Knowledge (XXG)

Austenite

Source 📝

54: 457:(containing iron carbide, i.e. cementite, but no uncombined carbon) above 727 °C (1,341 °F) causes the formation of austenite in crystals of primary cementite. This austenisation of white iron occurs in primary cementite at the interphase boundary with ferrite. When the grains of austenite form in cementite, they occur as lamellar clusters oriented along the cementite crystal layer surface. Austenite is formed by diffusion of carbon atoms from cementite into ferrite. 241: 253: 393: 512:. The epitaxial growth of austenite on the diamond (100) face is feasible because of the close lattice match and the symmetry of the diamond (100) face is fcc. More than a monolayer of γ-iron can be grown because the critical thickness for the strained multilayer is greater than a monolayer. The determined critical thickness is in close agreement with theoretical prediction. 436:
which is much harder and will generate cracks at much lower strains. The volume change (martensite is less dense than austenite) can generate stresses as well. The difference in strain rates of the inner and outer portion of the part may cause cracks to develop in the outer portion, compelling the use of slower quenching rates to avoid this. By alloying the steel with
435:
A high cooling rate of thick sections will cause a steep thermal gradient in the material. The outer layers of the heat treated part will cool faster and shrink more, causing it to be under tension and thermal straining. At high cooling rates, the material will transform from austenite to martensite
383:
By changing the temperature for austenitization, the austempering process can yield different and desired microstructures. A higher austenitization temperature can produce a higher carbon content in austenite, whereas a lower temperature produces a more uniform distribution of austempered structure.
560:
of the work, with the transition from a deep cherry-red to orange-red (815 °C (1,499 °F) to 871 °C (1,600 °F)) corresponding to the formation of austenite in medium and high-carbon steel. In the visible spectrum, this glow increases in brightness as temperature increases. When
444:
following quenching will transform some of the brittle martensite into tempered martensite. If a low-hardenability steel is quenched, a significant amount of austenite will be retained in the microstructure, leaving the steel with internal stresses that leave the product prone to sudden fracture.
338:
means to heat the iron, iron-based metal, or steel to a temperature at which it changes crystal structure from ferrite to austenite. The more-open structure of the austenite is then able to absorb carbon from the iron-carbides in carbon steel. An incomplete initial austenitization can leave
323:(FCC) configuration of gamma iron, also called austenite. This is similarly soft and ductile but can dissolve considerably more carbon (as much as 2.03% by mass at 1,146 °C (2,095 °F)). This gamma form of iron is present in the most commonly used type of 53: 375:
and then quenched in a salt bath or other heat extraction medium that is between temperatures of 300–375 °C (572–707 °F). The metal is annealed in this temperature range until the austenite turns to
561:
cherry-red, the glow is near its lowest intensity and may not be visible in ambient light. Hence blacksmiths usually austenitize steel in low-light conditions to accurately judge the color of the glow.
548:
causes phase changes in the iron-carbon system to control the material's mechanical properties, often using the annealing, quenching, and tempering processes. In this context, the color of light, or "
917:
Alvarenga HD, Van de Putte T, Van Steenberge N, Sietsma J, Terryn H (Apr 2009). "Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels".
440:, the carbon diffusion is slowed and the transformation to BCT allotrope occurs at lower temperatures, thereby avoiding the cracking. Such a material is said to have its hardenability increased. 424:(BCT). The rate of cooling determines the relative proportions of martensite, ferrite, and cementite, and therefore determines the mechanical properties of the resulting steel, such as 524:, the temperature at which magnetic materials cease to behave magnetically, occurs at nearly the same temperature as the austenite transformation. This behavior is attributed to the 1049: 696: 653:
Lambers HG, Tschumak S, Maier HJ, Canadinc D (Apr 2009). "Role of Austenitization and Pre-Deformation on the Kinetics of the Isothermal Bainitic Transformation".
