Knowledge (XXG)

Accelerator mass spectrometry

Source đź“ť

195:
will break apart in this stripping stage. The complete suppression of molecular isobars (e.g. CH in the case of C measurements) is one reason for the exceptional abundance sensitivity of AMS. Additionally, the impact strips off several of the ion's electrons, converting it into a positively charged ion. In the second half of the accelerator, the now positively charged ion is accelerated away from the highly positive centre of the electrostatic accelerator which previously attracted the negative ion. When the ions leave the accelerator they are positively charged and are moving at several percent of the speed of light. In the second stage of mass spectrometer, the fragments from the molecules are separated from the ions of interest. This spectrometer may consist of magnetic or electric
215:(atomic) isobar forming negative ions exists (e.g. S if measuring Cl), which is not suppressed at all by the setup described so far. Thanks to the high energy of the ions, these can be separated by methods borrowed from nuclear physics, like degrader foils and gas-filled magnets. Individual ions are finally detected by single-ion counting (with silicon surface-barrier detectors, ionization chambers, and/or time-of-flight telescopes). Thanks to the high energy of the ions, these detectors can provide additional identification of background isobars by nuclear-charge determination. 38: 224: 287:
radiocarbon using their tandem at Rochester. Soon afterwards the Berkeley and French teams reported the successful detection of Be, an isotope widely used in geology. Soon the accelerator technique, since it was more sensitive by a factor of about 1,000, virtually supplanted the older "decay counting" methods for these and other radioisotopes. In 1982, AMS labs began processing archaeological samples for radiocarbon dating
1553: 307:. Compared to other radiocarbon dating methods, AMS requires smaller sample sizes (about 50 mg), while yielding extensive chronologies. MS technology has expanded the scope of radiocarbon dating. Samples ranging from 50,000 years old to 100 years old can be successfully dated using AMS, as other forms of mass spectrometry provide insufficient suppression of molecular isobars to resolve CH and CH 1577: 190:. In fortunate cases, this already allows the suppression of an unwanted isobar, which does not form negative ions (as N in the case of C measurements). The pre-accelerated ions are usually separated by a first mass spectrometer of sector-field type and enter an electrostatic "tandem accelerator". This is a large nuclear particle accelerator based on the principle of a 1565: 194:
operating at 0.2 to many million volts with two stages operating in tandem to accelerate the particles. At the connecting point between the two stages, the ions change charge from negative to positive by passing through a thin layer of matter ("stripping", either gas or a thin carbon foil). Molecules
286:
date experimentally obtained using tritium. His paper was the direct inspiration for other groups using cyclotrons (G. Raisbeck and F. Yiou, in France) and tandem linear accelerators (D. Nelson, R. Korteling, W. Stott at McMaster). K. Purser and colleagues also published the successful detection of
231:
The above is just one example. There are other ways in which AMS is achieved; however, they all work based on improving mass selectivity and specificity by creating high kinetic energies before molecule destruction by stripping, followed by single-ion counting.
267:
recognised that modern accelerators could accelerate radioactive particles to an energy where the background interferences could be separated using particle identification techniques. He published the seminal paper in
1297: 383: 352: 347: 1480: 1475: 1227: 523: 1332: 1282: 1470: 1292: 1143: 1307: 1581: 1498: 1388: 1465: 1207: 1533: 1603: 1523: 1287: 794:
Schaefer, Joerg M.; Codilean, Alexandru T.; Willenbring, Jane K.; Lu, Zheng-Tian; Keisling, Benjamin; Fülöp, Réka-H.; Val, Pedro (2022-03-10).
1212: 1042: 1019: 996: 399: 170:
is long enough. Other advantages of AMS include its short measuring time as well as its ability to detect atoms in extremely small samples.
