Knowledge

Intelligent lighting

Source đź“ť

194:, fixture (or sometimes moving head), is a versatile and multi-function instrument designed to replace multiple conventional, non-moving lights. Depending on the venue and application, automated luminaires can be a versatile and economical addition to a stock of traditional lights because, with proper programming, they can swiftly alter many aspects of their optics, changing the “personality” of the light very quickly. Lighting is typically pre-programmed and played back using only simple commands, although moving heads can be controlled “live” if the 174:. They began to manufacture a line of scanners known as Roboscans, with a variety of different specifications for different users. They were named for their wattages, with a range starting with 1004 and 1016. Later came the 804 and 805, designed for small venues. Other models were the 218, 518, 812, 918 and 1200Pro units. Martin also produced a whole new range of Moving Heads called the Martin MAC Series. This series is still popular today, with new fixtures such as the MAC III and MAC Viper, which are among the highest quality moving lights. 31: 39: 159:
used model aircraft servo motors to control Pan, Tilt, Color and Gobo, with the gobo wheel providing the shutter function as well. The Color wheel had 4 dichroic color filters (red, blue, yellow, and green), and the gobo wheel contained four stamped patterns (non-replaceable). The Robot communicated with a proprietary 8-bit protocol, yet had no microprocessors/pal's/pics/ram, O/S or other modern logic device.
696:
wider beam aperture resulting in wider beam angle, which may be altered by internal lenses or “frost effects”. Wash lights are more likely to have CMY colour mixing although it is common for high-end spot lights to have such features too. Spot units are generally used for their beam effect (usually through smoke or haze) and the ability to project texture, whereas wash lights tend to be used for providing a
1321: 730:
features built into a traditional automated fixture. When combined with an LED fixture or colour scroller, the most common features of an automated light can be readily duplicated. "Auto-yokes" are often promoted as a way to modernize and increase the flexibility of an inventory of lighting fixtures at a reduced cost to replacement with intelligent lights.
704: 582: 660: 341: 734:
place (behind the centre of the mirror). Moving head fixtures have a much more concentric range of motion, owing to the separation of the axis of motion. Much smoother operation can be achieved through one axis of a moving head luminaire describing a circle (usually pan) and the other (tilt) changes the diameter of the circular movement.
147:
retroactively named the original system "series-100". The Original Vari-Lite console was retroactively named the "series 100 console" and the original Vari-Lite was retroactively named the "VL-1 Spot Luminaire". The prototype fixture shown to Genesis in 1980 was re-designated the "VL-zero" in the mid-1990s to keep the naming consistent.
648:” effect for the next scene. Attempting this transition with traditional lighting fixtures could require as many as thirty instruments. In this circumstance, the automated fixtures are not doing anything that could not be achieved using conventional fixtures, but they dramatically reduce the number of lights needed in a 593:
lighting (such as a home) or where the “quality” of the light required does not vary excessively (although it may need to be very strong for a venue like a stadium). Naturally, there are exceptions to this rule, most notably the use of large numbers of moving heads for international sporting events, such as the
721:
Not all lights that have movement can be defined as intelligent. Basic, low cost fixtures that are marketed primarily to DJ's, club venues, or for retail in novelty stores are not controllable beyond simply powering the device on or off. This lack of a feature set or remote control makes these lights
667:
Active use of automated lights suggests that the luminaire is used to perform tasks which would otherwise require human involvement, or be simply impossible with conventional fixtures. For instance, a number of moving heads producing tightly focused, pure white beams straight down onto the stage will
154:
protocol was produced by Summa Technologies. Up until that time, moving lights were using other communication protocols, such as DIN8, AMX, D54 and the proprietary protocols of other companies, such as VariLite, Tasco, High End and Coemar. The Summa HTI had a 250 W HTI bulb, two colour wheels, a gobo
695:
Moving head fixtures are often divided into spot, wash lights and beam lights. They vary in use and functions, but many companies offer profile and wash versions of the same model of light. Profile lights generally contain features like gobos and prisms, whereas wash lights have simpler optics and a
733:
Generally, moving mirrors are faster at adjusting a lights position than moving head fixtures; however, moving-heads-style fixtures have a far larger total range of movement. The movement from mirror lights tends to be rectilinear, because the center of movement for both axes is usually in the same
729:
The introduction of devices referred to as "Auto-yokes", after the original design created by the company City Theatrical, blurs the line between a "conventional" and "intelligent" fixture. Designed to replace the static mounting hardware on stage lights, an automated yoke provides the pan and tilt
712:
Beam lights are often built much like the spot in terms of functionality aside from one key difference: beam lights use a wide lens to make an even more extreme beam. A typical spot has a beam angle from 15 to 35 degrees, whereas an average spot has a beam angle of three to seven degrees with some
592:
Intelligent lights (now commonly referred to as automated or moving heads), can be used wherever there is a need for powerful lighting which must be capable of rapid and extreme changes of mood and effects. Moving heads would, therefore, be inappropriate in a setting which does not require strong
572:
Note that fixtures which use the former method are not technically “moving heads”, since the light source itself does not move. However, the term “moving head” is used interchangeably throughout this article. On a moving head the glass gobos could have some fault caused by back-reflections of the
77:
More recently the term has fallen into disuse as abilities once reserved to a specific category of lighting instruments (most notably colour changing and variable focus) have become pervasive across a range of fixtures. The distinction has become more blurred with the introduction of machines that
435:
Moving lights are much more difficult to program than their conventional cousins because they have more attributes per fixture that must be controlled. A simple conventional lighting fixture uses only one channel of control per unit: intensity. Everything else that the light must do is pre-set by
158:
The first purchasable/mass-produced scanner was the Coemar Robot, first produced in 1986. Initially produced with either the GE MARC350 lamp, or the Philips SN250. Later versions were factory equipped with the Osram HTI400, a modification that High End Systems had been doing since 1987. The Robot
102:
as opposed to switches. From this point on until 1969, various other inventors made similar lights and improved on the technology, but with no major breakthroughs. During this period, Century Lighting (now Strand) started retailing such units specially made to order, retrofitted onto any of their
110:
to redirect the beam of light remotely. In 1969, Jules Fisher, from Casa Mañana area theatre in Texas saw the invention and use of 12 PAR 64 lanterns with 120 W, 12 V lamps fitted, 360 degrees of pan and 270 degrees of tilt, a standard that lasted until the 1990s. This lamp was also known as the
53:
that has automated or mechanical abilities beyond those of conventional, stationary illumination. Although the most advanced intelligent lights can produce extraordinarily complex effects, the intelligence lies with the human lighting designer, control system programmer (for example Chamsys and
407:
Since moving heads did not attain prominence until DMX's predecessor, AMX, or Analog Multiplex had passed the zenith of its popularity. Very few moving heads use analogue control, due to crippling restrictions on bandwidth, data transfer speeds and potential inaccuracy. Some of the most modern
166:
began producing their first scanners, the Golden Scan 1 & Crystal Scan. They utilized stepper motors instead of servos and used a HMI 575 lamp, bright and with a far more uniform beam brightness. This was followed by the Intellabeam in 1989, released by High End, who at the time were the
146:
In 1986 Vari-Lite introduced a new series of lighting fixtures and control consoles. They referred to the new system as their Series 200, with the new lights designated "VL-2 Spot Luminaire", and "VL-3 Wash Luminaire". The Series 200 system was controlled by the Artisan console. Vari-Lite
142:
Genesis was later to order 55 Vari-lites to use in their next chain of gigs across the UK. The lights were supplied with a Vari-Lite console which had 32 channels, five 1802 processors and a dramatic improvement of the first console which was very simple and had an external processing unit.
123:
gig in London. Another fixture known as the 'Cycklops' was also used for music in the USA, although it was limited in terms of capabilities. With only pan, tilt, and color functions, and at 1.2 meters long and weighing in at 97 kilograms including the ballast, they were heavy and
444:
once fixtures are connected to the program or console. This allows programmers to work on their show before ever entering the theater and know what to expect when the lights are connected to their controller. These products usually feature some method of converting a computer's
424: 97:
1925 saw the first use of electrical motors to move the fixture, and with it the beam position, by Herbet F. King (US patent number: 1,680,685). In 1936 US patent number 2,054,224 was granted to a similar device, with which the pan and tilt were controlled by means of a
436:
human hands (colour, position, focus, etc.) An automated lighting fixture can have as many as 30 of these control channels. A slew of products are available on the market to allow operators and programmers to easily control all of these channels on multiple fixtures.