635: 346:
For some iron metals, iron-based metals, and steels, the presence of carbides may occur during the austenitization step. The term commonly used for this is
303:(1843–1902). It exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures. 1106: 1074: 851: 603: 408:, may form. If the rate of cooling is very swift, the carbon does not have sufficient time to diffuse, and the alloy may experience a large 400:
As austenite cools, the carbon diffuses out of the austenite and forms carbon-rich iron-carbide (cementite) and leaves behind carbon-poor
1009: 504:
Austenite is only stable above 910 °C (1,670 °F) in bulk metal form. However, fcc transition metals can be grown on a
965:
Hoff HA, Waytena GL, Glesener JW, Harris VG, Pappas DP (Mar 1995). "Critical thickness of single crystal fcc iron on diamond".
799:
Chupatanakul S, Nash P (Aug 2006). "Dilatometric measurement of carbon enrichment in austenite during bainite transformation".
300: 1010:"Effect of rolling strain on transformation induced plasticity of austenite to martensite in a high-alloy austenitic steel" 712:"The Strain-Hardening Behavior of Partially Austenitized and the Austempered Ductile Irons with Dual Matrix Structures" 478: 413: 421: 133: 441: 128: 1098: 1043: 974: 926: 883: 808: 723: 662: 505: 549: 368:
to promote better mechanical properties. The metal is heated into the austenite region of the iron-
320: 316: 990: 942: 899: 824: 781: 739: 678: 575: 401: 288: 272: 70: 1102: 1070: 847: 599: 557: 409: 27:
Metallic, non-magnetic allotrope of iron or a solid solution of iron, with an alloying element
1064: 1090: 1024: 982: 934: 891: 816: 773: 761: 731: 711: 670: 429: 312: 184: 179: 240: 1127: 474: 324: 174: 384:
The carbon content in austenite as a function of austempering time has been established.
978: 930: 887: 812: 727: 666: 276: 225: 169: 149: 99: 61: 1121: 1028: 986: 946: 903: 828: 785: 743: 682: 541: 529: 509: 372: 994: 252: 844:
Engineering Materials 2: An Introduction to Microstructures, Processing, and Design
525: 481:, much higher alloy content makes this structure stable even at room temperature. 359: 230: 220: 159: 154: 874:
Ershov VM, Nekrasova LS (Jan 1982). "Transformation of cementite into austenite".
299:
have different eutectoid temperatures. The austenite allotrope is named after Sir
521: 164: 108: 777: 938: 820: 735: 674: 570: 553: 545: 489: 417: 404:. Depending on alloy composition, a layering of ferrite and cementite, called 392: 215: 189: 123: 85: 37:
This article is about the alloy and iron allotrope. For Jane Austen fans, see
466: 454: 369: 292: 210: 205: 80: 31: 762:"Effect of austenitization on austempering of copper alloyed ductile iron" 311:
From 912 to 1,394 °C (1,674 to 2,541 °F) alpha iron undergoes a
17: 623:. Springfield, Massachusetts, USA: G & C Merriam Company. p. 58. 493: 473:, can stabilize the austenitic structure, facilitating heat-treatment of 437: 425: 405: 113: 90: 895: 485: 377: 340: 118: 38: 470: 1008:
M. Bigdeli Karimia, H. Arabib, A. Khosravania, and J. Samei (2008).
528:
nature of austenite, while both martensite and ferrite are strongly
496:
tend to de-stabilize austenite, raising the eutectoid temperature.
365: 296: 284: 251: 239: 280: 364:
Austempering is a hardening process that is used on iron-based
244:
Iron-carbon phase diagram, showing the conditions under which
380:
or ausferrite (bainitic ferrite + high-carbon austenite).
