Knowledge (XXG)

Axiom of regularity

Source 📝

1288:. However, this step alone takes one to theories of sets which are considered too weak. So some of the power of comprehension was added back via the other existence axioms of ZF set theory (pairing, union, powerset, replacement, and infinity) which may be regarded as special cases of comprehension. So far, these axioms do not seem to lead to any contradiction. Subsequently, the axiom of choice and the axiom of regularity were added to exclude models with some undesirable properties. These two axioms are known to be relatively consistent. 2512: 25: 1295:. The axiom of regularity together with the axiom of pairing also prohibit such a universal set. However, Russell's paradox yields a proof that there is no "set of all sets" using the axiom schema of separation alone, without any additional axioms. In particular, ZF without the axiom of regularity already prohibits such a universal set. 1298:
If a theory is extended by adding an axiom or axioms, then any (possibly undesirable) consequences of the original theory remain consequences of the extended theory. In particular, if ZF without regularity is extended by adding regularity to get ZF, then any contradiction (such as Russell's paradox)
665:
will contain elements, called non-standard natural numbers, that satisfy the definition of natural numbers in that model but are not really natural numbers. They are "fake" natural numbers which are "larger" than any actual natural number. This model will contain infinite descending sequences of
1426:
wrote that "Zermelo's system has the notational advantage of not containing any explicitly typed variables, although in fact it can be seen as having an implicit type structure built into it, at least if the axiom of regularity is included. The details of this implicit typing are spelled out in
1367:, is equal to the class of all sets. This statement is even equivalent to the axiom of regularity (if we work in ZF with this axiom omitted). From any model which does not satisfy the axiom of regularity, a model which satisfies it can be constructed by taking only sets in 213: 263:), this result can be reversed: if there are no such infinite sequences, then the axiom of regularity is true. Hence, in this context the axiom of regularity is equivalent to the sentence that there are no downward infinite membership chains. 1050: 357: 1622: 1528:∋ ... is finite. Mirimanoff however did not consider his notion of regularity (and well-foundedness) as an axiom to be observed by all sets; in later papers Mirimanoff also explored what are now called 1182: 1402: 1361: 1454:. That was at the basis of both Russell's and Zermelo's intuitions. Indeed the best way to regard Zermelo's theory is as a simplification and extension of Russell's. (We mean Russell's 465: 1671: 816: 131: 1478:
In the same paper, Scott shows that an axiomatic system based on the inherent properties of the cumulative hierarchy turns out to be equivalent to ZF, including regularity.
818:. This is an unending descending sequence of elements. But this sequence is not definable in the model and thus not a set. So no contradiction to regularity can be proved. 756: 1546:) and in the same publication von Neumann gives an axiom (p. 412 in translation) which excludes some, but not all, non-well-founded sets. In a subsequent publication, 1735: 706: 976: 46: 2969: 1284:. In early formalizations of sets, mathematicians and logicians have avoided that contradiction by replacing the axiom schema of comprehension with the much weaker 1462:. Thus mixing of types is easier and annoying repetitions are avoided. Once the later types are allowed to accumulate the earlier ones, we can then easily imagine 1691: 297: 1564: 1643:
are objects that are not sets, but which can be elements of sets. In ZF set theory, there are no urelements, but in some other set theories such as
2287: 2260: 2173: 2122: 2081: 2060: 2039: 2018: 1314:}, i.e. have themselves as their only elements) is consistent with the theory obtained by removing the axiom of regularity from ZFC. Various 623:. This contradicts the fact that they are disjoint sets. Since our supposition led to a contradiction, there must not be any such function, 2658: 2478: 1234:, meaning that if ZF without regularity is consistent, then ZF (with regularity) is also consistent. For his proof in modern notation see 2986: 1242: 274:. Virtually all results in the branches of mathematics based on set theory hold even in the absence of regularity; see chapter 3 of 74: 2964: 2411: 2128: 100: 3119: 2738: 2617: 1466:
the types into the transfinite—just how far we want to go must necessarily be left open. Now Russell made his types
2981: 2974: 630:
The nonexistence of a set containing itself can be seen as a special case where the sequence is infinite and constant.
2612: 2575: 1754: 1529: 1315: 1143: 540: 377: 1249:
in 1941, although he did not publish a proof until 1954. The proof involves (and led to the study of) Rieger-Bernays
1450:
The truth is that there is only one satisfactory way of avoiding the paradoxes: namely, the use of some form of the
1370: 1329: 1285: 1273: 370: 2663: 2555: 2543: 2538: 608: 256: 3124: 2471: 2211:
Sangiorgi, Davide (2011), "Origins of bisimulation and coinduction", in Sangiorgi, Davide; Rutten, Jan (eds.),
2183: 2093:(1917), "Les antinomies de Russell et de Burali-Forti et le probleme fondamental de la theorie des ensembles", 894: 291: 1318:
allow "safe" circular sets, such as Quine atoms, without becoming inconsistent by means of Russell's paradox.