181:
mounted on a moving yoke, much like that of an ordinary moving head. These fixtures also contain an integrated media server, which allows for millions of colour choices, endless libraries of gobo-like images, and projection of images and video.
412:
cabling for data transfer, due to the increased bandwidth available to control increasingly complicated effects. Using the new Ethernet technology, control surfaces are now able to control a much larger array of automated fixtures.
420:, or Remote Device Management. This protocol allows for communication between the lighting controller and fixtures. With RDM, users can troubleshoot, address, configure, and identify fixtures from the RDM enabled lighting desk. 479:
Mechanical dimming shutters used to vary the intensity of the light output. Mechanical dimmers are usually a specially designed disk or a mechanical shutter. Shutters with high speed stepper motors can be used to create strobe
635:
Passive use of automated lighting involves utilizing their versatility to perform tasks which would otherwise require many conventional lights to accomplish. For example, six to eight moving heads can create a textured blue
853: 118:
were printed, inserted from a reel just like on a slide projector. The fixtures also had an iris and a multiple colored gel wheel. These lights were also fitted with mirrors and made for an impressive light show for a
707:
A Martin MAC 250 Entour (profile – top) and MAC 250 wash) wash – bottom). Notice the difference in beam characteristics caused by the gobo of the Entour and the wider beam angle of the
344:
XLR connectors, the most common method of controlling moving heads. Note that these are 3-pin XLR connectors, which are used by some manufacturers, rather than the 5-pin, which is specified by the USITT DMX-512
536:
to change the shape of the beam or project images. Some fixtures have motors to rotate the gobo in its housing to create spinning effects, or use their complicated lens systems to achieve the same effect.
440:
are still the most common control mechanism, but many programmers use computer software to do the job. Software is now available that provides a rendered preview of the output produced by the
892: 857: 139:, and the first fixture was also called the Vari-lite. It also used one of the first lighting desks with a digital core and this enabled lighting states to be programmed in. 624:
where the versatility of these fixtures can be utilised to its best extent. In these applications, the uses of fixtures can be informally grouped into two categories:
337:
Control (such as ArtNet or sACN). The fixture then takes this signal and translates it into internal signals which are sent to the many stepper motors located inside.
737:
In early luminaires a pseudo rotating gobo effect could be achieved by moving the tilt in line with the other axis and then moving the pan from end stop to end stop.
473:
connected to mechanical and optical internal devices to manipulate the light before it emerges from the fixture's front lens. Examples of such internal devices are:
114:
In Bristol in 1968, progress was also being made, mainly for use in live music. Peter Wynne Wilson refers to the use of 1 kW profiles, with slides onto which
713:
high end companies producing lights with zero degree beams. Such beam effects are less seen in the theatre industry and more in the club and concert industry.
177:
The most recent development in intelligent lighting is digital lighting, with fixtures such as High End Systems' DL3. These fixtures consist of a bright LCD or
605:, in Beijing, had a rig of around 2,300 intelligent fixtures which is "the largest single automated lighting system ever assembled for a single event" 644:
during one scene – this can create a sensation of dusk or night. At the flick of a switch, the fixture can change to an animated red “
896: 688:
visible). To recreate such an effect without intelligent lights would require at least one human operator seated directly above the stage with a
828: 812: 135:
in a barn in England in 1980. The band decided to financially back the project. Showco spun off their lighting project into a company called
1208: 947: 131:
filters. During its development, the designers decided to add motors to motorize pan and tilt. They demonstrated the fixture for the band
127:
In 1978 a Dallas, Texas-based lighting and sound company called Showco began developing a lighting fixture that changed color by rotating
372:
transmits data on these channels which the intelligent fixture interprets as value settings for each of its many variables, including
1035: 90:
There are many patents for intelligent lighting dating back from 1906, with Edmond Sohlberg of Kansas City, USA. The lantern used a
354: 94:
and was operated not by motors or any form of electronics, but by cords that were operated manually to control pan, tilt and zoom.
