4401: 4399:Systems theory 4396: 4391: 4386: 4380: 4378: 4377:Related topics 4374: 4373: 4371: 4370: 4365: 4363:Economic model 4360: 4355: 4350: 4345: 4340: 4334: 4332: 4328: 4327: 4325: 4324: 4319: 4314: 4308: 4306: 4305:Sustainability 4302: 4301: 4299: 4298: 4293: 4288: 4283: 4278: 4273: 4268: 4263: 4258: 4252: 4250: 4246: 4245: 4243: 4242: 4237: 4232: 4227: 4222: 4217: 4212: 4210:Cellular model 4206: 4204: 4198: 4197: 4192: 4190: 4189: 4182: 4175: 4167: 4158: 4157: 4155: 4154: 4149: 4144: 4139: 4133: 4130: 4129: 4126: 4125: 4122: 4121: 4119: 4118: 4113: 4108: 4103: 4098: 4095: 4091: 4089: 4085: 4084: 4082: 4081: 4075: 4073: 4069: 4068: 4066: 4065: 4060: 4055: 4049: 4047: 4043: 4042: 4040: 4039: 4034: 4029: 4024: 4018: 4016: 4012: 4011: 4009: 4008: 4003: 3998: 3993: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3953: 3948: 3943: 3938: 3932: 3930: 3926: 3925: 3923: 3922: 3917: 3912: 3907: 3902: 3897: 3892: 3887: 3883: 3881: 3877: 3876: 3874: 3873: 3870: 3865: 3860: 3857: 3854: 3849: 3846: 3841: 3836: 3831: 3825: 3823: 3819: 3818: 3816: 3815: 3812: 3807: 3804: 3799: 3794: 3789: 3784: 3779: 3774: 3769: 3763: 3761: 3760:Global weather 3757: 3756: 3754: 3753: 3748: 3743: 3738: 3733: 3728: 3723: 3718: 3713: 3707: 3705: 3697: 3696: 3693: 3686: 3685: 3682: 3681: 3679: 3678: 3673: 3668: 3663: 3658: 3653: 3648: 3643: 3638: 3633: 3628: 3623: 3618: 3612: 3609: 3608: 3605: 3598: 3597: 3594: 3592: 3591: 3584: 3577: 3569: 3563: 3562: 3557: 3552: 3547: 3542: 3535: 3534:External links 3532: 3530: 3529: 3523: 3509: 3507: 3504: 3502: 3501: 3472:(2): 395–419. 3453: 3428:James Franklin 3419: 3383: 3354:10.1.1.453.551 3314: 3289: 3252: 3228: 3194: 3183: 3158: 3144: 3115: 3108: 3088: 3081: 3061: 3054: 3034: 3025: 3015: 3002: 2984: 2948: 2941: 2921: 2914: 2892: 2885: 2861: 2854: 2834: 2827: 2807: 2800: 2780: 2744: 2712: 2705: 2685: 2678: 2672:. p. 65. 2670:Academic Press 2656: 2649: 2626: 2619: 2599: 2592: 2572: 2565: 2540: 2533: 2513: 2506: 2486: 2479: 2471:Academic Press 2457: 2450: 2442:Academic Press 2428: 2421: 2401: 2394: 2370: 2357:(2010-11-12). 2346: 2321: 2277: 2252: 2202: 2199:on 2007-06-07. 2183: 2180:on 2007-08-14. 2161: 2134:(1): 195–225. 2116: 2113:on 2007-12-30. 2094: 2072:(2008-08-20). 2061: 2054: 2034: 1999: 1970: 1919:Toth, Zoltan; 1911: 1895: 1888: 1875:Storm Watchers 1864: 1846: 1828: 1821: 1800: 1771:(3): 286–296. 1743: 1736: 1723:Storm Watchers 1709: 1662: 1625: 1604:(5): 639–650. 1582: 1575: 1562:Storm Watchers 1551: 1544: 1522: 1489:(7): 3431–44. 1472:(2008-03-20). 1458: 1451: 1431: 1410:(4): 237–254. 1378: 1371: 1353: 1346: 1328: 1299:(2): 127–141. 