1217: 1450: 1247: 1237: 1189: 377: 295:
There are many applications for AMS throughout a variety of disciplines. AMS is most often employed to determine the concentration of
115:
before mass analysis. The special strength of AMS among the different methods of mass spectrometry is its ability to separate a rare
1528: 1490: 1312: 860: 583: 1513: 1368: 1277: 1242: 1317: 1136: 1518: 1503: 1508: 1429: 1538: 1232: 933: 264: 1569: 1414: 1608: 1557: 1184: 1129: 1053: 714: 562: 417: 415:
Budzikiewicz, H.; Grigsby, R. D. (2006). "Mass spectrometry and isotopes: A century of research and discussion".
1460: 1445: 1373: 1358: 1163: 841:
Brown, K.; Dingley, K. H.; Turteltaub, K. W. (2005). "Accelerator Mass Spectrometry for Biomedical Research".
1257: 320: 311:
from C atoms. Because of the long half-life of C, decay counting requires significantly larger samples. Be,
191: 255:
was stable; from this observation, they immediately and correctly concluded that the other mass-3 isotope,
1327: 1262: 37: 274:
showing how accelerators (cyclotrons and linear) could be used for detection of tritium, radiocarbon (
128: 1065: 1011: 942: 726: 671: 571: 532: 473: 426: 88: 1409: 1378: 1252: 1222: 247:
of the United States first used an accelerator as a mass spectrometer in 1939 when they employed a
240: 223: 1337: 1081: 823: 742: 695: 304: 156: 1152: 1038: 1015: 992: 988: 960: 909: 866: 856: 815: 687: 662: 638: 620: 499: 491: 442: 395: 270: 260: 200: 196: 163: 104: 59: 1322: 1302: 1267: 1073: 950: 928: 899: 848: 842: 807: 734: 679: 628: 610: 579: 540: 481: 434: 387: 132: 69: 1069: 946: 730: 675: 575: 545: 536: 518: 477: 430: 1272: 633: 598: 300: 212: 208: 204: 112: 852: 17: 1597: 1419: 1179: 890: 827: 795: 244: 1085: 746: 699: 334:
Accelerator mass spectrometry is widely used in biomedical research. In particular,
1383: 312: 283: 279: 152: 144: 140: 1054:"The impact on archaeology of radiocarbon dating by accelerator mass spectrometry" 715:"The impact on archaeology of radiocarbon dating by accelerator mass spectrometry" 683: 1424: 1363: 1342: 316: 148: 136: 73: 811: 373: 1199: 335: 328: 187: 139:
from C). This makes possible the detection of naturally occurring, long-lived
819: 624: 599:"Recent advances in biomedical applications of accelerator mass spectrometry" 495: 1101: 1034: 768: 657: 615: 391: 296: 275: 248: 167: 124: 120: 1077: 964: 913: 870: 738: 691: 642: 503: 446: 1393: 252: 927:
Palmblad, M.; Buchholz, B. A.; Hillegonds, D. J.; Vogel, J. S. (2005).
256: 183: 116: 42:
Accelerator mass spectrometer at Lawrence Livermore National Laboratory
904: 885: 486: 461: 438: 584:
10.1002/(SICI)1098-2787(1998)17:2<97::AID-MAS2>3.0.CO;2-J
1121: 955: 338:
has been used to measure bone resorption in postmenopausal women.
222: 119:
from an abundant neighboring mass ("abundance sensitivity", e.g.
886:"Accelerator mass spectrometry for quantitative in vivo tracing" 560:
de Laeter, J. R. (1998). "Mass spectrometry and geochronology".