1193: 107: 766: 1223: 601:, where many thousands of separate automated fixtures are often used to light the opening and closing ceremonies. The 517:
the beam; irises are used to change the size of the beam. Some fixtures have as many as 10 independently controlled
1228: 368:(a self-contained set of cables and fixtures which can operate a maximum of 512 individual channels). The central 1180: 999: 746: 723: 1170: 1145: 940: 322: 106:
George Izenour made the next breakthrough in 1969 with the first ever fixture to use a mirror on the end of an
325:, which outputs a control signal. This control signal sends data to the fixture usually in one of three ways: 506:. Using this method, a much wider range of colors can be created than is possible using single color filters. 1343: 878: 78:
would not be considered lights but share the ability to move their orientation and are operated by the same
697: 656:, are also possible with conventional fixtures, but are much easier to produce with intelligent fixtures. 1324: 1009: 124:
cumbersome. These units were designed more for replacing the ever unreliable local spotlight operators.
663:
A Martin MAC 250 entour (profile – top) and MAC 250 wash (wash – bottom)
1120: 649: 602: 441: 201:
Most moving heads have all or some of the following features. Each one is set to a channel number.
1160: 1135: 1094: 933: 832: 195: 55: 30: 1165: 1099: 1050: 1014: 977: 594: 239: 58:, rather than the fixture itself. For this reason, intelligent lighting (ILS) is also known as 1303: 808: 621: 503: 423: 916: 1257: 1252: 1242: 1030: 994: 389: 280: 206: 1213: 1198: 1140: 1089: 653: 529: 484: 244: 115: 545:
These fixtures also use motors to enable physical movement of the light beam by either:
333:(which stands for "Digital Multiplex", also the industry standard control protocol), or 1283: 1188: 1130: 1074: 1040: 518: 514: 466: 417: 385: 381: 350: 330: 309: 132: 38: 1337: 1262: 1055: 1004: 791: 677: 598: 522: 470: 393: 369: 357: 326: 211: 178: 1308: 1293: 1288: 1060: 692:, which would generally be considered to be too expensive for such a small effect. 681: 321:
Moving lights are controlled in many ways. Usually the fixtures are connected to a
42:
Several intelligent lights in use at a concert. Note the white beams they produce.
17: 170:
In the 1990s, the future came closer with Martin, a Danish Company that produced
1267: 960: 669: 539:
Automated framing shutters to further shape the beam and control unwanted spill.
437: 171: 770: 1218: 1115: 1045: 969: 956: 689: 685: 673: 617: 586: 120: 925: 1125: 573:
light on the lens; to solve this defect, anti-reflection gobos may be used.
510: 401: 191: 163: 136: 854:"Casestory – XVIII Commonwealth Games, Melbourne, Australia" 613: 462: 450: 409: 397: 334: 128: 99: 91: 50: 1150: 879:"Martin Lights Beijing Summer Olympic Games: LD Sha Xiao Lan Interview" 703: 609: 581: 495: 377: 659: 340: 499: 225: 151: 79: 1155: 702: 658: 641: 637: 580: 422: 373: 339: 37: 29: 782: – scroll down to "Early Automated Lighting" ~1970 1298: 645: 563: 491: 929: 608:
Usually, however, the use of intelligent lights is confined to
640:” effect on the stage floor while applying amber light to the 446: 792:
DMX512 Control Protocol Information – Connectors and Cables
551:
Pivoting an automated mirror which reflects the beam along
349:
The vast majority of moving heads are controlled using the
917:
http://www.citytheatrical.com/Products/2012/02/10/autoyoke
652:. Other features of automated fixtures, such as rotating 285:
Prism (either 3,4,8, 16 facet circular or 6 facet linear)
353:, usually using dedicated twisted pair, shielded cable 103:
existing lanterns up to 750 W to control pan and tilt.
360:
at the ends. Each fixture is assigned a block of DMX
1276: 1241: 1179: 1108: 1082: 1073: 1023: 987: 976: 487:
color filters used to change the color of the beam.
