Knowledge (XXG)

A Dynamical Theory of the Electromagnetic Field

Source 📝

1613: 1473: 1605: 2150: 2014: 1332: 65:
was only published as a bound volume once a year, and would have been prepared for the society's anniversary day on 30 November (the exact date is not recorded). However, the printer would have prepared and delivered to Maxwell offprints, for the author to distribute as he wished, soon after 16 June.
2245: 2020: 1881: 459: 2492: 2381: 2965: 1623:
In part VI of "A Dynamical Theory of the Electromagnetic Field", subtitled "Electromagnetic theory of light", Maxwell uses the correction to Ampère's Circuital Law made in part III of his 1862 paper, "On Physical Lines of Force", which is defined as
2589:
said: "From the long view of this history of mankind – seen from, say, 10,000 years from now – there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electromagnetism."
1863: 1644:
Maxwell's derivation of the electromagnetic wave equation has been replaced in modern physics by a much less cumbersome method which combines the corrected version of Ampère's Circuital Law with Faraday's law of electromagnetic induction.
1760: 1468:{\displaystyle \nabla \times \mathbf {E} \,=\,-\nabla \times {\frac {\partial \mathbf {A} }{\partial t}}\,=\,-{\frac {\partial }{\partial t}}{\big (}\nabla \times \mathbf {A} {\big )}\,=\,-{\frac {\partial \mathbf {B} }{\partial t}}\,,} 1318: 2571: 669: 31:, published in 1865. In the paper, Maxwell derives an electromagnetic wave equation with a velocity for light in close agreement with measurements made by experiment, and deduces that light is an electromagnetic wave. 1209: 1639:
The agreement of the results seems to show that light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic
363: 2161: 507: 2145:{\displaystyle \nabla \times \nabla \times \mathbf {H} =\varepsilon _{o}{\frac {\partial }{\partial t}}\nabla \times \mathbf {E} =-\mu _{o}\varepsilon _{o}{\frac {\partial ^{2}\mathbf {H} }{\partial t^{2}}}} 97:(equation "C"). This amalgamation, which Maxwell himself had actually originally made at equation (112) in "On Physical Lines of Force", is the one that modifies Ampère's Circuital Law to include Maxwell's 251: 558: 301: 2009:{\displaystyle \nabla \times \nabla \times \mathbf {E} =-\mu _{o}{\frac {\partial }{\partial t}}\nabla \times \mathbf {H} =-\mu _{o}\varepsilon _{o}{\frac {\partial ^{2}\mathbf {E} }{\partial t^{2}}}} 1653:
To obtain the electromagnetic wave equation in a vacuum using the modern method, we begin with the modern 'Heaviside' form of Maxwell's equations. Using (SI units) in a vacuum, these equations are
383: 1136: 603: 1797: 1691: 185: 2389: 2278: 774: 139:
below, making a total of eight vector equations. These are listed below in Maxwell's original order, designated by the letters that Maxwell assigned to them in his 1864 paper.
2734: 208: 1805: 2270: 896: 864: 802: 733: 701: 2831: 994: 960: 1699: 930: 832: 57: 61:
on 15 June 1865, by the Committee of Papers (essentially the society's governing council) and sent to the printer the following day (16 June). During this period,
2625:
Any ray of light moves in the "stationary" system of co-ordinates with the determined velocity c, whether the ray be emitted by a stationary or by a moving body.