432: 3083: 3001: 2876: 2828: 2642: 2565: 2323:(1928), "Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre", 1277: 638: 3035: 2916: 2728: 2548: 2151: 488: 208:{\displaystyle \forall x\,(x\neq \varnothing \rightarrow \exists y(y\in x\ \land y\cap x=\varnothing )).} 2951: 2865: 2785: 2765: 2743: 287: 1650: 1291:
In the presence of the axiom schema of separation, Russell's paradox becomes a proof that there is no
765: 3025: 3015: 2849: 2780: 2733: 2673: 2560: 1487: 1364: 1281: 2156: 711: 361:
Given the other axioms of Zermelo–Fraenkel set theory, the axiom of regularity is equivalent to the
3020: 2931: 2844: 2839: 2834: 2648: 2528: 2464: 2244:, van Heijenoort, 1967, in English translation by Stefan Bauer-Mengelberg, pp. 291–301. 1045:{\displaystyle \textstyle \operatorname {rank} (w)=\cup \{\operatorname {rank} (z)+1\mid z\in w\}} 56: 2943: 2938: 2723: 2678: 2585: 2371: 2340: 1963: 1932: 1924: 1886: 1878: 1696: 1550:, p. 231) gave an equivalent but more complex version of the Axiom of Class Foundation, cf. 1184:, which is entire by assumption. Thus, by the axiom of dependent choice, there is some sequence ( 965:
is ranked. Applying the axioms of replacement and union to combine the ranks of the elements of
673: 2387:"Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen ĂŒber die Grundlagen der Mengenlehre." 1901: 2800: 2637: 2629: 2600: 2570: 2501: 2283: 2256: 2169: 2118: 2090: 2077: 2056: 2035: 2014: 1764: 1491: 1423: 1250: 650: 362: 122: 107: 33: 3088: 3078: 3063: 3058: 2926: 2580: 2401: 2363: 2351: 2332: 2320: 2296: 2198: 2161: 1955: 1916: 1870: 1759: 1407: 1269: 1253:(or method), which were used for other proofs of independence for non-well-founded systems ( 1116:
The axiom of dependent choice and no infinite descending sequence of sets implies regularity
402: 219: 2957: 2895: 2713: 2533: 1245:
from the other axioms of ZF(C), assuming they are consistent. The result was announced by
260: 223: 1647:, there are. In these theories, the axiom of regularity must be modified. The statement " 1214:. As this is an infinite descending chain, we arrive at a contradiction and so, no such 352:{\displaystyle \{(n,\alpha )\mid n\in \omega \land \alpha {\text{ is an ordinal }}\}\,.} 3093: 2890: 2871: 2775: 2760: 2717: 2653: 2595: 2248: 2232: 2150:, The Western Ontario Series in Philosophy of Science, vol. 75, pp. 171–187, 2069: 1676: 496: 279: 270:; it was adopted in a formulation closer to the one found in contemporary textbooks by 39: 2386: 2148:
Logic, Mathematics, Philosophy, Vintage Enthusiasms. Essays in Honour of John L. Bell.
2107: 3113: 3098: 3068: 2900: 2814: 2809: 2382: 2375: 2344: 2048: 1943: 1936: 1890: 1742: 1431: 1414:, p. 206) wrote that "The idea of rank is a descendant of Russell's concept of 1292: 662: 476: 283: 114: 2450: 2225:
Axiomatic set theory. Proceedings of Symposia in Pure Mathematics Volume 13, Part II
3048: 3043: 2861: 2790: 2748: 2607: 2511: 1897: 1858: 1299:
which followed from the original theory would still follow in the extended theory.
1246: 847: 654: 366: 882:
This was actually the original form of the axiom in von Neumann's axiomatization.
365:. The axiom of induction tends to be used in place of the axiom of regularity in 3073: 2708: 2354:(1929), "Uber eine Widerspruchfreiheitsfrage in der axiomatischen Mengenlehre", 2165: 2027: 1617:{\displaystyle A\neq \emptyset \rightarrow \exists x\in A\,(x\cap A=\emptyset )} 1419: 850:
for specifics. This definition eliminates one pair of braces from the canonical
88: 3053: 2921: 2824: 2487: 2446: 2440: 2367: 2269:
Urquhart, Alasdair (2003), "The Theory of Types", in Griffin, Nicholas (ed.),
2220: 1640: 1439: 1303: 1088:} (which exists by the axiom of pairing). We see there must be an element of { 851: 380:
have indeed postulated the existence of sets that are elements of themselves.
2203: 2856: 2819: 2770: 2668: 2423:
From Kant to Hilbert: A Source Book in the Foundations of Mathematics Vol. 2
1644: 104: 2436: 1542:
pointed out that non-well-founded sets are superfluous (on p. 404 in
1124:
be a counter-example to the axiom of regularity; that is, every element of
2406: 2140: 227: 1226:
Regularity was shown to be relatively consistent with the rest of ZF by
2336: 2115:
One Hundred Years of Russell ́s Paradox: Mathematics, Logic, Philosophy
1967: 1928: 1882: 917:
is ranked and we are done. Otherwise, apply the axiom of regularity to
637:
that can be represented as sets as opposed to undefinable classes. The