416:The most recent development in lighting control is 82:control protocol, such as moving yoke projectors. 155:wheel, a mechanical dimmer and zoom functions. 941: 632:(although these are not standardised terms). 562:Attaching the entire fixture lens train to a 8: 893:"Martin Lights Beijing Summer Olympic Games" 502:color-mixing filters to vary beam color via 461:Intelligent fixtures usually employ compact 829:"Product – MAC 2000 Profile" 1079: 984: 948: 934: 926: 668:produce a fantastic effect reminiscent of 150:In 1985, the first moving head to use the 758: 722:only a small step above a conventional 256:Gobo 2 Rotation (Direction & Speed) 250:Gobo 1 Rotation (Direction & Speed) 190:An automated light, properly called a 427:Moving lights are programmed using a 329:(which has largely been phased out), 7: 1209:Parabolic aluminized reflector light 408:intelligent fixtures use RJ-45 or 34:A Martin MAC 550 intelligent light 25: 807:. Focal Press. pp. 253–254. 767:"A History of Light and Lighting" 1319: 1320: 1194:Ellipsoidal reflector spotlight 585:Six moving yokes lighting up a 509:Automated lens trains used to 1: 566:with motorized pan & tilt 198:is sufficiently experienced. 525:to focus and shape the beam. 167:distributors for Clay Paky. 465:as light sources. They use 1360: 724:stage lighting instruments 364:in one of the venue's DMX 288:Prism Rotation (direction) 1317: 967: 919:City Theatrical Auto Yoke 747:Stage lighting instrument 1171:Theatrical smoke and fog 1146:Lighting control console 803:Cadena, Richard (2006). 504:subtractive color mixing 323:lighting control console 27:Automated light fixtures 709: 664: 589: 490:Variable, incremental 432: 346: 291:Prism Rotation (speed) 43: 35: 706: 662: 584: 426: 343: 41: 33: 1204:Intelligent lighting 684:is used to make the 603:2008 Summer Olympics 528:Pattern wheels with 431:in ETC light boards. 392:(horizontal swing), 358:5-pin XLR connectors 262:Gobo Animation Wheel 47:Intelligent lighting 1161:Stage pin connector 1095:Lighting technician 1015:Technical direction 469:or, more commonly, 1100:Master electrician 805:Automated Lighting 710: 665: 595:Commonwealth Games 590: 483:Color wheels with 433: 396:(vertical swing), 347: 60:automated lighting 54:Avolites), or the 44: 36: 18:Automated lighting 1331: 1330: 1304:Theatrical makeup 1237: 1236: 1151:Socapex connector 1069: 1068: 881:. 14 August 2008. 814:978-0-240-80703-4 676:(especially if a 56:lighting operator 16:(Redirected from 1351: 1323: 1322: 1080: 995:Set construction 985: 950: 943: 936: 927: 920: 914: 908: 907: 905: 904: 895:. Archived from 889: 883: 882: 875: 869: 868: 866: 865: 856:. Archived from 850: 844: 843: 841: 840: 831:. Archived from 825: 819: 818: 800: 794: 789: 783: 781: 779: 778: 769:. Archived from 763: 21: 1359: 1358: 1354: 1353: 1352: 1350: 1349: 1348: 1334: 1333: 1332: 1327: 1313: 1272: 1244: 1233: 1199:Fresnel lantern 1175: 1104: 1090:Lighting design 1065: 1019: 1000:Scenic painting 979: 972: 963: 954: 924: 923: 915: 911: 902: 900: 891: 890: 886: 877: 876: 872: 863: 861: 852: 851: 847: 838: 836: 827: 826: 822: 815: 802: 801: 797: 790: 786: 776: 774: 765: 764: 760: 