1066:
Reducing Brittle and Fatigue Failures in Steel Structures
636:"Quenching and tempering of welded carbon steel tubulars" 396:
Austenite microstructure at two different temperatures
536:
Thermo-optical emission, colour indicates temperature
295:
temperature of 1000 K (727 °C); other alloys of
465:The addition of certain alloying elements, such as 1069:, New York: American Society of Civil Engineers, 766:Journal of Materials Engineering and Performance 327:for making hospital and food-service equipment. 556:. Temperature is often gauged by watching the 552:", emitted by the workpiece is an approximate 598:(3rd ed.). Boston: PWS-Kent Publishing. 256:Allotropes of iron; alpha iron and gamma iron 8: 1048:: CS1 maint: multiple names: authors list ( 621:Webster's Seventh New Collegiate Dictionary 1017:Journal of Materials Processing Technology 43: 869: 867: 865: 863: 842:Ashby MF, Hunkin-Jones DR (1986-01-01). 391: 960: 958: 956: 755: 753: 586: 197: 141: 98: 60: 46: 1041: 291:, austenite exists above the critical 760:Batra U, Ray S, Prabhakar SR (2003). 520:In many magnetic ferrous alloys, the 7: 484:On the other hand, such elements as 461:Stabilization at lower temperatures 594:Reed-Hill R, Abbaschian R (1991). 422:body centered tetragonal structure 25: 1029:10.1016/j.jmatprotec.2007.10.029 52: 301:William Chandler Roberts-Austen 271:), is a metallic, non-magnetic 596:Physical Metallurgy Principles 516:Transformation and Curie point 388:Behavior in plain carbon-steel 248:(γ) is stable in carbon steel. 1: 710:Kilicli V, Erdogan M (2008). 987:10.1016/0039-6028(94)00787-X 416:in which it transforms into 634:Nichols R (July 29, 2001). 1144: 778:10.1361/105994903100277120 479:austenitic stainless steel 414:martensitic transformation 357: 198:Other iron-based materials 36: 29: 1095:Chemistry of the Elements 1093:; Earnshaw, Alan (1997). 939:10.1007/s11661-014-2600-y 821:10.1007/s10853-006-0127-3 736:10.1007/s11665-007-9143-y 675:10.1007/s11661-009-9827-z 477:. In the extreme case of 348:two-phase austenitization 1063:Maranian, Peter (2009), 134:Widmanstätten structures 30:Not to be confused with 397: 257: 249: 1099:Butterworth-Heinemann 1091:Greenwood, Norman N. 619:Gove PB, ed. (1963). 449:Behavior in cast iron 395: 255: 243: 919:Metall Mater Trans A 876:Metal Sci Heat Treat 655:Metall Mater Trans A 554:gauge of temperature 412:distortion known as 979:1995SurSc.326..252H 931:2015MMTA...46..123A 888:1982MSHT...24....9E 813:2006JMatS..41.4965C 728:2008JMEP...17..240K 667:2009MMTA...40.1355L 550:blackbody radiation 506:face-centered cubic 321:face-centered cubic 317:body-centered cubic 129:Tempered martensite 896:10.1007/BF00699307 576:Allotropes of iron 398: 289:plain-carbon steel 258: 250: 1108:978-0-08-037941-8 1076:978-0-7844-1067-7 853:978-0-080-32532-3 697:"Austenitization" 605:978-0-534-92173-6 558:color temperature 307:Allotrope of iron 273:allotrope of iron 238: 237: 16:(Redirected from 1135: 1113: 1112: 1097:(2nd ed.). 