1277: 1251: 1249: 1246: 1245: 1244: 1239: 1234: 1229: 1224: 1219: 1212: 1209: 1153: 1150: 1146:climate change 1122: 1117: 1080: 1077: 1075: 1072: 1043:Main article: 1040: 1037: 1036: 1035: 1026: 1019: 1013: 1003: 994: 983: 974: 960: 947: 938: 930: 929: 928: 914: 901: 900: 899: 889: 868: 865: 864: 863: 855: 846: 836: 821: 812: 799: 789: 777: 760: 757: 718: 698: 670: 667: 659:cloud fraction 634:represent are 620:Main article: 617: 614: 554:meteorological 521: 518: 462:mountain waves 458:initialization 450:thermodynamics 446:fluid dynamics 399: 398:Initialization 396: 386:nature of the 380:forecast skill 317:Main article: 303: 300: 290:sigma-pressure 282:acoustic waves 274: 271: 231:cold-core lows 202: 199: 174: 171: 169: 166: 160:, and current 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4442: 4431: 4428: 4427: 4425: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4381: 4379: 4375: 4369: 4366: 4364: 4361: 4359: 4358:Crime mapping 4356: 4354: 4351: 4349: 4346: 4344: 4341: 4339: 4336: 4335: 4333: 4329: 4323: 4320: 4318: 4315: 4313: 4310: 4309: 4307: 4303: 4297: 4294: 4292: 4289: 4287: 4284: 4282: 4279: 4277: 4274: 4272: 4269: 4267: 4266:Climate model 4264: 4262: 4259: 4257: 4254: 4253: 4251: 4249:Environmental 4247: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4207: 4205: 4203: 4199: 4195: 4188: 4183: 4181: 4176: 4174: 4169: 4168: 4165: 4153: 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4134: 4131: 4117: 4114: 4112: 4109: 4107: 4104: 4102: 4099: 4096: 4093: 4092: 4090: 4086: 4080: 4077: 4076: 4074: 4070: 4064: 4061: 4059: 4056: 4054: 4051: 4050: 4048: 4044: 4038: 4035: 4033: 4030: 4028: 4025: 4023: 4020: 4019: 4017: 4013: 4007: 4004: 4002: 3999: 3997: 3994: 3992: 3989: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3933: 3931: 3927: 3921: 3918: 3916: 3913: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3891: 3888: 3885: 3884: 3882: 3878: 3871: 3869: 3866: 3864: 3861: 3858: 3855: 3853: 3850: 3847: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3827: 3826: 3824: 3820: 3813: 3811: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3764: 3762: 3758: 3752: 3749: 3747: 3744: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3708: 3706: 3702: 3698: 3691: 3687: 3677: 3674: 3672: 3669: 3667: 3664: 3662: 3659: 3657: 3654: 3652: 3649: 3647: 3644: 3642: 3639: 3637: 3634: 3632: 3631:Climate model 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3613: 3610: 3603: 3599: 3590: 3585: 3583: 3578: 3576: 3571: 3570: 3567: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3537: 3533: 3526: 3520: 3516: 3511: 3510: 3505: 3497: 3493: 3488: 3483: 3479: 3475: 3471: 3467: 3466: 3457: 3454: 3441: 3437: 3433: 3429: 3423: 3420: 3415: 3411: 3407: 3403: 3399: 3395: 3387: 3384: 3368: 3364: 3360: 3355: 3350: 3346: 3342: 3338: 3334: 3333: 3325: 3318: 3315: 3303: 3299: 3293: 3290: 3274: 3270: 3263: 3256: 3253: 3242: 3238: 3232: 3229: 3223: 3218: 3214: 3210: 3206: 3202: 3198: 3187: 3184: 3172: 3168: 3162: 3159: 3147: 3141: 3137: 3133: 3129: 3122: 3120: 3116: 3111: 3105: 3101: 3100: 3092: 3089: 3084: 3078: 3074: 3073: 3065: 3062: 3057: 3051: 3047: 3046: 3038: 3035: 3029: 3026: 3019: 3016: 3012: 3006: 3003: 2998: 2994: 2988: 2985: 2974:on 2011-08-23 2970: 2966: 2959: 2952: 2949: 2944: 2938: 2934: 2933: 2925: 2922: 2917: 2911: 2907: 2903: 2896: 2893: 2888: 2882: 2878: 2874: 2873: 2865: 2862: 2857: 2851: 2847: 2846: 