74:
In part III of the paper, which is entitled "General Equations of the Electromagnetic Field", Maxwell formulated twenty equations which were to become known as
1263: 2503: 2875: 1222:) in "On Physical Lines of Force" in 1861, 34 years before Lorentz derived his force law, which is now usually presented as a supplement to the four " 619: 2643: 1592: 1167: 2950: 2240:{\displaystyle \nabla \times \left(\nabla \times \mathbf {V} \right)=\nabla \left(\nabla \cdot \mathbf {V} \right)-\nabla ^{2}\mathbf {V} } 78:, until this term became applied instead to a vectorized set of four equations selected in 1884, which had all appeared in his 1861 paper " 317: 1234: 472: 1577:.  However, if we trace the signs through the previous two triplets of equations, we see that what seem to be the components of 2855: 2617:
the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics hold good
213: 523: 267: 2955: 1635:
He obtained a wave equation with a speed in close agreement to experimental determinations of the speed of light. He commented,
1032: 454:{\displaystyle \mathbf {f} =\mu (\mathbf {v} \times \mathbf {H} )-{\frac {\partial \mathbf {A} }{\partial t}}-\nabla \phi } 1629: 1489: 1478: 1095: 374: 2597: 1045: 1080: 308: 94: 1105: 805: 116: 574: 93:). Another of Heaviside's four equations is an amalgamation of Maxwell's law of total currents (equation "A") with 79: 2940: 2935: 2487:{\displaystyle {\partial ^{2}\mathbf {H} \over \partial t^{2}}\ -\ c^{2}\cdot \nabla ^{2}\mathbf {H} \ \ =\ \ 0} 2376:{\displaystyle {\partial ^{2}\mathbf {E} \over \partial t^{2}}\ -\ c^{2}\cdot \nabla ^{2}\mathbf {E} \ \ =\ \ 0} 1768: 1662: 1148: 867: 258: 2883: 150: 85:
Heaviside's versions of Maxwell's equations are distinct by virtue of the fact that they are written in modern
2630: 742: 1485:
may be described, from left to right, as the motional term, the transformer term, and the conservative term.
2960: 2945: 963: 2610: 2606: 1223: 75: 2807: 1508: 52: 2907: 2754: 1858:{\displaystyle \nabla \times \mathbf {H} =\varepsilon _{o}{\frac {\partial \mathbf {E} }{\partial t}}} 55:, the Society's physical sciences secretary, on 23 March 1865. It was approved for publication in the 1625: 777: 610: 98: 190: 2775: 2673: 1496:
of the medium, and accordingly drops the cross-product term. But he still works from equation 
1214:
This is simply the Lorentz force law on a per-unit-charge basis — although Maxwell's equation 
1021: 903: 24: 2253: 879: 847: 785: 716: 684: 2705: 1872: 1617: 1065: 933: 1612: 1219: 43:
on 8 December 1864, having been sent by Maxwell to the society on 27 October. It then underwent
1755:{\displaystyle \nabla \times \mathbf {E} =-\mu _{o}{\frac {\partial \mathbf {H} }{\partial t}}} 2851: 979: 945: 2689: 736: 187: 128: 110: 28: 915: 817: 2697: 2593: 2586: 86: 1313:{\displaystyle \mathbf {E} =-{\frac {\partial \mathbf {A} }{\partial t}}-\nabla \phi \,} 1139: 704: 565: 90: 2677: 2566:{\displaystyle c={1 \over {\sqrt {\mu _{o}\varepsilon _{o}}}}=2.99792458\times 10^{8}} 2929: 2709: 1228: 1091: 370: 40: 1012:
Maxwell did not consider completely general materials; his initial formulation used
2649: 1604: 1025: 1226:". The cross-product term in the Lorentz force law is the source of the so-called 514: 664:{\displaystyle \nabla \cdot \mathbf {J} =-{\frac {\partial \rho }{\partial t}}\,} 1239: 1039: 971: 835: 48: 44: 1563:, viewed in isolation as printed in the 1864 paper, at first seems to say that 1493: 1061: 2966:
Works originally published in Philosophical Transactions of the Royal Society
1500:, in contrast to modern textbooks which tend to work from Faraday's law (see 1056:) is not included in the above list, but follows directly from equation  902:" by Maxwell, not to be confused with the scalar quantity that is now called 2701: 1242:— we can drop the cross-product term, and the force per unit charge (called 1017: 2693: 1204:{\displaystyle \mathbf {f} =\mathbf {E} +\mathbf {v} \times \mathbf {B} \,} 39:
Following standard procedure for the time, the paper was first read to the
1324: 127:
below, each of which represents a group of three original equations in
1013: 89:. They actually only contain one of the original eight—equation "G" ( 358:{\displaystyle \nabla \times \mathbf {H} =\mathbf {J} _{\rm {tot}}} 2715:(Paper read at a meeting of the Royal Society on 8 December 1864). 1611: 1603: 1238:). Where there is no motion through the magnetic field — e.g., in 502:{\displaystyle \mathbf {f} ={\frac {1}{\varepsilon }}\mathbf {D} } 2272:
is any vector function of space, we recover the wave equations
131:. The 19th and 20th of Maxwell's component equations appear as 998: 246:{\displaystyle +\,{\frac {\partial \mathbf {D} }{\partial t}}} 553:{\displaystyle \mathbf {f} ={\frac {1}{\sigma }}\mathbf {J} } 2585:
Of this paper and Maxwell's related works, fellow physicist
1518:
are now usually written in the rest frame of the medium as
296:{\displaystyle \mu \mathbf {H} =\nabla \times \mathbf {A} } 2631:
extending general relativity into five physical dimensions
1596:
is different, and avoids the misleading first impression.