108: 27:
Accelerator that accelerates ions to high speeds before analysis
1125: 278:), and several other isotopes of scientific interest including 1168: 179: 259:(H), was radioactive. In 1977, inspired by this early work, 324: 847:. Methods in Enzymology. Vol. 402. pp. 423–443. 519:"Ultrasensitive mass spectrometry with accelerators" 211:. After this stage, no background is left, unless a 1489: 1438: 1402: 1351: 1198: 84: 79: 65: 55: 47: 983:Gowlett, J. A. J.; Hedges, R. E. M., eds. (1986). 929:"Neuroscience and accelerator mass spectrometry" 460:Hellborg, Ragnar; Skog, Göran (September 2008). 353:Arizona Accelerator Mass Spectrometry Laboratory 348:List of accelerator mass spectrometry facilities 131:completely and in many cases can also separate 1108:. Canadian Archaeological Radiocarbon Database 985:Archaeological Results From Accelerator Dating 775:. Canadian Archaeological Radiocarbon Database 374:"Abundance sensitivity (in mass spectrometry)" 162:AMS can outperform the competing technique of 1137: 524:Annual Review of Nuclear and Particle Science 372:McNaught, A. D.; Wilkinson, A., eds. (1997). 227:Schematic of an accelerator mass spectrometer 8: 30: 989:Oxford University Committee for Archaeology 1144: 1130: 1122: 36: 954: 903: 632: 614: 544: 485: 282:; he also reported the first successful 364: 658:"Radioisotope Dating with a Cyclotron" 29: 7: 1564: 166:counting for all isotopes where the 1576: 546:10.1146/annurev.ns.30.120180.002253 379:Compendium of Chemical Terminology 331:are used as hydrological tracers. 25: 1575: 1563: 1552: 1551: 192:tandem van de Graaff accelerator 1102:"Radiocarbon Dating Principles" 1052:Harris, D.R (August 25, 1987). 796:"Cosmogenic nuclide techniques" 769:"Radiocarbon Dating Principles" 713:Harris, D.R (August 25, 1987). 462:"Accelerator mass spectrometry" 800:Nature Reviews Methods Primers 1: 1604:Accelerator mass spectrometry 1031:Accelerator Mass Spectrometry 853:10.1016/S0076-6879(05)02014-8 603:Journal of Biomedical Science 97:Accelerator mass spectrometry 31:Accelerator mass spectrometry 1008:From Hiroshima to the Iceman 934:Journal of Mass Spectrometry 844:Biological Mass Spectrometry 684:10.1126/science.196.4289.489 265:Lawrence Berkeley Laboratory 1415:Microchannel plate detector 1625: 812:10.1038/s43586-022-00096-9 517:Litherland, A. E. (1980). 1547: 1159: 563:Mass Spectrometry Reviews 466:Mass Spectrometry Reviews 418:Mass Spectrometry Reviews 127:). The method suppresses 35: 1430:Langmuir–Taylor detector 111:to extraordinarily high 616:10.1186/1423-0127-16-54 392:10.1351/goldbook.A00048 321:surface exposure dating 182:are created (atoms are 159:ranges from 10 to 10.) 1374:Quadrupole mass filter 1078:10.1098/rsta.1987.0070 739:10.1098/rsta.1987.0070 656:Muller, R. A. (1977). 228: 203:, which utilizes both 155:and C. (Their typical 18:AMS radiocarbon dating 884:Vogel, J. S. (2005). 226: 1106:Canadian Archaeology 1012:Institute of Physics 1006:Gove, H. E. (1999). 