2838: 2835: 2830: 2824: 2820: 2819: 2811: 2808: 2803: 2797: 2793: 2792: 2784: 2781: 2766: 2762: 2755: 2748: 2745: 2734: 2730: 2723: 2716: 2713: 2708: 2702: 2698: 2697: 2689: 2686: 2681: 2675: 2671: 2667: 2660: 2657: 2652: 2646: 2642: 2641: 2633: 2631: 2627: 2622: 2616: 2612: 2611: 2603: 2600: 2595: 2589: 2585: 2584: 2576: 2573: 2568: 2562: 2558: 2557: 2549: 2547: 2545: 2541: 2536: 2530: 2526: 2525: 2517: 2514: 2509: 2503: 2499: 2498: 2490: 2487: 2482: 2476: 2472: 2468: 2461: 2458: 2453: 2447: 2443: 2439: 2432: 2429: 2424: 2418: 2414: 2413: 2405: 2402: 2397: 2391: 2387: 2383: 2382: 2374: 2371: 2360: 2356: 2350: 2347: 2336: 2332: 2325: 2322: 2317: 2311: 2297:on 2012-05-30 2296: 2292: 2288: 2281: 2278: 2267: 2263: 2256: 2253: 2242: 2238: 2234: 2230: 2226: 2222: 2221: 2213: 2206: 2203: 2198: 2194: 2187: 2184: 2179: 2175: 2171: 2165: 2162: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2128: 2120: 2117: 2112: 2108: 2104: 2098: 2095: 2084:on 2002-11-01 2083: 2079: 2075: 2071: 2065: 2062: 2057: 2051: 2047: 2046: 2038: 2035: 2030: 2026: 2022: 2018: 2014: 2010: 2003: 2000: 1988: 1984: 1980: 1974: 1971: 1966: 1962: 1958: 1954: 1949: 1944: 1940: 1936: 1932: 1928: 1927: 1922: 1915: 1912: 1908: 1905: 1899: 1896: 1891: 1885: 1881: 1877: 1876: 1868: 1865: 1860: 1853: 1851: 1847: 1842: 1835: 1833: 1829: 1824: 1818: 1814: 1807: 1805: 1801: 1796: 1792: 1787: 1782: 1778: 1774: 1770: 1766: 1765: 1760: 1756: 1750: 1748: 1744: 1739: 1733: 1729: 1725: 1724: 1716: 1714: 1710: 1705: 1701: 1697: 1693: 1689: 1685: 1684: 1676: 1669: 1667: 1663: 1651: 1647: 1643: 1636: 1629: 1626: 1620: 1615: 1611: 1607: 1603: 1599: 1598: 1593: 1586: 1583: 1578: 1572: 1568: 1564: 1563: 1555: 1552: 1547: 1541: 1537: 1533: 1526: 1523: 1512:on 2010-07-08 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1483: 1475: 1471: 1465: 1463: 1459: 1454: 1448: 1444: 1443: 1435: 1432: 1426: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1392:Charney, Jule 1387: 1385: 1383: 1379: 1374: 1368: 1364: 1357: 1354: 1349: 1343: 1339: 1332: 1329: 1324: 1320: 1315: 1310: 1306: 1302: 1298: 1294: 1293: 1288: 1281: 1278: 1273: 1269: 1265: 1264: 1256: 1253: 1247: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1222:Climate model 1220: 1218: 1215: 1214: 1210: 1208: 1206: 1202: 1198: 1194: 1189: 1187: 1183: 1179: 1174: 1170: 1163: 1158: 1151: 1149: 1147: 1143: 1139: 1135: 1131: 1126: 1115: 1110: 1108: 1104: 1100: 1096: 1095:climate model 1090: 1086: 1085:Climate model 1078: 1073: 1071: 1068: 1063: 1061: 1057: 1053: 1046: 1038: 1032: 1031: 1027: 1023: 1020: 1017: 1014: 1011: 1007: 1004: 1000: 999: 995: 991: 987: 984: 982: 978: 975: 972: 969:developed at 968: 964: 961: 957: 953: 952: 948: 944: 943: 939: 936: 935: 931: 926: 925: 921: 920: 918: 915: 911: 907: 906: 902: 897: 893: 890: 887: 884: 883: 881: 877: 874: 873: 872: 866: 862: 859: 856: 854: 850: 847: 844: 840: 837: 835: 832: 828: 827:Unified Model 825: 822: 820: 816: 813: 810: 806: 803: 800: 797: 793: 790: 788: 784: 781: 778: 776: 772: 769: 