1481:. Thus the three terms on the right side of equation  2908:"'Look Ma, No Wires': Marconi and the Invention of Radio" 2682:
Philosophical Transactions of the Royal Society of London
2832:
A Dynamical Theory of the Electromagnetic Field/Part VI
2596:
used Maxwell's equations as the starting point for his
115:
Eighteen of Maxwell's twenty original equations can be
2846:
Maxwell, James C.; Torrance, Thomas F. (March 1996).
2506: 2392: 2281: 2256: 2164: 2023: 1884: 1808: 1771: 1702: 1665: 1335: 1266: 1170: 1108: 982: 948: 918: 882: 850: 820: 788: 745: 719: 687: 622: 577: 526: 475: 386: 320: 270: 216: 193: 153: 2565: 2486: 2375: 2264: 2239: 2144: 2008: 1857: 1791: 1754: 1685: 1467: 1312: 1203: 1130: 988: 954: 924: 890: 858: 826: 796: 768: 727: 695: 663: 597: 552: 501: 453: 357: 295: 245: 202: 179: 2678:"A dynamical theory of the electromagnetic field" 966:(Maxwell called the inverse of conductivity the " 1492:, Maxwell considers the situation only from the 1131:{\displaystyle \partial \mathbf {A} /\partial t} 1038:, although he also discussed the possibility of 2848:A Dynamical Theory of the Electromagnetic Field 1637: 598:{\displaystyle \nabla \cdot \mathbf {D} =\rho } 58:Philosophical Transactions of the Royal Society 21:A Dynamical Theory of the Electromagnetic Field 1426: 1408: 1079:yields the familiar differential form of the 8: 2902:Oxford University Press. ISBN 978-0198505945 2867:The Scientific Papers of James Clerk Maxwell 1501: 2629:Maxwell's equations can also be derived by 1792:{\displaystyle \nabla \cdot \mathbf {H} =0} 1686:{\displaystyle \nabla \cdot \mathbf {E} =0} 51:) on 24 December 1864. It was then sent to 2725:Royal Society archives; register of papers 898:is the force per unit charge (called the " 776:being the total current density including 2912:History of Communications Infrastructures 2900:Electromagnetism from Ampère to Einstein. 2776:"On the presentation of Maxwell's theory" 2557: 2534: 2524: 2518: 2513: 2505: 2461: 2455: 2442: 2420: 2406: 2400: 2393: 2391: 2350: 2344: 2331: 2309: 2295: 2289: 2282: 2280: 2257: 2255: 2232: 2226: 2209: 2182: 2163: 2133: 2119: 2113: 2106: 2100: 2090: 2075: 2054: 2048: 2036: 2022: 1997: 1983: 1977: 1970: 1964: 1954: 1939: 1918: 1912: 1897: 1883: 1839: 1833: 1827: 1815: 1807: 1778: 1770: 1736: 1730: 1724: 1709: 1701: 1672: 1664: 1461: 1445: 1439: 1435: 1431: 1425: 1424: 1419: 1407: 1406: 1391: 1387: 1383: 1367: 1361: 1351: 1347: 1342: 1334: 1309: 1284: 1278: 1267: 1265: 1200: 1195: 1187: 1179: 1171: 1169: 1117: 1112: 1107: 981: 947: 917: 883: 881: 851: 849: 819: 789: 787: 753: 752: 747: 744: 720: 718: 688: 686: 660: 640: 629: 621: 584: 576: 545: 535: 527: 525: 494: 484: 476: 474: 426: 420: 409: 401: 387: 385: 342: 341: 336: 327: 319: 288: 274: 269: 227: 221: 220: 215: 195: 194: 192: 