1458:
theory of types, of course.) The simplification was to make the types
2881: 2703: 1959: 1920: 1874: 2313:
From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931
661:, then it will also satisfy the axiom of regularity. The resulting 2753: 2520: 1693:
is not empty and is not an urelement. One suitable replacement is
282:
easier to prove; and it not only allows induction to be done on
2460: 2002:
Combinatorial Set Theory: With a Gentle Introduction to Forcing
2032:
Set Theory: The Third Millennium Edition, Revised and Expanded
646: 18: 2456: 2146:, in DeVidi, David; Hallett, Michael; Clark, Peter (eds.), 1068:
For every two sets, only one can be an element of the other
826:
The axiom of regularity enables defining the ordered pair (
645:, satisfy the axiom of regularity (and all other axioms of 1510:"regular" (French: "ordinaire") if every descending chain 1104:. By the definition of disjoint then, we must have either 1080:
be sets. Then apply the axiom of regularity to the set {
1628:
The contemporary and final form of the axiom is due to
51: 980: 1861:(1941), "A system of axiomatic set theory. Part II", 1699: 1679: 1653: 1567: 1373: 1332: 1146: 979: 768: 714: 676: 435: 300: 134: 1096:} which is also disjoint from it. It must be either 822:
Simpler set-theoretic definition of the ordered pair
633:
Notice that this argument only applies to functions
3034: 2997: 2909: 2799: 2687: 2628: 2519: 2494: 1506:, §4.4, esp. p. 186, 188). Mirimanoff called a set 2053:Set Theory: An Introduction to Independence Proofs 1729: 1685: 1665: 1616: 1396: 1355: 1176: 1044: 810: 750: 700: 459: 351: 207: 2108:"Predicativity, Circularity, and Anti-Foundation" 376:In addition to omitting the axiom of regularity, 2299:(1925), "Eine Axiomatisierung der Mengenlehre", 2184:"A contribution to Gödel's axiomatic set theory" 1532:("extraordinaire" in Mirimanoff's terminology). 1177:{\displaystyle aRb:\Leftrightarrow b\in S\cap a} 397:be a set, and apply the axiom of regularity to { 278:. However, regularity makes some properties of 2356:Journal fĂŒr die Reine und Angewandte Mathematik 2301:Journal fĂŒr die Reine und Angewandte Mathematik 2213:Advanced Topics in Bisimulation and Coinduction 1448: 1322:Regularity, the cumulative hierarchy, and types 953:by the definition of transitive closure. Since 1543: 483:No infinite descending sequence of sets exists 2472: 1673:" needs to be replaced with a statement that 1397:{\displaystyle \bigcup _{\alpha }V_{\alpha }} 1356:{\displaystyle \bigcup _{\alpha }V_{\alpha }} 1241:The axiom of regularity was also shown to be 8: 1902:"A system of axiomatic set theory. Part VII" 1038: 1002: 448: 442: 373:), where the two axioms are not equivalent. 342: 301: 2271:The Cambridge Companion to Bertrand Russell 2011:Cantorian set theory and limitation of size 1946:(1971), "The iterative conception of set", 1547: 1539: 1231: 758:, and so on. For any actual natural number 405:. We see that there must be an element of { 267: 2479: 2465: 2457: 2141:"Paradox, ZF, and the Axiom of Foundation" 1977:, Harvard University Press, pp. 13–29 1495: 487:Suppose, to the contrary, that there is a 218:The axiom of regularity together with the 2405: 2202: 2155: 2076:, Mineola, New York: Dover Publications, 1830: 1818: 1698: 1678: 1652: 1592: 1566: 1388: 1378: 1372: 1347: 1337: 1331: 1145: 978: 767: 713: 675: 539:, which can be seen to be a set from the 434: 345: 337: 299: 141: 133: 75:Learn how and when to remove this message 1794: 1636:Regularity in the presence of urelements 1411: 1306:(sets that satisfy the formula equation 460:{\displaystyle A\cap \{A\}=\varnothing } 1775: 1629: 1503: 1430:, and again in a well-known article of 1428: 1258: 1254: 1222:Regularity and the rest of ZF(C) axioms 1052:. This contradicts the conclusion that 670:is a non-standard natural number, then 454: 271: 193: 151: 1842: 1782: 1551: 1535: 1470:in his notation and Zermelo left them 1434: 1326:In ZF it can be proven that the class 1235: 1227: 543:. Applying the axiom of regularity to 369:theories (ones that do not accept the 1443: 384:Elementary implications of regularity 275: 55:. Parenthetical referencing has been 7: 1806: 1555: 1499: 1486:The concept of well-foundedness and 1056:is unranked. So the assumption that 286:but also on proper classes that are 2425:, Clarendon Press, pp. 1219–33 2223:(1974), "Axiomatizing set theory", 1703: 1660: 1608: 1580: 1574: 1128:has a non-empty intersection with 288:well-founded relational structures 157: 135: 14: 2191:Czechoslovak Mathematical Journal 1490:of a set were both introduced by 1446:) went further and claimed that: 653:). So if one forms a non-trivial 266:The axiom is the contribution of 259:(which is a weakened form of the 59:; convert to shortened footnotes. 