Knowledge (XXG)

Atmospheric thermodynamics

Source 📝

309:
energy. The thermodynamic efficiency of the Hadley system, considered as a heat engine, has been relatively constant over the 1979~2010 period, averaging 2.6%. Over the same interval, the power generated by the Hadley regime has risen at an average rate of about 0.54 TW per yr; this reflects an increase in energy input to the system consistent with the observed trend in the tropical
335:, which whip up waves and increase the amount of warm moist air that powers the cyclone. Both a decreasing temperature in the upper troposphere or an increasing temperature of the atmosphere close to the surface will increase the maximum winds observed in hurricanes. When applied to hurricane dynamics it defines a Carnot heat engine cycle and predicts maximum hurricane intensity. 322: 131: 308:
The Hadley Circulation can be considered as a heat engine. The Hadley circulation is identified with rising of warm and moist air in the equatorial region with the descent of colder air in the subtropics corresponding to a thermally driven direct circulation, with consequent net production of kinetic
171:
1919 publication: "The radiant properties of the earth from the standpoint of atmospheric thermodynamics" (Occasional scientific papers of the Westwood Astrophysical Observatory). By the late 1970s various textbooks on the subject began to appear. Today, atmospheric thermodynamics is an integral
330:
The thermodynamic behavior of a hurricane can be modelled as a heat engine that operates between the heat reservoir of the sea at a temperature of about 300K (27 Â°C) and the heat sink of the tropopause at a temperature of about 200K (−72 Â°C) and in the process converts heat energy into
47:
The atmosphere is an example of a non-equilibrium system. Atmospheric thermodynamics describes the effect of buoyant forces that cause the rise of less dense (warmer) air, the descent of more dense air, and the transformation of water from liquid to vapor (evaporation) and its condensation. Those
83:
of water, homogeneous and in-homogeneous nucleation, effect of dissolved substances on cloud condensation, role of supersaturation on formation of ice crystals and cloud droplets. Considerations of moist air and cloud theories typically involve various temperatures, such as equivalent potential
331:
mechanical energy of winds. Parcels of air traveling close to the sea surface take up heat and water vapor, the warmed air rises and expands and cools as it does so causes condensation and precipitation. The rising air, and condensation, produces circulatory winds that are propelled by the
142:
These sorts of foundations naturally began to be applied towards the development of theoretical models of atmospheric thermodynamics which drew the attention of the best minds. Papers on atmospheric thermodynamics appeared in the 1860s that treated such topics as dry and moist
699:
Zur Thermodynamik der AtmosphĂ€re. Pts. I, II. Sitz. K. Preuss. Akad. Wissensch. Berlin, pp. 485–522, 1189–1206; Gesammelte Abhandlugen, pp. 91–144. English translation Abbe, C. The mechanics of the earth's atmosphere. Smithsonian Miscellaneous Collections, no 843, 1893,
689:
Hertz, H., 1884, Graphische Methode zur Bestimmung der adiabatischen Zustandsanderungen feuchter Luft. Meteor Ztschr, vol. 1, pp. 421–431. English translation by Abbe, C. – The mechanics of the earth's atmosphere. Smithsonian Miscellaneous Collections, 843, 1893,
325:
Air is being moistened as it travels toward convective system. Ascending motion in a deep convective core produces air expansion, cooling, and condensation. Upper-level outflow visible as an anvil cloud is eventually descending conserving mass (rysunek – Robert
166:
published a book "Thermodynamik der AtmosphÀre", Leipzig, J. A. Barth. From here the development of atmospheric thermodynamics as a branch of science began to take root. The term "atmospheric thermodynamics", itself, can be traced to
456: 31:, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and vertical instabilities in the atmosphere. Atmospheric 278:
Tor Bergeron published paper on "Physics of Clouds and Precipitation" describing precipitation from supercooled (due to condensational growth of ice crystals in presence of water drops)
159:
describing air as it is lifted, expands, cools, and eventually precipitates its water vapor; in 1888 he published voluminous work entitled "On the thermodynamics of the atmosphere".
794:
Dufour, L. et, Van Mieghem, J. – Thermodynamique de l'Atmosphùre, Institut Royal Meteorologique de Belgique, 1975. 278 pp (theoretical approach). First edition of this book – 1947.
119:
developed mathematical models on the dynamics of fluid bodies and vapors related to the combustion and pressure cycles of atmospheric steam engines; one example is the
495: 523: 27:
transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of
99:
of air motion either as grid resolved or subgrid parameterizations. These equations form a basis for the numerical weather and climate predictions.