180:{\displaystyle \mathbf {J} _{\rm {tot}}=} 161: 160: 155: 152: 1323:Taking curls, noting that the curl of a 769:{\displaystyle \mathbf {J} _{\rm {tot}}} 2880:James Clerk Maxwell – The Great Unknown 2797:A Treatise on Electricity and Magnetism 2668: 2666: 2664: 2660: 2644:A Treatise on Electricity and Magnetism 1590:. The notation used in Maxwell's later 47:, being sent to William Thomson (later 2748: 2746: 2744: 2742: 2577:is the speed of light in free space. 1593:Treatise on Electricity and Magnetism 465:(E) The electric elasticity equation 7: 2906:Katz, Randy H. (February 22, 1997). 2602:The Electrodynamics of Moving Bodies 1600:Maxwell – electromagnetic light wave 1583:are in fact the components of  1235:Moving magnet and conductor problem 16:1865 physics paper by James Maxwell 2452: 2413: 2397: 2341: 2302: 2286: 2223: 2203: 2195: 2176: 2165: 2126: 2110: 2069: 2060: 2056: 2030: 2024: 1990: 1974: 1933: 1924: 1920: 1891: 1885: 1846: 1836: 1809: 1772: 1743: 1733: 1703: 1666: 1479:differential form of Faraday's law 1452: 1442: 1413: 1397: 1393: 1374: 1364: 1355: 1336: 1303: 1291: 1281: 1254:, so that Maxwell's equation  1122: 1109: 983: 760: 757: 754: 651: 643: 623: 578: 445: 433: 423: 349: 346: 343: 321: 282: 234: 224: 168: 165: 162: 69: 14: 1232:in electric generators (see also 2462: 2407: 2351: 2296: 2258: 2233: 2210: 2183: 2120: 2076: 2037: 1984: 1940: 1898: 1875:of the curl equations we obtain 1840: 1816: 1779: 1737: 1710: 1673: 1608:Father of Electromagnetic Theory 1446: 1420: 1368: 1343: 1285: 1268: 1248:) reduces to the electric field 1196: 1188: 1180: 1172: 1113: 884: 852: 790: 748: 721: 689: 630: 585: 546: 528: 495: 477: 427: 410: 402: 388: 337: 328: 289: 275: 228: 196: 156: 2869:. Vol. 1. New York: Dover. 2799:. Oxford: Clarendon Press. Vol. 2774:Cf.  Tai, Chen-To (1972), 2155:If we note the vector identity 1064:(because the divergence of the 2850:. Eugene, OR: Wipf and Stock. 414: 398: 203:{\displaystyle \,\mathbf {J} } 143:(A) The law of total currents 1: 2795:Maxwell, James Clerk (1873). 2753:Maxwell, James Clerk (1861). 1630:electromagnetic wave equation 1490:electromagnetic wave equation 1094:and the differential form of 2951:Works by James Clerk Maxwell 2755:"On physical lines of force" 2598:special theory of relativity 2265:{\displaystyle \mathbf {V} } 1218:first appeared at equation ( 936:(which Maxwell also called " 907: 891:{\displaystyle \mathbf {f} } 859:{\displaystyle \mathbf {A} } 840:quantity of free electricity 797:{\displaystyle \mathbf {D} } 728:{\displaystyle \mathbf {J} } 707:, which Maxwell called the " 696:{\displaystyle \mathbf {H} } 119:into six equations, labeled 70:Maxwell's original equations 2876:"The electromagnetic field" 2874:Johnson, Kevin (May 2002). 1616:A postcard from Maxwell to 2982: 2898:Darrigol, Olivier (2000). 