2510: 1666:{\displaystyle x\neq \emptyset } 1265:Regularity and Russell's paradox 1060:was non-empty must be false and 909:consisting of unranked sets. If 811:{\displaystyle (n-k-1)\in (n-k)} 595:+1) which is also an element of 535:a natural number}, the range of 226:, and that there is no infinite 23: 2417:from the original on 2022-10-09 2134:from the original on 2022-10-09 666:elements. For example, suppose 1724: 1712: 1709: 1700: 1611: 1593: 1577: 1132:. We define a binary relation 1017: 1011: 993: 987: 805: 793: 787: 769: 751:{\displaystyle (n-2)\in (n-1)} 745: 733: 727: 715: 689: 677: 413:}. Since the only element of { 389:No set is an element of itself 316: 304: 224:no set is an element of itself 199: 196: 163: 154: 142: 1: 2311:van Heijenoort, Jean (1967), 2000:Halbeisen, Lorenz J. (2012), 1982:Enderton, Herbert B. (1977), 1909:The Journal of Symbolic Logic 1863:The Journal of Symbolic Logic 969:, we get an ordinal rank for 878:Every set has an ordinal rank 579:. However, we are given that 2273:, Cambridge University Press 2255:, Dover Publications, Inc., 2215:, Cambridge University Press 1995:, Cambridge University Press 1544:van Heijenoort's translation 1316:non-wellfounded set theories 113:contains an element that is 2280:Set Theory: An Introduction 2166:10.1007/978-94-007-0214-1_9 2113:, in Link, Godehard (ed.), 2095:L'Enseignement MathĂ©matique 2013:, Oxford University Press, 1755:Non-well-founded set theory 1730:{\displaystyle (\exists y)} 541:axiom schema of replacement 101:Zermelo–Fraenkel set theory 3141: 2970:von Neumann–Bernays–Gödel 2282:(2nd ed.), Springer, 2278:Vaught, Robert L. (2001), 2009:Hallett, Michael (1996) , 1286:axiom schema of separation 1274:unrestricted comprehension 701:{\displaystyle (n-1)\in n} 575:) for some natural number 409:} which is disjoint from { 371:law of the excluded middle 2771:One-to-one correspondence 2508: 2421:Ewald, W.B., ed. (1996), 2368:10.1515/crll.1929.160.227 1993:Logic, induction and sets 1280:) is inconsistent due to 401:}, which is a set by the 378:non-standard set theories 339: is an ordinal  257:axiom of dependent choice 2204:10.21136/CMJ.1957.100254 639:hereditarily finite sets 292:lexicographical ordering 2451:the axiom of foundation 2394:Fundamenta Mathematicae 1973:Boolos, George (1998), 1278:axiom of extensionality 1264: 1238:, §10.1) for instance. 929:which is disjoint from 559:. By the definition of 555:which is disjoint from 103:that states that every 2729:Constructible universe 2556:Constructibility (V=L) 2237:Axiomatized set theory 1984:Elements of Set Theory 1975:Logic, Logic and Logic 1731: 1687: 1667: 1618: 1476: 1398: 1357: 1178: 1120:Let the non-empty set 1046: 812: 752: 702: 475:(by the definition of 461: 353: 209: 32:This article includes 2952:Principia Mathematica 2786:Transfinite induction 2645:(i.e. set difference) 2407:10.4064/fm-16-1-29-47 2325:Mathematische Annalen 2139:Rieger, Adam (2011), 2117:, Walter de Gruyter, 1948:Journal of Philosophy 1833:, pp. 17–19, 26. 1732: 1688: 1668: 1619: 1530:non-well-founded sets 1418:". Comparing ZF with 1399: 1358: 1272:(the axiom schema of 1261:, pp. 210–212). 1179: 1108:is not an element of 1047: 813: 753: 703: 462: 354: 210: 3120:Axioms of set theory 3026:Burali-Forti paradox 2781:Set-builder notation 2734:Continuum hypothesis 2674:Symmetric difference 2253:Axiomatic Set Theory 2182:Riegger, L. (1957), 2106:Rathjen, M. (2004), 1991:Forster, T. (2003), 1785:, pp. 175, 178. 1737:, which states that 1697: 1677: 1651: 1565: 1408:Herbert Enderton 1371: 1365:von Neumann universe 1330: 1144: 977: 766: 712: 674: 471:the only element of 433: 298: 132: 2987:Tarski–Grothendieck 2437:Axiom of foundation 2242:From Frege to Gödel 2221:Scott, Dana Stewart 1898:Bernays, Paul Isaac 1859:Bernays, Paul Isaac 961:, every element of 125:, the axiom reads: 97:axiom of foundation 95:(also known as the 93:axiom of regularity 16:Axiom of set theory 2576:Limitation of size 2337:10.1007/BF01459102 2315:, pp. 393–413 2227:, pp. 207–214 2091:Mirimanoff, Dmitry 1727: 1683: 1663: 1614: 1554:, p. 53) and 1540:von Neumann (1925) 1502:, p. 68) and 1394: 1383: 1353: 1342: 1257:, p. 193 and 