382: 88:, turbulence interaction between air particles in clouds, convection, dynamics of tropical cyclones, and large scale dynamics of the atmosphere. 76:, with its ability to change phase from vapor, to liquid, to solid, and back is considered one of the most important trace components of air. 843: 824: 782: 135: 625:
of the mature hurricane has been idealized here as Carnot engine that converts heat energy extracted from the ocean to mechanical energy).
35:
are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection
869: 855:
Wilford Zdunkowski, Thermodynamics of the atmosphere: a course in theoretical meteorology, Cambridge, Cambridge University Press, 2004.
816: 791:
Curry, J.A. and P.J. Webster, 1999, Thermodynamics of Atmospheres and Oceans. Academic Press, London, 467 pp (textbook for graduates)
806: 348: 354: 344: 120: 39:
used in numerical weather models and is used in many climate considerations, including convective-equilibrium climate models.
601: 108: 250:
Hermann von Helmholtz and John William von Bezold used the concept of potential temperature, von Bezold used adiabatic
874: 374: 618:
Lorenz, E. N., 1955, Available potential energy and the maintenance of the general circulation, Tellus, 7, 157–167.
591: 370: 550: 498: 36: 712:"Contributions of the Hadley and Ferrel Circulations to the Energetics of the Atmosphere over the Past 32 Years" 28: 91:
The major role of atmospheric thermodynamics is expressed in terms of adiabatic and diabatic forces acting on
581: 571: 546: 310: 214: 72:(during which no energy is transferred as heat). Most of tropospheric gases are treated as ideal gases and 622: 566: 525:
is temperature in degrees Celsius). This shows that when atmospheric temperature increases (e.g., due to
32: 621:
Emanuel, K, 1986, Part I. An air-sea interaction theory for tropical cyclones, J. Atmos. Sci. 43, 585, (
812:
Iribarne, J.V. and Godson, W.L., Atmospheric thermodynamics, Dordrecht, Boston, Reidel (basic textbook).
148: 723: 656: 534: 357:
shows how the water-holding capacity of the atmosphere increases by about 8% per Celsius increase in
96: 134:
Thermodynamic diagram developed in the 19th century is still used to calculate quantities such as
741: 672: 229: 156: 61: 116: 839: 831: 820: 802: 778: 538: 530: 464: 144: 80: 69: 49: 731: 664: 576: 526: 554: 190: 112: 84:
temperature, wet-bulb and virtual temperatures. Connected areas are energy, momentum, and
541:). However, this purely thermodynamic argument is subject of considerable debate because 727: 660: 606: 596: 508: 332: 238: 163: 53: 24: 711: 644: 863: 745: 676: 586: 285: 168: 124: 85: 57: 852:
von Alfred Wegener, Thermodynamik der Atmosphare, Leipzig, J. A. Barth, 1911, 331pp.
645:"Thermodynamic disequilibrium of the atmosphere in the context of global warming" 358: 260:
Richard Asman constructs first aerological sonde (pressure-temperature-humidity)
205: 73: 321: 736: 668: 542: 251: 242: 92: 184:
Charles Le Roy recognized dew point temperature as point of saturation of air
451:{\displaystyle e_{s}(T)=6.1094\exp \left({\frac {17.625T}{T+243.04}}\right)} 362: 223:
Pierre Simon Laplace developed his law of pressure variation with height
193:
made hydrogen balloon flight measuring temperature and pressure in Paris
366: 152: 65: 758:
Emanuel, K. A. Annual Review of Fluid Mechanics, 23, 179–196 (1991)
320: 130: 129: 553:
could be influenced by the intensity of convection, and because
294:
K. Emanuel conceptualizes tropical cyclone as Carnot heat engine
20: 127:
published "Graphical Methods in the Thermodynamics of Fluids."