755: 743: 719: 579: 558: 554: 459: 438:Lighting boards 319: 314: 306:Remote Patching 188: 92:carbon-arc bulb 88: 28: 23: 22: 15: 12: 11: 5: 1357: 1355: 1347: 1346: 1344:Stage lighting 1336: 1335: 1329: 1328: 1318: 1315: 1314: 1312: 1311: 1306: 1301: 1296: 1291: 1286: 1284:Costume design 1280: 1278: 1274: 1273: 1271: 1270: 1265: 1260: 1255: 1249: 1247: 1239: 1238: 1235: 1234: 1232: 1231: 1226: 1221: 1216: 1211: 1206: 1201: 1196: 1191: 1189:Beam projector 1185: 1183: 1177: 1176: 1174: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1138: 1133: 1131:Color scroller 1128: 1123: 1118: 1112: 1110: 1106: 1105: 1103: 1102: 1097: 1092: 1086: 1084: 1077: 1075:Stage lighting 1071: 1070: 1067: 1066: 1064: 1063: 1058: 1056:Scenery wagons 1053: 1048: 1043: 1038: 1033: 1027: 1025: 1021: 1020: 1018: 1017: 1012: 1007: 1002: 997: 991: 989: 982: 974: 973: 968: 965: 964: 955: 953: 952: 945: 938: 930: 922: 921: 909: 884: 870: 845: 820: 813: 795: 784: 757: 756: 754: 751: 750: 749: 742: 739: 718: 715: 578: 575: 570: 569: 568: 567: 560: 556: 552: 543: 542: 541: 540: 537: 526: 507: 488: 481: 471:stepper motors 458: 455: 418:RDM (lighting) 318: 315: 313: 312: 307: 304: 301: 298: 295: 292: 289: 286: 283: 278: 275: 272: 269: 266: 263: 260: 257: 254: 251: 248: 242: 237: 234: 231: 228: 223: 222:Pan/Tilt Speed 220: 217: 214: 209: 203: 187: 184: 87: 84: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1356: 1345: 1342: 1341: 1339: 1326: 1316: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1281: 1279: 1275: 1269: 1266: 1264: 1263:Prompt corner 1261: 1259: 1256: 1254: 1251: 1250: 1248: 1246: 1240: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1186: 1184: 1182: 1178: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1113: 1111: 1107: 1101: 1098: 1096: 1093: 1091: 1088: 1087: 1085: 1081: 1078: 1076: 1072: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1028: 1026: 1022: 1016: 1013: 1011: 1008: 1006: 1005:Scenic design 1003: 1001: 998: 996: 993: 992: 990: 986: 983: 981: 975: 971: 966: 962: 958: 951: 946: 944: 939: 937: 932: 931: 928: 918: 913: 910: 899:on 2011-07-18 898: 894: 888: 885: 880: 874: 871: 860:on 2007-09-28 859: 855: 849: 846: 835:on 2006-05-07 834: 830: 824: 821: 816: 810: 806: 799: 796: 793: 788: 785: 773:on 2013-01-25 772: 768: 762: 759: 752: 748: 745: 744: 740: 738: 735: 731: 727: 725: 716: 714: 705: 701: 699: 693: 691: 687: 683: 679: 678:smoke machine 675: 671: 661: 657: 655: 651: 647: 643: 639: 633: 631: 627: 623: 619: 615: 611: 606: 604: 600: 599:Olympic Games 596: 588: 583: 576: 574: 565: 561: 550: 549: 548: 547: 546: 538: 535: 534:gate shutters 531: 527: 524: 520: 516: 512: 508: 505: 501: 497: 493: 489: 486: 482: 478: 477: 476: 475: 474: 472: 468: 464: 456: 454: 452: 448: 443: 439: 430: 425: 421: 419: 414: 411: 405: 403: 399: 395: 391: 387: 383: 379: 375: 371: 370:lighting desk 367: 363: 359: 355: 352: 342: 338: 336: 332: 328: 324: 316: 311: 308: 305: 303:Fixture Reset 302: 300:Lamp Shut off 299: 296: 294:Effects Wheel 293: 290: 287: 284: 282: 279: 276: 273: 270: 267: 264: 261: 259:Gobo 3 Select 258: 255: 253:Gobo 2 Select 252: 249: 246: 243: 241: 238: 235: 232: 229: 227: 224: 