1096:Faraday's law of induction 970:", what is now called the 375:Faraday's law of induction 108: 80:On Physical Lines of Force 63:Philosophical Transactions 2604:, one of Einstein's 1905 1046:Gauss's law for magnetism 104: 2786: (8): 936–45. 1090:implicitly contains the 2780:Proceedings of the IEEE 1649:Modern equation methods 996:is the vector operator 989:{\displaystyle \nabla } 964:electrical conductivity 955:{\displaystyle \sigma } 257:(B) Definition of the 2762:Philosophical Magazine 2694:10.1098/rstl.1865.0008 2567: 2488: 2377: 2266: 2241: 2146: 2010: 1859: 1793: 1756: 1687: 1642: 1620: 1609: 1560: 1515: 1511: 1509:constitutive equations 1497: 1482: 1469: 1314: 1255: 1215: 1205: 1159: 1132: 1087: 1076: 1072: 1057: 990: 956: 926: 892: 860: 828: 798: 770: 729: 697: 665: 599: 554: 503: 455: 359: 309:Ampère's circuital law 297: 247: 204: 181: 136: 132: 124: 120: 95:Ampère's circuital law 2886:on September 15, 2008 2865:Niven, W. D. (1952). 2568: 2489: 2378: 2267: 2242: 2147: 2011: 1860: 1794: 1757: 1688: 1615: 1607: 1470: 1315: 1206: 1133: 991: 957: 927: 925:{\displaystyle \phi } 893: 861: 838:density (called the " 829: 827:{\displaystyle \rho } 810:electric displacement 799: 771: 730: 698: 666: 600: 555: 504: 456: 360: 298: 248: 205: 182: 105:Heaviside's equations 53:George Gabriel Stokes 2674:Maxwell, James Clerk 2504: 2390: 2279: 2254: 2162: 2021: 1882: 1806: 1769: 1700: 1663: 1626:displacement current 1333: 1264: 1168: 1106: 980: 946: 916: 880: 848: 818: 786: 778:displacement current 743: 717: 685: 620: 611:continuity of charge 575: 524: 473: 384: 318: 268: 214: 191: 151: 99:displacement current 2956:Maxwell's equations 2613:. In it is stated: 1559:Maxwell's equation 1327:is zero, we obtain 1224:Maxwell's equations 968:specific resistance 904:electromotive force 900:electromotive force 76:Maxwell's equations 25:James Clerk Maxwell 2573:meters per second 2563: 2484: 2373: 2262: 2237: 2142: 2006: 1855: 1789: 1752: 1683: 1621: 1610: 1465: 1310: 1201: 1138:vanishes, and the 1128: 1081:Maxwell-Ampère law 986: 952: 938:electric potential 934:electric potential 922: 888: 868:magnetic potential 856: 824: 806:displacement field 794: 766: 725: 709:magnetic intensity 693: 661: 595: 550: 499: 451: 355: 293: 259:magnetic potential 243: 200: 177: 2778:(Invited Paper), 2581:Legacy and impact 2542: 2540: 2480: 2477: 2471: 2468: 2437: 2431: 2427: 2369: 2366: 2360: 2357: 2326: 2320: 2316: 2140: 2067: 2004: 1931: 1868: 1867: 1853: 1750: 1628:, to derive the 1459: 1404: 1381: 1298: 1092:Lorentz force law 658: 609:(H) Equation of 543: 492: 440: 241: 2973: 2941:Electromagnetism 2936:1860s in science 2922: 2920: 2918: 2895: 2893: 2891: 2882:. Archived from 2870: 2861: 2834: 2829: 2823: 2821: 2817: 2811: 2805: 2802: 2793: 2787: 2772: 2766: 