502: 266:
John Wilhelm von Bezold used concept of equivalent temperature
56:. The tools used include the law of energy conservation, the 284:
Vincent J. Schaeffer and Irving Langmuir performed the first
199:
Concept of variation of temperature with height was suggested
361:. (It does not directly depend on other parameters like the 545:
might cause extensive drying due to increased areas of
232:
publishes paper on convection theory of cyclone energy
511: 467: 385: 107:
In the early 19th century thermodynamicists such as
517: 489: 450: 151:devised first atmospheric thermodynamic diagram ( 710:Junling Huang & Michael B. McElroy (2014). 643:Junling Huang & Michael B. McElroy (2015). 60:, specific heat capacities, the assumption of 836:An Introduction to Atmospheric Thermodynamics 797:Emanuel, K.A.(1994): Atmospheric Convection, 8: 817:A First Course in Atmospheric Thermodynamics 155:). Pseudo-adiabatic process was coined by 819:, Sundog Publishing, Madison, Wisconsin, 208:developed his laws of pressures of vapours 735: 510: 472: 466: 421: 390: 384: 773:Bohren, C.F. & B. Albrecht (1998). 635: 809:(thermodynamics of tropical cyclones). 339:Water vapor and global climate change 136:convective available potential energy 7: 369:.) This water-holding capacity, or " 272:Sir Napier Shaw introduced tephigram 217:made balloon ascent to study weather 52:and that motion is modified by the 14: 557:is related to relative humidity. 373:", can be approximated using the 349:August-Roche-Magnus approximation 838:. Cambridge University Press. 602:Non-equilibrium thermodynamics 484: 478: 402: 396: 50:force of the pressure gradient 1: 317:Tropical cyclone Carnot cycle 172:part of weather forecasting. 123:. In 1873, thermodynamicist 48:dynamics are modified by the 777:. Oxford University Press. 551:efficiency of precipitation 375:August-Roche-Magnus formula 355:Clausius–Clapeyron relation 345:Clausius–Clapeyron relation 121:Clausius–Clapeyron equation 891: 870:Atmospheric thermodynamics 775:Atmospheric Thermodynamics 592:Equilibrium thermodynamics 371:equilibrium vapor pressure 342: 241:presents dynamics causing 68:is a constant), and moist 17:Atmospheric thermodynamics 827:(undergraduate textbook). 737:10.1175/jcli-d-13-00538.1 669:10.1007/s00382-015-2553-x 499:saturation vapor pressure 490:{\displaystyle e_{s}(T)} 311:sea surface temperatures 29:classical thermodynamics 799:Oxford University Press 582:Chemical thermodynamics 572:Atmospheric temperature 215:Joseph Louis Gay-Lussac 567:Atmospheric convection 519: 497:is the equilibrium or 491: 452: 327: 139: 33:thermodynamic diagrams 832:Tsonis Anastasios, A. 537:(assuming a constant 533:should also increase 520: 492: 453: 324: 133: 655:(11–12): 3513–3525. 543:convective processes 509: 465: 383: 79:Advanced topics are 62:isentropic processes 728:2014JCli...27.2656H 661:2015ClDy...45.3513H 145:adiabatic processes 97:primitive equations 70:adiabatic processes 875:Gliding technology 716:Journal of Climate 515: 487: 448: 328: 304:Hadley Circulation 230:James Pollard Espy 140: 845:978-0-521-79676-7 825:978-0-9729033-2-5 784:978-0-19-509904-1 539:relative humidity 531:absolute humidity 518:{\displaystyle T} 442: 254:and pseudoadiabat 138:or air stability. 81:phase transitions 37:parameterizations 882: 849: 788: 759: 756: 750: 749: 739: 722:(7): 2656–2666. 