766: 765: 764: 758: 756: 754: 753: 748: 745:—such as the 744: 740: 736: 732: 716: 696: 687: 684: 680: 676: 668: 666: 662: 660: 656: 652: 648: 643: 639: 638: 637:parameterized 633: 629: 628:cumulus cloud 623: 615: 613: 611: 607: 603: 599: 594: 589: 587: 583: 579: 575: 574:Unified model 572: 568: 563: 562:Time stepping 559: 555: 534: 531: 526: 519: 517: 515: 511: 507: 503: 502:pilot reports 499: 495: 490: 487: 483: 479: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 431: 426: 419: 415: 409: 405: 397: 395: 393: 389: 385: 381: 377: 373: 369: 364: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 320: 313: 308: 301: 299: 296: 291: 287: 283: 279: 272: 270: 268: 264: 260: 256: 252: 248: 247:Rossby number 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 200: 198: 196: 192: 188: 184: 183:baroclinicity 180: 172: 167: 165: 163: 159: 155: 151: 147: 141: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 98:heat exchange 95: 94:precipitation 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 48: 44: 40: 37: 32: 19: 4255: 4088:Discontinued 3961:DISPERSION21 3615: 3514: 3469: 3463: 3456: 3444:. Retrieved 3422: 3400:(5): 43–60. 3397: 3393: 3386: 3374:. Retrieved 3367:the original 3339:(D3): 7419. 3336: 3330: 3317: 3305:. Retrieved 3292: 3280:. Retrieved 3273:the original 3255: 3244:. Retrieved 3240: 3231: 3204: 3200: 3186: 3174:. Retrieved 3161: 3149:. Retrieved 3131: 3098: 3091: 3071: 3064: 3044: 3037: 3028: 3018: 3005: 2997:the original 2987: 2976:. Retrieved 2969:the original 2951: 2931: 2924: 2901: 2895: 2871: 2864: 2844: 2837: 2817: 2810: 2790: 2783: 2772:. Retrieved 2765:the original 2747: 2736:. Retrieved 2728: 2715: 2695: 2688: 2665: 2659: 2639: 2609: 2602: 2582: 2575: 2555: 2523: 2516: 2496: 2489: 2466: 2460: 2437: 2431: 2411: 2404: 2380: 2373: 2362:. Retrieved 2349: 2338:. Retrieved 2334: 2324: 2299:. Retrieved 2295:the original 2280: 2269:. Retrieved 2255: 2244:. Retrieved 2224: 2218: 2205: 2197:the original 2186: 2178:the original 2164: 2131: 2125: 2119: 2111:the original 2097: 2086:. Retrieved 2082:the original 2064: 2044: 2037: 2012: 2008: 2002: 1991:. Retrieved 1987:the original 1973: 1930: 1924: 1914: 1898: 1874: 1867: 1858: 1840: 1812: 1768: 1762: 1722: 1687: 1681: 1654:. Retrieved 1645: 1641: 1628: 1601: 1595: 1585: 1561: 1554: 1531: 1525: 1514:. Retrieved 1507:the original 1486: 1480: 1470:Lynch, Peter 1441: 1434: 1407: 1403: 1362: 1356: 1337: 1331: 1296: 1290: 1280: 1272:the original 1262: 1255: 1190: 1167: 1127: 1111: 1092: 1074:Applications 1067:perfect prog 1066: 1064: 1048: 1034:simulations. 1028: 1021: 1015: 1005: 996: 985: 976: 962: 949: 940: 932: 922: 916: 903: 891: 885: 875: 870: 857: 853:MĂ©tĂ©o-France 848: 838: 823: 814: 801: 791: 779: 767: 762: 750: 742: 688: 683:limited-area 682: 678: 674: 672: 663: 635: 625: 609: 590: 561: 551: 498:stratosphere 491: 457: 435: 375: 365: 345:West Germany 322: 276: 204: 179:thermal wind 176: 173:Thermotropic 142: 134:limited-area 133: 129: 121: 57: 51: 3767:IFS (ECMWF) 3606:Model types 3207:(3): 3–15. 