221: 218: 215: 213: 210: 208: 205: 204: 202: 199: 197: 193: 185: 183: 180: 179:DLP projector 175: 173: 168: 165: 160: 156: 153: 148: 144: 140: 138: 134: 130: 125: 122: 117: 112: 109: 104: 101: 95: 93: 85: 83: 81: 75: 73: 69: 65: 64:moving lights 61: 57: 52: 48: 40: 32: 19: 1309:Video design 1294:Sound design 1289:Running crew 1277:Other fields 1203: 912: 901:. Retrieved 897:the original 887: 873: 862:. Retrieved 858:the original 848: 837:. Retrieved 833:the original 823: 804: 798: 787: 775:. Retrieved 771:the original 761: 736: 732: 728: 720: 711: 694: 670:searchlights 666: 634: 629: 625: 607: 591: 571: 544: 533: 467:servo motors 460: 457:Construction 449:output to a 434: 428: 415: 406: 365: 361: 351:DMX protocol 348: 320: 200: 189: 176: 172:fog machines 169: 161: 157: 149: 145: 141: 126: 113: 111:'Mac-Spot' 105: 96: 89: 76: 71: 70:, or simply 68:moving heads 67: 63: 59: 46: 45: 1268:Prompt book 1229:Accessories 1181:Instruments 961:scenography 587:mirror ball 429:fixture box 400:speed, and 108:ellipsoidal 1245:management 1219:Striplight 1116:Barn doors 1046:Fly system 978:Theatrical 970:Scene shop 957:Stagecraft 903:2009-06-22 864:2006-05-30 839:2006-05-30 777:2007-07-14 753:References 698:stage wash 690:followspot 674:helicopter 618:nightclubs 121:Pink Floyd 49:refers to 1224:Spotlight 1136:Cyclorama 1126:Color gel 1051:Platforms 463:arc lamps 402:animation 366:universes 345:Standard. 219:Fine Tilt 192:luminaire 164:Clay Paky 162:In 1987, 137:Vari-Lite 1338:Category 1253:Blocking 1109:Hardware 1036:Curtains 1024:Hardware 741:See also 622:churches 614:concerts 559:axes, or 485:dichroic 480:effects. 453:output. 410:Ethernet 398:rotation 362:channels 335:Ethernet 327:Analogue 268:Colour 2 265:Colour 1 247:1 Select 216:Fine Pan 196:operator 186:Features 129:dichroic 100:joystick 51:lighting 1325:Outline 1166:Top hat 1121:C-clamp 1061:Weights 1010:Rigging 980:scenery 672:from a 630:passive 610:theatre 496:magenta 378:pattern 317:Control 274:Magenta 230:Shutter 207:Panning 133:Genesis 86:History 1083:Fields 1031:Batten 988:Fields 811:  717:Debate 642:actors 626:active 620:, and 555:& 523:lenses 519:prisms 500:yellow 277:Yellow 226:Dimmer 152:DMX512 80:DMX512 72:movers 1243:Stage 1214:Scoop 1156:Snoot 1041:Flats 708:wash. 686:beams 682:hazer 654:gobos 638:night 577:Usage 530:gobos 515:focus 386:prism 382:focus 374:color 356:with 297:Frost 236:Focus 116:gobos 1299:Prop 1141:Gobo 959:and 809:ISBN 646:fire 628:and 564:yoke 532:and 521:and 513:and 511:zoom 498:and 492:cyan 394:tilt 271:Cyan 245:Gobo 240:Iris 233:Zoom 212:Tilt 1258:Cue 700:. 680:or 650:rig 597:or 451:DMX 447:USB 442:rig 390:pan 331:DMX 310:RDM 281:CTO 1340:: 726:. 616:, 612:, 494:, 404:. 388:, 384:, 380:, 376:, 74:. 66:, 62:, 949:e 942:t 935:v 906:. 867:. 842:. 817:. 780:. 636:“ 557:y 553:x 20:)

Index

Automated lighting


lighting
lighting operator
DMX512
carbon-arc bulb
joystick
ellipsoidal
gobos
Pink Floyd
dichroic
Genesis
Vari-Lite
DMX512
Clay Paky
fog machines
DLP projector
luminaire
operator
Panning
Tilt
Dimmer
Iris
Gobo
CTO
RDM
lighting control console
Analogue
DMX

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