1251:permutation models 1232:von Neumann (1929) 1174: 1042: 1041: 921:to get an element 895:transitive closure 808: 748: 698: 507:+1) an element of 457: 425:is disjoint from { 421:, it must be that 363:axiom of induction 349: 268:von Neumann (1925) 205: 40:properly formatted 3107: 3106: 3016:Russell's paradox 2965:Zermelo–Fraenkel 2866:Dedekind-infinite 2739:Diagonal argument 2638:Cartesian product 2502:Set (mathematics) 2419:; translation in 2352:von Neumann, John 2321:von Neumann, John 2309:; translation in 2297:von Neumann, John 2289:978-0-8176-4256-3 2262:978-0-486-61630-8 2175:978-94-007-0213-4 2124:978-3-11-019968-0 2083:978-0-486-42079-0 2062:978-0-444-86839-8 2041:978-3-540-44085-7 2020:978-0-19-853283-5 1821:, pp. 62–63. 1765:Epsilon-induction 1686:{\displaystyle x} 1548:von Neumann (1929 1492:Dmitry Mirimanoff 1424:Alasdair Urquhart 1374: 1333: 1302:The existence of 1282:Russell's paradox 957:is disjoint from 905:be the subset of 651:axiom of infinity 551:be an element of 467:, we cannot have 340: 284:well-ordered sets 244:is an element of 177: 123:first-order logic 99:) is an axiom of 85: 84: 77: 3132: 3089:Bertrand Russell 3079:John von Neumann 3064:Abraham Fraenkel 3059:Richard Dedekind 3021:Suslin's problem 2932:Cantor's theorem 2649:De Morgan's laws 2514: 2481: 2474: 2467: 2458: 2426: 2418: 2416: 2409: 2391: 2378: 2362:(160): 227–241, 2347: 2316: 2308: 2292: 2274: 2265: 2239: 2228: 2216: 2207: 2206: 2188: 2178: 2159: 2145: 2135: 2133: 2112: 2102: 2086: 2074:Basic set theory 2065: 2044: 2023: 2005: 1996: 1987: 1986:, Academic Press 1978: 1970: 1939: 1906: 1893: 1846: 1840: 1834: 1828: 1822: 1816: 1810: 1804: 1798: 1792: 1786: 1780: 1736: 1734: 1733: 1728: 1692: 1690: 1689: 1684: 1672: 1670: 1669: 1664: 1623: 1621: 1620: 1615: 1558:, p. 72): 1403: 1401: 1400: 1395: 1393: 1392: 1382: 1362: 1360: 1359: 1354: 1352: 1351: 1341: 1270:Naive set theory 1183: 1181: 1180: 1175: 1064:must have rank. 1051: 1049: 1048: 1043: 889:is any set. Let 817: 815: 814: 809: 757: 755: 754: 749: 707: 705: 704: 699: 466: 464: 463: 458: 403:axiom of pairing 358: 356: 355: 350: 341: 338: 220:axiom of pairing 214: 212: 211: 206: 175: 80: 73: 69: 66: 60: 54: 49:this article by 34:inline citations 27: 26: 19: 3140: 3139: 3135: 3134: 3133: 3131: 3130: 3129: 3125:Wellfoundedness 3110: 3109: 3108: 3103: 3030: 3009: 2993: 2958:New Foundations 2905: 2795: 2714:Cardinal number 2697: 2683: 2624: 2515: 2506: 2490: 2485: 2433: 2420: 2414: 2389: 2381: 2350: 2319: 2310: 2295: 2290: 2277: 2268: 2263: 2249:Suppes, Patrick 2247: 2233:Skolem, Thoralf 2231: 2219: 2210: 2186: 2181: 2176: 2157:10.1.1.100.9052 2143: 2138: 2131: 2125: 2110: 2105: 2089: 2084: 2068: 2063: 2047: 2042: 2026: 2021: 2008: 1999: 1990: 1981: 1972: 1960:10.2307/2025204 1942: 1921:10.2307/2268864 1904: 1896: 1875:10.2307/2267281 1857: 1854: 1849: 1841: 1837: 1829: 1825: 1817: 1813: 1805: 1801: 1793: 1789: 1781: 1777: 1773: 1751: 1695: 1694: 1675: 1674: 1649: 1648: 1638: 1563: 1562: 1527: 1520: 1484: 1452:theory of types 1384: 1369: 1368: 1343: 1328: 1327: 1324: 1293:set of all sets 1267: 1224: 1204: 1200: 1189: 1142: 1141: 1118: 1112:or vice versa. 1070: 975: 974: 949:is a subset of 913:is empty, then 880: 824: 764: 763: 710: 709: 672: 671: 660: 644: 497:natural numbers 485: 431: 430: 391: 386: 296: 295: 261:axiom of choice 249: 242: 235: 130: 129: 81: 70: 64: 61: 52:correcting them 50: 44: 28: 24: 17: 12: 11: 5: 3138: 3136: 3128: 3127: 3122: 3112: 3111: 3105: 3104: 3102: 3101: 3096: 3094:Thoralf Skolem 3091: 3086: 3081: 3076: 3071: 3066: 3061: 3056: 3051: 3046: 3040: 3038: 3032: 3031: 3029: 3028: 3023: 3018: 3012: 3010: 3008: 3007: 3004: 2998: 2995: 2994: 2992: 2991: 2990: 2989: 2984: 2979: 2978: 2977: 2962: 2961: 2960: 2948: 2947: 2946: 2935: 2934: 2929: 2924: 2919: 2913: 2911: 2907: 2906: 2904: 2903: 2898: 2893: 2888: 2879: 2874: 2869: 2859: 2854: 2853: 2852: 2847: 2842: 2832: 2822: 2817: 2812: 2806: 2804: 2797: 2796: 2794: 2793: 2788: 2783: 2778: 2776:Ordinal number 2773: 2768: 2763: 2758: 2757: 2756: 2751: 2741: 2736: 2731: 2726: 2721: 2711: 2706: 2700: 2698: 2696: 2695: 2692: 2688: 2685: 2684: 2682: 2681: 2676: 2671: 2666: 2661: 2656: 2654:Disjoint union 2651: 2646: 2640: 2634: 2632: 2626: 2625: 2623: 2622: 2621: 2620: 2615: 2604: 2603: 2601:Martin's axiom 2598: 2593: 2588: 2583: 2578: 2573: 2568: 2566:Extensionality 2563: 2558: 2553: 2552: 2551: 2546: 2541: 2531: 2525: 2523: 2517: 2516: 2509: 2507: 2505: 2504: 2498: 2496: 2492: 2491: 2486: 2484: 2483: 2476: 2469: 2461: 2455: 2454: 2444: 2432: 2431:External links 2429: 2428: 2427: 2383:Zermelo, Ernst 2379: 2348: 2317: 2293: 2288: 2275: 2266: 2261: 2245: 2229: 2217: 2208: 2197:(3): 323–357, 2179: 2174: 2136: 2123: 2103: 2087: 2082: 2066: 2061: 2049:Kunen, Kenneth 2045: 2040: 2024: 2019: 2006: 1997: 1988: 1979: 1954:(8): 215–231, 1944:Boolos, George 1940: 1894: 1853: 1850: 1848: 1847: 1845:, p. 179. 