773:Canadian Archaeology 251:to demonstrate that 178:Generally, negative 89:Particle accelerator 1410:Electron multiplier 1379:Quadrupole ion trap 1070:1987RSPTA.323...23H 947:2005JMSp...40..154P 731:1987RSPTA.323...23H 676:1977Sci...196..489M 576:1998MSRv...17...97D 537:1980ARNPS..30..437L 478:2008MSRv...27..398H 431:2006MSRv...25..146B 32: 1029:Tuniz, C. (1998). 597:Hah, Sang (2009). 305:radiocarbon dating 229: 201:velocity selectors 157:isotopic abundance 1609:Mass spectrometry 1591: 1590: 1153:Mass spectrometry 1100:Morlan, Richard. 1044:978-0-8493-4538-8 1021:978-0-7503-0557-0 998:978-0-947816-11-7 905:10.2144/05386SU04 767:Morlan, Richard. 670:(4289): 489–494. 487:10.1002/mas.20172 439:10.1002/mas.20061 401:978-0-86542-684-9 261:Richard A. Muller 129:molecular isobars 107:that accelerates 105:mass spectrometry 94: 93: 70:Organic molecules 60:Mass spectrometry 16:(Redirected from 1616: 1579: 1578: 1567: 1566: 1555: 1554: 1146: 1139: 1132: 1123: 1117: 1115: 1113: 1096: 1094: 1092: 1048: 1025: 1002: 969: 968: 958: 924: 918: 917: 907: 881: 875: 874: 838: 832: 831: 791: 785: 784: 782: 780: 764: 758: 757: 755: 753: 710: 704: 703: 653: 647: 646: 636: 618: 594: 588: 587: 557: 551: 550: 548: 514: 508: 507: 489: 457: 451: 450: 412: 406: 405: 382:(2nd ed.). 369: 199:, and so-called 113:kinetic energies 80:Other techniques 40: 33: 21: 1624: 1623: 1619: 1618: 1617: 1615: 1614: 1613: 1594: 1593: 1592: 1587: 1543: 1485: 1434: 1398: 1347: 1194: 1155: 1150: 1120: 1111: 1109: 1099: 1090: 1088: 1064:(1569): 23–43. 1051: 1045: 1028: 1022: 1005: 999: 982: 978: 973: 972: 956:10.1002/jms.734 926: 925: 921: 898:(S6): S25–S29. 883: 882: 878: 863: 840: 839: 835: 793: 792: 788: 778: 776: 766: 765: 761: 751: 749: 725:(1569): 23–43. 712: 711: 707: 655: 654: 650: 596: 595: 591: 559: 558: 554: 516: 515: 511: 459: 458: 454: 414: 413: 409: 402: 371: 370: 366: 361: 344: 310: 293: 238: 221: 219:Generalizations 209:magnetic fields 205:electric fields 176: 103:) is a form of 72: 43: 28: 23: 22: 15: 12: 11: 5: 1622: 1620: 1612: 1611: 1606: 1596: 1595: 1589: 1588: 1586: 1585: 1573: 1561: 1548: 1545: 1544: 1542: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1495: 1493: 1487: 1486: 1484: 1483: 1478: 1473: 1468: 1463: 1458: 1453: 1448: 1442: 1440: 1439:MS combination 1436: 1435: 1433: 1432: 1427: 1422: 1417: 1412: 1406: 1404: 1400: 1399: 1397: 1396: 1391: 1386: 1381: 1376: 1371: 1369:Time-of-flight 1366: 1361: 1355: 1353: 1349: 1348: 1346: 1345: 1340: 1335: 1330: 1325: 1320: 1315: 1310: 1305: 1300: 1295: 1290: 1285: 1280: 1275: 1270: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1204: 1202: 1196: 1195: 1193: 1192: 1187: 1182: 1177: 1166: 1160: 1157: 1156: 1151: 1149: 1148: 1141: 1134: 1126: 1119: 1118: 1097: 1049: 1043: 1026: 1020: 1003: 997: 979: 977: 974: 971: 970: 941:(2): 154–159. 919: 876: 861: 833: 786: 759: 705: 648: 589: 552: 509: 472:(5): 398–427. 452: 425:(1): 146–157. 