1087: 1081: 1080: 1060: 1054: 1053: 1047: 1039: 1037: 1035: 1023:(1–3): 349–354. 1014: 1005: 999: 998: 962: 951: 950: 914: 908: 907: 871: 858: 857: 839: 833: 832: 796: 790: 789: 757: 748: 747: 716:J Mater Eng Perf 707: 701: 700: 693: 687: 686: 661:(6): 1355–1366. 650: 644: 643: 631: 625: 624: 616: 610: 609: 591: 475:low-alloy steels 430:tensile strength 313:phase transition 265:gamma-phase iron 263:, also known as 185:Weathering steel 180:High-speed steel 56: 44: 21: 1143: 1142: 1138: 1137: 1136: 1134: 1133: 1132: 1118: 1117: 1116: 1109: 1089: 1088: 1084: 1077: 1062: 1061: 1057: 1040: 1033: 1031: 1012: 1007: 1006: 1002: 964: 963: 954: 916: 915: 911: 873: 872: 861: 854: 841: 840: 836: 798: 797: 793: 759: 758: 751: 709: 708: 704: 695: 694: 690: 652: 651: 647: 633: 632: 628: 618: 617: 613: 606: 593: 592: 588: 584: 567: 538: 518: 502: 463: 451: 390: 362: 356: 343:in the matrix. 336:Austenitization 333: 325:stainless steel 309: 175:Stainless steel 100:Microstructures 42: 35: 28: 23: 22: 15: 12: 11: 5: 1141: 1139: 1131: 1130: 1120: 1119: 1115: 1114: 1107: 1082: 1075: 1055: 1000: 952: 925:(1): 123–133. 909: 859: 852: 834: 807:(15): 4965–9. 791: 772:(5): 597–601. 749: 702: 688: 645: 640:The Fabricator 626: 611: 604: 585: 583: 580: 579: 578: 573: 566: 563: 537: 534: 517: 514: 501: 498: 462: 459: 453:Heating white 450: 447: 389: 386: 358:Main article: 355: 352: 332: 329: 308: 305: 277:solid solution 236: 235: 234: 233: 228: 226:Malleable iron 223: 218: 213: 208: 200: 199: 195: 194: 193: 192: 187: 182: 177: 172: 170:Maraging steel 167: 162: 157: 152: 150:Crucible steel 144: 143: 139: 138: 137: 136: 131: 126: 121: 116: 111: 103: 102: 96: 95: 94: 93: 88: 83: 78: 73: 65: 64: 58: 57: 49: 48: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1140: 1129: 1126: 1125: 1123: 1110: 1104: 1100: 1096: 1092: 1086: 1083: 1078: 1072: 1068: 1067: 1059: 1056: 1051: 1045: 1030: 1026: 1022: 1018: 1011: 1004: 1001: 996: 992: 988: 984: 980: 976: 973:(3): 252–66. 972: 968: 961: 959: 957: 953: 948: 944: 940: 936: 932: 928: 924: 920: 913: 910: 905: 901: 897: 893: 889: 885: 881: 877: 870: 868: 866: 864: 860: 855: 849: 845: 838: 835: 830: 826: 822: 818: 814: 810: 806: 802: 795: 792: 787: 783: 779: 775: 771: 767: 763: 756: 754: 750: 745: 741: 737: 733: 729: 725: 721: 717: 713: 706: 703: 698: 692: 689: 684: 680: 676: 672: 668: 664: 660: 656: 649: 646: 641: 637: 630: 627: 622: 615: 612: 607: 601: 597: 590: 587: 581: 577: 574: 572: 569: 568: 564: 562: 559: 555: 551: 547: 543: 542:heat treating 535: 533: 531: 530:ferromagnetic 527: 523: 515: 513: 511: 510:diamond cubic 507: 499: 497: 495: 491: 487: 482: 480: 476: 472: 468: 460: 458: 456: 448: 446: 443: 439: 433: 431: 427: 423: 419: 415: 411: 407: 403: 394: 387: 385: 381: 379: 374: 373:phase diagram 371: 367: 361: 353: 351: 349: 344: 342: 337: 330: 328: 326: 322: 319:(BCC) to the 318: 314: 306: 304: 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 254: 247: 242: 232: 229: 227: 224: 222: 219: 217: 214: 212: 209: 207: 204: 203: 202: 201: 196: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 147: 146: 145: 140: 135: 132: 130: 127: 125: 122: 120: 117: 115: 112: 110: 107: 106: 105: 104: 101: 97: 92: 89: 87: 84: 82: 79: 77: 74: 72: 69: 68: 67: 66: 63: 59: 55: 51: 50: 45: 40: 33: 19: 1094: 1085: 1065: 1058: 1044:cite journal 1032:. Retrieved 1020: 1016: 1003: 970: 966: 922: 918: 912: 879: 875: 843: 837: 804: 800: 794: 769: 765: 722:(2): 240–9. 