1205:statistical 520:Computation 494:troposphere 466:radiosondes 430:WP-3D Orion 404:transcluded 361:air quality 359:as well as 273:Hydrostatic 108:effects of 80:diffusion, 43:temperature 4202:Biological 3991:PUFF-PLUME 3951:AUSTAL2000 3810:GME / ICON 3777:GEM / GDPS 3726:GFDL CM2.X 3307:6 February 3246:2019-06-25 3151:6 February 3023:1929-1969. 2978:2011-01-03 2774:2011-02-15 2738:2011-02-15 2364:2010-12-22 2340:2008-02-22 2301:2006-03-30 2271:2011-02-15 2246:2011-02-16 2088:2011-02-11 1993:2011-01-05 1656:2011-01-03 1516:2010-12-23 1248:References 1186:California 1173:fluid flow 1002:consortia. 924:RACMO2.3p2 834:Met Office 456:is called 438:atmosphere 215:wind shear 207:barotropic 201:Barotropic 138:barotropic 4032:GEOS-Chem 3482:CiteSeerX 3446:2 January 3376:6 January 3349:CiteSeerX 3282:3 January 3176:8 January 2156:122230747 1965:1520-0493 1943:CiteSeerX 1795:1520-0434 1323:1520-0469 1178:acid rain 1148:studies. 593:nonlinear 189:(15  114:tornadoes 106:kinematic 82:radiation 78:turbulent 66:primitive 45:from the 4424:Category 4001:SAFE AIR 3834:RR / RAP 3440:Archived 3414:94747027 2993:"HIRLAM" 2310:cite web 1211:See also 1025:Russia). 993:system.. 910:HARMONIE 679:regional 130:regional 4037:CHIMERE 3996:RIMPUFF 3976:MERCURE 3956:CALPUFF 3806:JMA-GSM 3721:HadGEM1 3704:Climate 3474:Bibcode 3341:Bibcode 3209:Bibcode 2229:Bibcode 2136:Bibcode 2017:Bibcode 1935:Bibcode 1880:222–224 1773:Bibcode 1692:Bibcode 1652:: 61–77 1606:Bibcode 1491:Bibcode 1412:Bibcode 1301:Bibcode 1030:Meso-NH 1006:GEM-LAM 942:HIRHAM5 892:WRF-ARW 886:WRF-NMM 796:US Navy 669:Domains 651:stratus 642:convect 418:history 416:| 384:chaotic 302:History 257:of the 110:terrain 4331:Social 4111:NOGAPS 4027:MOZART 3946:ATSTEP 3941:AERMOD 3920:ADCIRC 3910:MITgcm 3852:HIRLAM 3814:ARPEGE 3797:NAVGEM 3716:HadCM3 3521:  3484:  3412:  3351:  3142:  3106:  3079:  3052:  2939:  2912:  2883:  2852:  2825:  2798:  2703:  2676:  2647:  2617:  2590:  2563:  2531:  2504:  2477:  2448:  2419:  2392:  2154:  2107:UNISYS 2052:  1963:  1945:  1886:  1819:  1793:  1734:  1648:(SP). 1573:  1542:  1449:  1404:Tellus 1369:  1344:  1321:  1142:HadCM3 1016:ALADIN 998:HIRLAM 898:(NCAR) 849:ARPEGE 792:NOGAPS 675:global 632:clouds 472:. The 253:, the 122:global 90:clouds 4058:CLASS 4053:JULES 4022:CLaMS 4006:SILAM 3915:FESOM 3905:FVCOM 3886:HyCOM 3872:HRDPS 3848:RAQMS 3792:NAEFS 3751:ECHAM 3746:CFSv2 3410:S2CID 3370:(PDF) 3327:(PDF) 3276:(PDF) 3265:(PDF) 2972:(PDF) 2961:(PDF) 2768:(PDF) 2757:(PDF) 2725:(PDF) 2215:(PDF) 2152:S2CID 1983:ECMWF 1678:(PDF) 1638:(PDF) 1510:(PDF) 1477:(PDF) 1201:skill 1022:COSMO 1012:(MSC) 917:RACMO 811:(MSC) 608:, or 571:UKMET 482:SYNOP 478:METAR 442:fluid 440:is a 406:from 341:ENIAC 168:Types 128:, or 126:Earth 60:is a 56:, an 4079:CICE 4063:ISBA 3986:OSPM 3981:NAME 3971:MEMO 3966:ISC3 3936:ADMS 3890:ROMS 3868:RGEM 3863:HWRF 3856:LAPS 3839:RAMS 3787:MPAS 3741:CESM 3736:CCSM 3731:CGCM 3711:IGCM 3519:ISBN 3448:2011 3378:2011 3309:2018 3284:2011 