707: 701: 697: 691: 687: 681: 680: 649:Climate Dynamics 640: 577:Atmospheric wave 527:greenhouse gases 524: 522: 521: 516: 496: 494: 493: 488: 477: 476: 457: 455: 454: 449: 447: 443: 441: 430: 422: 395: 394: 19:is the study of 890: 889: 885: 884: 883: 881: 880: 879: 860: 859: 858: 846: 830: 785: 772: 768: 766:Further reading 763: 762: 757: 753: 709: 708: 704: 698: 694: 688: 684: 642: 641: 637: 632: 615: 563: 555:cloud formation 507: 506: 468: 463: 462: 431: 423: 417: 386: 381: 380: 351: 343:Main articles: 341: 319: 306: 301: 191:Jacques Charles 178: 117:Émile Clapeyron 113:Rudolf Clausius 105: 45: 12: 11: 5: 888: 886: 878: 877: 872: 862: 861: 857: 856: 853: 850: 844: 828: 813: 810: 795: 792: 789: 783: 769: 767: 764: 761: 760: 751: 702: 692: 682: 634: 633: 631: 628: 627: 626: 619: 614: 613:Special topics 611: 610: 609: 607:Thermodynamics 604: 599: 597:Fluid dynamics 594: 589: 584: 579: 574: 569: 562: 559: 514: 486: 483: 480: 475: 471: 459: 458: 446: 440: 437: 434: 429: 426: 420: 416: 413: 410: 407: 404: 401: 398: 393: 389: 340: 337: 333:Coriolis force 318: 315: 305: 302: 300: 297: 296: 295: 289: 279: 273: 267: 261: 255: 245: 239:William Ferrel 233: 224: 218: 209: 200: 194: 185: 177: 174: 169:Frank W. Verys 164:Alfred Wegener 149:Heinrich Hertz 104: 101: 54:Coriolis force 44: 41: 13: 10: 9: 6: 4: 3: 2: 887: 876: 873: 871: 868: 867: 865: 854: 851: 847: 841: 837: 833: 829: 826: 822: 818: 815:Petty, G.W., 814: 811: 808: 807:0-19-506630-8 804: 800: 796: 793: 790: 786: 780: 776: 771: 770: 765: 755: 752: 747: 743: 738: 733: 729: 725: 721: 717: 713: 706: 703: 696: 693: 686: 683: 678: 674: 670: 666: 662: 658: 654: 650: 646: 639: 636: 629: 624: 620: 617: 616: 612: 608: 605: 603: 600: 598: 595: 593: 590: 588: 587:Cloud physics 585: 583: 580: 578: 575: 573: 570: 568: 565: 564: 560: 558: 556: 552: 548: 544: 540: 536: 535:exponentially 532: 528: 512: 504: 500: 481: 473: 469: 444: 438: 435: 432: 427: 424: 418: 414: 411: 408: 405: 399: 391: 387: 379: 378: 377: 376: 372: 368: 364: 360: 356: 350: 346: 338: 336: 334: 323: 316: 314: 312: 303: 298: 293: 290: 287: 286:cloud seeding 283: 280: 277: 274: 271: 268: 265: 262: 259: 256: 253: 249: 246: 244: 240: 237: 234: 231: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 186: 183: 180: 179: 175: 173: 170: 165: 160: 158: 154: 150: 146: 137: 132: 128: 126: 125:Willard Gibbs 122: 118: 114: 110: 102: 100: 98: 94: 89: 87: 86:mass transfer 82: 77: 75: 71: 67: 63: 59: 58:ideal gas law 55: 51: 42: 40: 38: 34: 30: 26: 22: 18: 835: 798: 774: 754: 719: 715: 705: 695: 685: 652: 648: 638: 623:energy cycle 460: 352: 329: 307: 299:Applications 291: 281: 275: 269: 263: 257: 247: 235: 226: 220: 211: 202: 196: 187: 181: 162:In 1911 von 161: 141: 106: 95:included in 90: 78: 46: 16: 15: 359:temperature 206:John Dalton 109:Sadi Carnot 93:air parcels 74:water vapor 864:Categories 630:References 547:subsidence 288:experiment 252:lapse rate 243:westerlies 176:Chronology 157:von Bezold 147:. In 1884 64:(in which 746:131132431 677:131679473 415:⁡ 203:1801–1803 834:(2002). 700:212–242. 561:See also 363:pressure 326:Simmon). 43:Overview 724:Bibcode 690:198–211 657:Bibcode 461:(where 367:density 153:emagram 103:History 66:entropy 842:  823:  805:  781:  744:  675:  529:) the 505:, and 439:243.04 425:17.625 409:6.1094 115:, and 742:S2CID 673:S2CID 840:ISBN 821:ISBN 803:ISBN 779:ISBN 353:The 347:and 292:1986 282:1946 276:1933 270:1926 264:1894 258:1893 248:1889 236:1856 227:1841 221:1805 212:1804 197:1784 188:1782 182:1751 25:work 23:-to- 21:heat 732:doi 665:doi 503:hPa 501:in 412:exp 365:or 866:: 801:. 740:. 730:. 720:27 718:. 714:. 671:. 663:. 653:45 651:. 647:. 549:, 313:. 111:, 848:. 787:. 748:. 734:: 726:: 679:. 667:: 659:: 513:T 485:) 482:T 479:( 474:s 470:e 445:) 436:+ 433:T 428:T 419:( 406:= 403:) 400:T 397:( 392:s 388:e

Index

heat
work
classical thermodynamics
thermodynamic diagrams
parameterizations
force of the pressure gradient
Coriolis force
ideal gas law
isentropic processes
entropy
adiabatic processes
water vapor
phase transitions
mass transfer
air parcels
primitive equations
Sadi Carnot
Rudolf Clausius
Émile Clapeyron
Clausius–Clapeyron equation
Willard Gibbs

convective available potential energy
adiabatic processes
Heinrich Hertz
emagram
von Bezold
Alfred Wegener
Frank W. Verys
Jacques Charles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