1835: 1831:Sangiorgi 2011 1823: 1819:Halbeisen 2012 1811: 1799: 1797:, p. 305. 1787: 1774: 1772: 1769: 1768: 1767: 1762: 1757: 1750: 1747: 1726: 1723: 1720: 1717: 1714: 1711: 1708: 1705: 1702: 1682: 1662: 1659: 1656: 1637: 1634: 1630:Zermelo (1930) 1626: 1625: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1591: 1588: 1585: 1582: 1579: 1576: 1573: 1570: 1525: 1518: 1483: 1480: 1440:Dana Scott 1391: 1387: 1381: 1377: 1350: 1346: 1340: 1336: 1323: 1320: 1310: = { 1266: 1263: 1223: 1220: 1202: 1198: 1187: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1117: 1114: 1069: 1066: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 995: 992: 989: 986: 983: 879: 876: 823: 820: 807: 804: 801: 798: 795: 792: 789: 786: 783: 780: 777: 774: 771: 747: 744: 741: 738: 735: 732: 729: 726: 723: 720: 717: 697: 694: 691: 688: 685: 682: 679: 658: 642: 607:+1) is in the 484: 481: 456: 453: 450: 447: 444: 441: 438: 390: 387: 385: 382: 367:intuitionistic 348: 344: 336: 333: 330: 327: 324: 321: 318: 315: 312: 309: 306: 303: 272:Zermelo (1930) 247: 240: 233: 216: 215: 204: 201: 198: 195: 192: 189: 186: 183: 180: 174: 171: 168: 165: 162: 159: 156: 153: 150: 147: 144: 140: 137: 83: 82: 65:September 2020 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 3137: 3126: 3123: 3121: 3118: 3117: 3115: 3100: 3099:Ernst Zermelo 3097: 3095: 3092: 3090: 3087: 3085: 3084:Willard Quine 3082: 3080: 3077: 3075: 3072: 3070: 3067: 3065: 3062: 3060: 3057: 3055: 3052: 3050: 3047: 3045: 3042: 3041: 3039: 3037: 3036:Set theorists 3033: 3027: 3024: 3022: 3019: 3017: 3014: 3013: 3011: 3005: 3003: 3000: 2999: 2996: 2988: 2985: 2983: 2982:Kripke–Platek 2980: 2976: 2973: 2972: 2971: 2968: 2967: 2966: 2963: 2959: 2956: 2955: 2954: 2953: 2949: 2945: 2942: 2941: 2940: 2937: 2936: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2914: 2912: 2908: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2885: 2880: 2878: 2875: 2873: 2870: 2867: 2863: 2860: 2858: 2855: 2851: 2848: 2846: 2843: 2841: 2838: 2837: 2836: 2833: 2830: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2807: 2805: 2802: 2798: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2755: 2752: 2750: 2747: 2746: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2719: 2715: 2712: 2710: 2707: 2705: 2702: 2701: 2699: 2693: 2690: 2689: 2686: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2644: 2641: 2639: 2636: 2635: 2633: 2631: 2627: 2619: 2618:specification 2616: 2614: 2611: 2610: 2609: 2606: 2605: 2602: 2599: 2597: 2594: 2592: 2589: 2587: 2584: 2582: 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2550: 2547: 2545: 2542: 2540: 2537: 2536: 2535: 2532: 2530: 2527: 2526: 2524: 2522: 2518: 2513: 2503: 2500: 2499: 2497: 2493: 2489: 2482: 2477: 2475: 2470: 2468: 2463: 2462: 2459: 2452: 2448: 2447:Inhabited set 2445: 2442: 2438: 2435: 2434: 2430: 2424: 2413: 2408: 2403: 2399: 2395: 2388: 2384: 2380: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2346: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2306: 2302: 2298: 2294: 2291: 2285: 2281: 2276: 2272: 2267: 2264: 2258: 2254: 2250: 2246: 2243: 2240:Reprinted in 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2209: 2205: 2200: 2196: 2192: 2185: 2180: 2177: 2171: 2167: 2163: 2158: 2153: 2149: 2142: 2137: 2130: 2126: 2120: 2116: 2109: 2104: 2100: 2096: 2092: 2088: 2085: 2079: 2075: 2071: 2067: 2064: 2058: 2054: 2050: 2046: 2043: 2037: 2033: 2029: 2025: 2022: 2016: 2012: 2007: 2003: 1998: 1994: 1989: 1985: 1980: 1976: 1971:reprinted in 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1903: 1899: 1895: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1855: 1851: 1844: 1839: 1836: 1832: 1827: 1824: 1820: 1815: 1812: 1809:, p. 73. 