3178:2011 3153:2018 3140:ISBN 3104:ISBN 3077:ISBN 3050:ISBN 2937:ISBN 2910:ISBN 2881:ISBN 2850:ISBN 2823:ISBN 2796:ISBN 2701:ISBN 2674:ISBN 2645:ISBN 2615:ISBN 2588:ISBN 2561:ISBN 2529:ISBN 2502:ISBN 2475:ISBN 2446:ISBN 2417:ISBN 2390:ISBN 2316:link 2050:ISBN 1961:ISSN 1884:ISBN 1817:ISBN 1791:ISSN 1732:ISBN 1571:ISBN 1540:ISBN 1447:ISBN 1367:ISBN 1342:ISBN 1319:ISSN 1087:and 986:ARPS 979:The 965:the 963:RAMS 959:NAM. 956:NCEP 878:The 858:IGCM 839:ICON 787:NOAA 768:PLAV 610:prog 530:mbar 448:and 436:The 414:edit 323:The 255:curl 221:and 219:high 191:inHg 116:and 102:soil 92:and 76:for 41:and 36:mbar 4116:RUC 4106:NGM 4101:MM5 4097:LFM 4094:Eta 3900:MOM 3895:POM 3859:RPM 3844:WRF 3829:NAM 3782:GFS 3772:FIM 3492:doi 3402:doi 3359:doi 3337:101 3217:doi 2237:doi 2144:doi 2025:doi 2013:122 1953:doi 1931:125 1781:doi 1728:210 1700:doi 1614:doi 1567:208 1499:doi 1487:227 1420:doi 1309:doi 1140:'s 1109:. 977:MM5 951:NAM 934:MAR 876:WRF 815:IFS 802:GEM 780:GFS 96:), 52:In 4426:: 3802:UM 3490:. 3480:. 3470:24 3468:. 3438:. 3434:. 3408:. 3396:. 3357:. 3347:. 3335:. 3329:. 3300:. 3267:. 3239:. 3215:. 3205:32 3203:. 3199:. 3134:. 3130:. 3118:^ 2963:. 2904:. 2875:. 2759:. 2731:. 2727:. 2668:. 2629:^ 2543:^ 2469:. 2440:. 2384:. 2333:. 2312:}} 2308:{{ 2289:. 2264:. 2235:. 2225:89 2223:. 2217:. 2172:. 2150:. 2142:. 2132:27 2130:. 2105:. 2076:. 2023:. 2011:. 1981:. 1959:. 1951:. 1941:. 1929:. 1882:. 1849:^ 1831:^ 1803:^ 1789:. 1779:. 1767:. 1761:. 1746:^ 1730:. 1712:^ 1698:. 1688:82 1686:. 1680:. 1665:^ 1646:41 1644:. 1640:. 1612:. 1602:88 1600:. 1594:. 1569:. 1534:. 1497:. 1485:. 1479:. 1461:^ 1418:. 1406:. 1402:. 1381:^ 1317:. 1307:. 1297:13 1295:. 1289:. 1266:. 1121:CO 831:UK 824:UM 755:. 612:. 410:. 187:mb 100:, 84:, 68:, 4186:e 4179:t 4172:v 3588:e 3581:t 3574:v 3527:. 3498:. 3494:: 3476:: 3450:. 3416:. 3404:: 3398:2 3380:. 3361:: 3343:: 3311:. 3286:. 3249:. 3225:. 3219:: 3211:: 3195:2 3180:. 3155:. 3112:. 3085:. 3058:. 2981:. 2945:. 2918:. 2889:. 2858:. 2831:. 2804:. 2777:. 2741:. 2709:. 2682:. 2653:. 2623:. 2596:. 2569:. 2537:. 2510:. 2483:. 2454:. 2425:. 2398:. 2367:. 2343:. 2318:) 2304:. 2274:. 2249:. 2239:: 2231:: 2158:. 2146:: 2138:: 2091:. 2058:. 2031:. 2027:: 2019:: 1996:. 1967:. 1955:: 1937:: 1892:. 1825:. 1797:. 1783:: 1775:: 1769:4 1740:. 1706:. 1702:: 1694:: 1659:. 1622:. 1616:: 1608:: 1579:. 1548:. 1519:. 1501:: 1493:: 1455:. 1428:. 1422:: 1414:: 1408:2 1375:. 1350:. 1325:. 1311:: 1303:: 1123:2 1118:2 717:z 697:z 420:) 412:( 132:( 88:( 20:)

Index

Atmospheric models

mbar
geopotential height
temperature
Global Forecast System
atmospheric science
mathematical model
primitive
dynamical equations
parameterizations
turbulent
radiation
moist processes
clouds
precipitation
heat exchange
soil
kinematic
terrain
tornadoes
boundary layer eddies
Earth
barotropic
spectral methods
finite-difference methods
model output statistics
numerical weather prediction
surface weather observations
thermal wind

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