407: 400: 363: 362: 360: 357: 356: 355: 350: 343: 340: 308: 301:archaeologists 292: 289: 237: 234: 220: 217: 175: 172: 141:radio-isotopes 133:atomic isobars 92: 91: 86: 82: 81: 77: 76: 67: 63: 62: 57: 56:Classification 53: 52: 49: 45: 44: 41: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1621: 1610: 1607: 1605: 1602: 1601: 1599: 1584: 1583: 1574: 1572: 1571: 1562: 1560: 1559: 1550: 1549: 1546: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1496: 1494: 1492: 1491:Fragmentation 1488: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1443: 1441: 1437: 1431: 1428: 1426: 1423: 1421: 1420:Daly detector 1418: 1416: 1413: 1411: 1408: 1407: 1405: 1401: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1356: 1354: 1352:Mass analyzer 1350: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1205: 1203: 1201: 1197: 1191: 1188: 1186: 1183: 1181: 1180:Mass spectrum 1178: 1176: 1175: 1171: 1167: 1165: 1162: 1161: 1158: 1154: 1147: 1142: 1140: 1135: 1133: 1128: 1127: 1124: 1107: 1103: 1098: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1058:Royal Society 1055: 1050: 1046: 1040: 1036: 1032: 1027: 1023: 1017: 1013: 1009: 1004: 1000: 994: 990: 986: 981: 980: 975: 966: 962: 957: 952: 948: 944: 940: 936: 935: 930: 923: 920: 915: 911: 906: 901: 897: 893: 892: 891:BioTechniques 887: 880: 877: 872: 868: 864: 862:9780121828073 858: 854: 850: 846: 845: 837: 834: 829: 825: 821: 817: 813: 809: 805: 801: 797: 790: 787: 774: 770: 763: 760: 748: 744: 740: 736: 732: 728: 724: 720: 719:Royal Society 716: 709: 706: 701: 697: 693: 689: 685: 681: 677: 673: 669: 665: 664: 659: 652: 649: 644: 640: 635: 630: 626: 622: 617: 612: 608: 604: 600: 593: 590: 585: 581: 577: 573: 570:(2): 97–125. 569: 565: 564: 556: 553: 547: 542: 538: 534: 530: 526: 525: 520: 513: 510: 505: 501: 497: 493: 488: 483: 479: 475: 471: 467: 463: 456: 453: 448: 444: 440: 436: 432: 428: 424: 420: 419: 411: 408: 403: 397: 393: 389: 385: 381: 380: 375: 368: 365: 358: 354: 351: 349: 346: 345: 341: 339: 337: 332: 330: 327:, C, Cl, and 326: 322: 319:are used for 318: 314: 306: 302: 298: 290: 288: 285: 281: 277: 273: 272: 266: 262: 258: 254: 250: 246: 245:Robert Cornog 242: 235: 233: 225: 218: 216: 214: 210: 206: 202: 198: 193: 189: 185: 181: 173: 171: 169: 165: 160: 158: 154: 150: 146: 142: 138: 134: 130: 126: 122: 118: 114: 110: 106: 102: 98: 90: 87: 83: 78: 75: 71: 68: 64: 61: 58: 54: 50: 46: 39: 34: 19: 1580: 1568: 1556: 1455: 1384:Penning trap 1173: 1169: 1110:. Retrieved 1105: 1089:. Retrieved 1061: 1057: 1030: 1007: 984: 976:Bibliography 938: 932: 922: 895: 889: 879: 843: 836: 803: 799: 789: 777:. Retrieved 772: 762: 750:. Retrieved 722: 718: 708: 667: 661: 651: 606: 602: 592: 567: 561: 555: 528: 522: 512: 469: 465: 455: 422: 416: 410: 378: 367: 333: 323:in geology. 294: 291:Applications 284:radioisotope 269: 241:L.W. Alvarez 239: 230: 177: 161: 100: 96: 95: 74:Biomolecules 1582:WikiProject 1425:Faraday cup 1364:Wien filter 1185:MS software 806:(1): 1–22. 531:: 437–473. 