719: 715: 705: 691: 658: 654: 648: 639: 629: 620: 614: 595: 589: 539: 526:paramagnetic 519: 503: 483: 464: 452: 434: 399: 382: 363: 360:Austempering 354:Austempering 347: 345: 339:undissolved 335: 334: 310: 287:element. In 268: 264: 260: 259: 245: 231:Wrought iron 221:Ductile iron 160:Spring steel 155:Carbon steel 75: 1034:4 September 882:(1): 9–11. 801:J Mater Sci 522:Curie point 165:Alloy steel 109:Spheroidite 582:References 571:Gamma loop 546:blacksmith 500:Thin films 490:molybdenum 418:martensite 216:White iron 190:Tool steel 124:Ledeburite 86:Martensite 18:Austenitic 947:136871961 904:136543311 829:137527848 786:135865284 744:135484622 683:136882327 508:(fcc) or 467:manganese 455:cast iron 442:Tempering 370:cementite 293:eutectoid 261:Austenite 246:austenite 211:Gray iron 206:Cast iron 81:Cementite 76:Austenite 32:Austinite 1122:Category 995:93826286 967:Surf Sci 565:See also 494:chromium 438:tungsten 426:hardness 406:pearlite 341:carbides 331:Material 285:alloying 283:with an 114:Pearlite 91:Graphite 975:Bibcode 927:Bibcode 884:Bibcode 809:Bibcode 724:Bibcode 663:Bibcode 540:During 486:silicon 410:lattice 402:ferrite 378:bainite 142:Classes 119:Bainite 71:Ferrite 39:Janeite 1128:Steels 1105:  1073:  993:  945:  902:  850:  827:  784:  742:  681:  602:  492:, and 471:nickel 366:metals 62:Phases 47:Steels 1013:(PDF) 991:S2CID 943:S2CID 900:S2CID 825:S2CID 782:S2CID 740:S2CID 679:S2CID 315:from 297:steel 275:or a 1103:ISBN 1071:ISBN 1050:link 1036:2019 848:ISBN 600:ISBN 544:, a 469:and 428:and 420:, a 281:iron 269:γ-Fe 1025:doi 1021:203 983:doi 971:326 935:doi 892:doi 817:doi 774:doi 732:doi 671:doi 432:. 279:of 1124:: 1101:. 1046:}} 1042:{{ 1019:. 1015:. 989:. 981:. 969:. 955:^ 941:. 933:. 923:46 921:. 898:. 890:. 880:24 878:. 862:^ 846:. 823:. 815:. 805:41 803:. 780:. 770:12 768:. 764:. 752:^ 738:. 730:. 720:17 718:. 714:. 677:. 669:. 659:40 657:. 638:. 532:. 488:, 350:. 1111:. 1079:. 1052:) 1038:. 1027:: 997:. 985:: 977:: 949:. 937:: 929:: 906:. 894:: 886:: 856:. 831:. 819:: 811:: 788:. 776:: 746:. 734:: 726:: 699:. 685:. 673:: 665:: 642:. 608:. 267:( 41:. 34:. 20:)

Index

Austenitic
Austinite
Janeite

Phases
Ferrite
Austenite
Cementite
Martensite
Graphite
Microstructures
Spheroidite
Pearlite
Bainite
Ledeburite
Tempered martensite
Widmanstätten structures
Crucible steel
Carbon steel
Spring steel
Alloy steel
Maraging steel
Stainless steel
High-speed steel
Weathering steel
Tool steel
Cast iron
Gray iron
White iron
Ductile iron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.