1808: 1803: 1800: 1796: 1795:Urquhart 2003 1791: 1788: 1784: 1779: 1776: 1770: 1766: 1763: 1761: 1760:Scott's trick 1758: 1756: 1753: 1752: 1748: 1746: 1744: 1740: 1721: 1718: 1715: 1706: 1680: 1657: 1654: 1646: 1642: 1635: 1633: 1631: 1605: 1602: 1599: 1596: 1589: 1586: 1583: 1571: 1568: 1561: 1560: 1559: 1557: 1553: 1549: 1545: 1541: 1537: 1536:Skolem (1923) 1533: 1531: 1524: 1517: 1513: 1509: 1505: 1504:Hallett (1996 1501: 1497: 1493: 1489: 1481: 1479: 1475: 1473: 1469: 1465: 1461: 1457: 1453: 1447: 1445: 1441: 1437: 1435: 1433: 1432:George Boolos 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1389: 1385: 1379: 1375: 1366: 1363:, called the 1348: 1344: 1338: 1334: 1321: 1319: 1317: 1313: 1309: 1305: 1300: 1296: 1294: 1289: 1287: 1283: 1279: 1275: 1271: 1262: 1260: 1256: 1252: 1248: 1244: 1239: 1237: 1233: 1229: 1228:Skolem (1923) 1221: 1219: 1217: 1213: 1209: 1205: 1194: 1190: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1139: 1135: 1131: 1127: 1123: 1115: 1113: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1067: 1065: 1063: 1059: 1055: 1035: 1032: 1029: 1026: 1023: 1020: 1014: 1008: 1005: 999: 996: 990: 984: 981: 972: 968: 964: 960: 956: 952: 948: 945:is unranked. 944: 940: 936: 932: 928: 924: 920: 916: 912: 908: 904: 900: 896: 892: 888: 883: 877: 875: 873: 869: 865: 861: 857: 853: 849: 845: 841: 837: 833: 829: 821: 819: 802: 799: 796: 790: 784: 781: 778: 775: 772: 761: 742: 739: 736: 730: 724: 721: 718: 695: 692: 686: 683: 680: 669: 664: 656: 652: 648: 640: 636: 631: 628: 626: 622: 618: 614: 610: 606: 602: 598: 594: 590: 586: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 490: 482: 480: 478: 474: 470: 451: 445: 439: 436: 429:}. So, since 428: 424: 420: 416: 412: 408: 404: 400: 396: 388: 383: 381: 379: 374: 372: 368: 364: 359: 346: 334: 331: 328: 325: 322: 319: 313: 310: 307: 293: 289: 285: 281: 277: 273: 269: 264: 262: 258: 254: 250: 243: 236: 229: 225: 222:implies that 221: 202: 190: 187: 184: 181: 178: 172: 169: 166: 160: 148: 145: 138: 128: 127: 126: 124: 120: 116: 112: 109: 106: 102: 98: 94: 90: 79: 76: 68: 58: 53: 48: 43: 41: 38:they are not 35: 30: 21: 20: 3049:Georg Cantor 3044:Paul Bernays 2975:Morse–Kelley 2950: 2883: 2882:Subset  2829:hereditarily 2791:Venn diagram 2749:ordered pair 2664:Intersection 2608:Axiom schema 2590: 2422: 2397: 2393: 2359: 2355: 2328: 2324: 2312: 2304: 2300: 2279: 2270: 2252: 2241: 2236: 2224: 2212: 2194: 2190: 2147: 2114: 2098: 2094: 2073: 2070:LĂ©vy, Azriel 2055:, Elsevier, 2052: 2034:, Springer, 2031: 2028:Jech, Thomas 2010: 2001: 1992: 1983: 1974: 1951: 1947: 1915:(2): 81–96, 1912: 1908: 1866: 1862: 1838: 1826: 1814: 1802: 1790: 1778: 1738: 1639: 1627: 1552:Suppes (1972 1534: 1522: 1515: 1511: 1507: 1485: 1477: 1471: 1467: 1463: 1459: 1455: 1451: 1449: 1438: 1415: 1406: 1325: 1311: 1307: 1301: 1297: 1290: 1268: 1259:Forster 2003 1255:Rathjen 2004 1247:Paul Bernays 1240: 1236:Vaught (2001 1225: 1215: 1211: 1207: 1196: 1192: 1185: 1137: 1133: 1129: 1125: 1121: 1119: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1071: 1061: 1057: 1053: 970: 966: 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 922: 918: 914: 910: 906: 902: 898: 890: 886: 884: 881: 871: 867: 863: 859: 855: 854:definition ( 848:ordered pair 843: 839: 835: 831: 827: 825: 759: 667: 634: 632: 629: 624: 620: 616: 612: 609:intersection 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 560: 556: 552: 548: 544: 536: 532: 528: 524: 520: 516: 512: 508: 504: 500: 492: 486: 472: 468: 426: 422: 418: 414: 410: 406: 398: 394: 392: 375: 360: 290:such as the 276:Kunen (1980) 265: 252: 245: 238: 237:) such that 231: 217: 118: 110: 96: 92: 86: 71: 62: 37: 3074:Thomas Jech 2917:Alternative 2896:Uncountable 2850:Ultrafilter 2709:Cardinality 2613:replacement 2561:Determinacy 2331:: 373–391, 1869:(1): 1–17, 1843:Rieger 2011 1783:Rieger 2011 1420:type theory 1304:Quine atoms 1243:independent 1195:satisfying 649:except the 587:) contains 515:) for each 255:. With the 89:mathematics 3114:Categories 3069:Kurt Gödel 3054:Paul Cohen 2891:Transitive 2659:Identities 2643:Complement 2630:Operations 2591:Regularity 2529:Adjunction 2488:Set theory 2441:PlanetMath 2004:, Springer 1771:References 1641:Urelements 1556:LĂ©vy (2002 1500:LĂ©vy (2002 1460:cumulative 1157::⇔ 852:Kuratowski 655:ultrapower 57:deprecated 3002:Paradoxes 2922:Axiomatic 2901:Universal 2877:Singleton 2872:Recursive 2815:Countable 2810:Amorphous 2669:Power set 2586:Power set 2544:dependent 2539:countable 2400:: 29–47, 2376:199545822 2345:120784562 2307:: 219–240 2251:(1972) , 2152:CiteSeerX 2072:(2002) , 1937:250351655 1891:250344277 1807:LĂ©vy 2002 1743:inhabited 1719:∈ 1704:∃ 1661:∅ 1658:≠ 1609:∅ 1600:∩ 1587:∈ 1581:∃ 1578:→ 1575:∅ 1572:≠ 1464:extending 1390:α 1380:α 1376:⋃ 1349:α 1339:α 1335:⋃ 1169:∩ 1163:∈ 1033:∈ 1027:∣ 1009:⁡ 1000:∪ 985:⁡ 973:, to wit 800:− 791:∈ 782:− 776:− 740:− 731:∈ 722:− 693:∈ 684:− 519:. Define 495:, on the 455:∅ 440:∩ 335:α 332:∧ 329:ω 326:∈ 320:∣ 314:α 194:∅ 185:∩ 179:∧ 170:∈ 158:∃ 155:→ 152:∅ 149:≠ 136:∀ 105:non-empty 3006:Problems 2910:Theories 2886:Superset 2862:Infinite 2691:Concepts 2571:Infinity 2495:Overview 2412:archived 2385:(1930), 2235:(1923), 2129:archived 2051:(1980), 2030:(2003), 1900:(1954), 1749:See also 1472:implicit 1468:explicit 1276:and the 1218:exists. 