1598:Categories 1200:Ion source 359:References 299:, e.g. by 188:ion source 1461:Hybrid MS 1035:CRC Press 828:247396585 820:2662-8449 625:1423-0127 609:(1): 54. 496:0277-7037 249:cyclotron 168:half-life 1558:Category 1403:Detector 1394:Orbitrap 1190:Acronyms 1112:July 12, 1091:July 12, 1086:91488734 965:15706618 914:16528913 871:16401518 779:July 12, 752:July 12, 747:91488734 700:21813292 692:17837065 643:19534792 504:18470926 447:16134128 342:See also 186:) in an 143:such as 66:Analytes 1570:Commons 1298:MALDESI 1066:Bibcode 943:Bibcode 727:Bibcode 672:Bibcode 663:Science 634:2712465 572:Bibcode 533:Bibcode 474:Bibcode 427:Bibcode 271:Science 263:at the 257:tritium 236:History 197:sectors 184:ionized 117:isotope 85:Related 48:Acronym 1476:IMS/MS 1389:FT-ICR 1359:Sector 1084:  1041:  1018:  995:  963:  912:  869:  859:  826:  818:  745:  698:  690:  641:  631:  623:  502:  494:  445:  398:  315:, and 213:stable 174:Method 135:(e.g. 1529:IRMPD 1481:CE-MS 1471:LC/MS 1466:GC/MS 1446:MS/MS 1333:SELDI 1293:MALDI 1288:LAESI 1228:DAPPI 1082:S2CID 824:S2CID 743:S2CID 696:S2CID 384:IUPAC 164:decay 123:from 1534:NETD 1499:BIRD 1318:SIMS 1313:SESI 1248:EESI 1243:DIOS 1238:DESI 1233:DART 1218:APPI 1213:APLI 1208:APCI 1164:Mass 1114:2022 1093:2022 1039:ISBN 1016:ISBN 993:ISBN 961:PMID 910:PMID 867:PMID 857:ISBN 816:ISSN 781:2022 754:2022 688:PMID 639:PMID 621:ISSN 500:PMID 492:ISSN 443:PMID 396:ISBN 303:for 243:and 207:and 180:ions 109:ions 1539:SID 1524:HCD 1519:ETD 1514:EDD 1509:ECD 1504:CID 1456:AMS 1451:QqQ 1328:SSI 1308:PTR 1303:MIP 1283:ICP 1263:FAB 1258:ESI 1074:doi 1062:323 951:doi 900:doi 849:doi 808:doi 735:doi 723:323 680:doi 668:196 629:PMC 611:doi 580:doi 541:doi 482:doi 435:doi 388:doi 101:AMS 51:AMS 1600:: 1343:TS 1338:TI 1323:SS 1278:IA 1273:GD 1268:FD 1253:EI 1223:CI 1104:. 1080:. 1072:. 1060:. 1056:. 1037:. 1033:. 1014:. 1010:. 991:. 987:. 959:. 949:. 939:40 937:. 931:. 908:. 896:38 894:. 888:. 865:. 855:. 822:. 814:. 802:. 798:. 771:. 741:. 733:. 721:. 717:. 694:. 686:. 678:. 666:. 660:. 637:. 627:. 619:. 607:16 605:. 601:. 578:. 568:17 566:. 539:. 529:30 527:. 521:. 498:. 490:. 480:. 470:27 468:. 464:. 441:. 433:. 423:25 421:. 394:. 386:. 376:. 336:Ca 317:Cl 313:Al 280:Be 253:He 153:Al 151:, 149:Cl 147:, 145:Be 1174:z 1172:/ 1170:m 1145:e 1138:t 1131:v 1116:. 1095:. 1076:: 1068:: 1047:. 1024:. 1001:. 967:. 953:: 945:: 916:. 902:: 873:. 851:: 830:. 810:: 804:2 783:. 756:. 737:: 729:: 702:. 682:: 674:: 645:. 613:: 586:. 582:: 574:: 549:. 543:: 535:: 506:. 484:: 476:: 449:. 437:: 429:: 404:. 390:: 329:I 325:H 309:2 297:C 276:C 137:N 125:C 121:C 99:( 20:)

Index

AMS radiocarbon dating

Mass spectrometry
Organic molecules
Biomolecules
Particle accelerator
mass spectrometry
ions
kinetic energies
isotope
C
C
molecular isobars
atomic isobars
N
radio-isotopes
Be
Cl
Al
isotopic abundance
decay
half-life
ions
ionized
ion source
tandem van de Graaff accelerator
sectors
velocity selectors
electric fields
magnetic fields

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