1206:for all 933:. Since 885:Suppose 846:}}; see 567:must be 489:function 477:disjoint 280:ordinals 251:for all 228:sequence 115:disjoint 2944:General 2939:Zermelo 2845:subbase 2827: ( 2766:Forcing 2744:Element 2716: ( 2694:Methods 2581:Pairing 2453:on nLab 2101:: 37–52 1968:2025204 1929:2268864 1883:2267281 1852:Sources 1482:History 1442: ( 1410: ( 901:}. Let 893:be the 47:improve 45:Please 2835:Filter 2825:Finite 2761:Family 2704:Almost 2549:global 2534:Choice 2521:Axioms 2374:  2343:  2286:  2259:  2172:  2154:  2121:  2080:  2059:  2038:  2017:  1966:  1935:  1927:  1889:  1881:  1498:) cf. 1456:simple 937:is in 862:) = {{ 834:) as { 619:) and 547:, let 176:  91:, the 36:, but 2927:Naive 2857:Fuzzy 2820:Empty 2803:types 2754:tuple 2724:Class 2718:large 2679:Union 2596:Union 2415:(PDF) 2390:(PDF) 2372:S2CID 2341:S2CID 2187:(PDF) 2144:(PDF) 2132:(PDF) 2111:(PDF) 1964:JSTOR 1933:S2CID 1925:JSTOR 1905:(PDF) 1887:S2CID 1879:JSTOR 1191:) in 663:model 599:. So 499:with 417:} is 121:. In 117:from 2840:base 2449:and 2360:1929 2284:ISBN 2257:ISBN 2170:ISBN 2119:ISBN 2078:ISBN 2057:ISBN 2036:ISBN 2015:ISBN 1538:and 1496:1917 1488:rank 1444:1974 1416:type 1412:1977 1230:and 1076:and 1072:Let 1006:rank 982:rank 897:of { 874:}}. 708:and 657:of V 393:Let 2801:Set 2439:at 2402:doi 2364:doi 2333:doi 2305:154 2199:doi 2162:doi 1956:doi 1917:doi 1871:doi 1741:is 1645:ZFA 1436:." 1210:in 1203:n+1 1140:by 1136:on 1100:or 925:of 866:},{ 647:ZFC 641:, V 611:of 531:): 523:= { 479:). 294:on 241:i+1 108:set 87:In 3116:: 2410:, 2398:16 2396:, 2392:, 2370:, 2358:, 2339:, 2329:99 2327:, 2303:, 2193:, 2189:, 2168:, 2160:, 2127:, 2099:19 2097:, 1962:, 1952:68 1950:, 1931:, 1923:, 1913:19 1911:, 1907:, 1885:, 1877:, 1865:, 1745:. 1632:. 1521:∋ 1514:∋ 1474:. 1422:, 1404:. 1201:Ra 941:, 838:,{ 762:, 627:. 563:, 491:, 2884:· 2868:) 2864:( 2831:) 2720:) 2480:e 2473:t 2466:v 2443:. 2404:: 2366:: 2335:: 2201:: 2195:7 2164:: 1958:: 1919:: 1873:: 1867:6 1739:x 1725:] 1722:x 1716:y 1713:[ 1710:) 1707:y 1701:( 1681:x 1655:x 1624:. 1612:) 1606:= 1603:A 1597:x 1594:( 1590:A 1584:x 1569:A 1526:2 1523:x 1519:1 1516:x 1512:x 1508:x 1494:( 1386:V 1345:V 1312:x 1308:x 1216:S 1212:N 1208:n 1199:n 1197:a 1193:S 1188:n 1186:a 1172:a 1166:S 1160:b 1154:b 1151:R 1148:a 1138:S 1134:R 1130:S 1126:S 1122:S 1110:X 1106:Y 1102:Y 1098:X 1094:Y 1092:, 1090:X 1086:Y 1084:, 1082:X 1078:Y 1074:X 1062:x 1058:u 1054:w 1039:} 1036:w 1030:z 1024:1 1021:+ 1018:) 1015:z 1012:( 1003:{ 997:= 994:) 991:w 988:( 971:w 967:w 963:w 959:u 955:w 951:t 947:w 943:w 939:u 935:w 931:u 927:u 923:w 919:u 915:x 911:u 907:t 903:u 899:x 891:t 887:x 872:b 870:, 868:a 864:a 860:b 858:, 856:a 844:b 842:, 840:a 836:a 832:b 830:, 828:a 806:) 803:k 797:n 794:( 788:) 785:1 779:k 773:n 770:( 760:k 746:) 743:1 737:n 734:( 728:) 725:2 719:n 716:( 696:n 690:) 687:1 681:n 678:( 668:n 659:ω 643:ω 635:f 625:f 621:S 617:k 615:( 613:f 605:k 603:( 601:f 597:S 593:k 591:( 589:f 585:k 583:( 581:f 577:k 573:k 571:( 569:f 565:B 561:S 557:S 553:S 549:B 545:S 537:f 533:n 529:n 527:( 525:f 521:S 517:n 513:n 511:( 509:f 505:n 503:( 501:f 493:f 473:A 469:A 452:= 449:} 446:A 443:{ 437:A 427:A 423:A 419:A 415:A 411:A 407:A 399:A 395:A 347:. 343:} 323:n 317:) 311:, 308:n 305:( 302:{ 253:i 248:i 246:a 239:a 234:n 232:a 230:( 203:. 200:) 197:) 191:= 188:x 182:y 173:x 167:y 164:( 161:y 146:x 143:( 139:x 119:A 111:A 78:) 72:( 67:) 63:( 42:.

Index

inline citations
properly formatted
improve
correcting them
deprecated
Learn how and when to remove this message
mathematics
Zermelo–Fraenkel set theory
non-empty
set
disjoint
first-order logic
axiom of pairing
no set is an element of itself
sequence
axiom of dependent choice
axiom of choice
von Neumann (1925)
Zermelo (1930)
Kunen (1980)
ordinals
well-ordered sets
well-founded relational structures
lexicographical ordering
axiom of induction
intuitionistic
law of the excluded middle
non-standard set theories
axiom of pairing
disjoint

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