2765: 2759: 2750: 2737: 2735:royalsociety.org 2732: 2726: 2723: 2717: 2713: 2670: 2572: 2570: 2569: 2564: 2562: 2561: 2543: 2541: 2539: 2538: 2529: 2528: 2519: 2514: 2493: 2491: 2490: 2485: 2478: 2475: 2469: 2466: 2465: 2460: 2459: 2447: 2446: 2435: 2429: 2428: 2426: 2425: 2424: 2411: 2410: 2405: 2404: 2394: 2382: 2380: 2379: 2374: 2367: 2364: 2358: 2355: 2354: 2349: 2348: 2336: 2335: 2324: 2318: 2317: 2315: 2314: 2313: 2300: 2299: 2294: 2293: 2283: 2271: 2269: 2268: 2263: 2261: 2246: 2244: 2243: 2238: 2236: 2231: 2230: 2218: 2214: 2213: 2191: 2187: 2186: 2151: 2149: 2148: 2143: 2141: 2139: 2138: 2137: 2124: 2123: 2118: 2117: 2107: 2105: 2104: 2095: 2094: 2079: 2068: 2066: 2055: 2053: 2052: 2040: 2015: 2013: 2012: 2007: 2005: 2003: 2002: 2001: 1988: 1987: 1982: 1981: 1971: 1969: 1968: 1959: 1958: 1943: 1932: 1930: 1919: 1917: 1916: 1901: 1864: 1862: 1861: 1856: 1854: 1852: 1844: 1843: 1834: 1832: 1831: 1819: 1798: 1796: 1795: 1790: 1782: 1761: 1759: 1758: 1753: 1751: 1749: 1741: 1740: 1731: 1729: 1728: 1713: 1692: 1690: 1689: 1684: 1676: 1657: 1656: 1589: 1582: 1576: 1566: 1555: 1548: 1544: 1536: 1529: 1525: 1488:In deriving the 1474: 1472: 1471: 1466: 1460: 1458: 1450: 1449: 1440: 1430: 1429: 1423: 1412: 1411: 1405: 1403: 1392: 1382: 1380: 1372: 1371: 1362: 1346: 1319: 1317: 1316: 1311: 1299: 1297: 1289: 1288: 1279: 1271: 1253: 1247: 1210: 1208: 1207: 1202: 1199: 1191: 1183: 1175: 1157: 1151:and is given by 1146: 1137: 1135: 1134: 1129: 1121: 1116: 1102:magnetic field, 1055: 995: 993: 992: 987: 961: 959: 958: 953: 931: 929: 928: 923: 897: 895: 894: 889: 887: 865: 863: 862: 857: 855: 833: 831: 830: 825: 803: 801: 800: 795: 793: 775: 773: 772: 767: 765: 764: 763: 751: 737:electric current 734: 732: 731: 726: 724: 702: 700: 699: 694: 692: 670: 668: 667: 662: 659: 657: 649: 641: 633: 604: 602: 601: 596: 588: 559: 557: 556: 551: 549: 544: 536: 531: 508: 506: 505: 500: 498: 493: 485: 480: 460: 458: 457: 452: 441: 439: 431: 430: 421: 413: 405: 391: 364: 362: 361: 356: 354: 353: 352: 340: 331: 302: 300: 299: 294: 292: 278: 252: 250: 249: 244: 242: 240: 232: 231: 222: 209: 207: 206: 201: 199: 186: 184: 183: 178: 173: 172: 171: 159: 111:Oliver Heaviside 29:electromagnetism 23:" is a paper by 2981: 2980: 2976: 2975: 2974: 2972: 2971: 2970: 2926: 2925: 2916: 2914: 2905: 2889: 2887: 2873: 2864: 2858: 2845: 2842: 2840:Further reading 2837: 2830: 2826: 2819: 2815: 2809: 2803: 2800: 2794: 2790: 2773: 2769: 2757: 2752: 2751: 2740: 2733: 2729: 2724: 2720: 2672: 2671: 2662: 2658: 2639: 2607:Annus Mirabilis 2600:, presented in 2594:Albert Einstein 2587:Richard Feynman 2583: 2575: 2553: 2530: 2520: 2502: 2501: 2495: 2451: 2438: 2416: 2412: 2396: 2395: 2388: 2387: 2384: 2340: 2327: 2305: 2301: 2285: 2284: 2277: 2276: 2252: 2251: 2248: 2222: 2202: 2198: 2175: 2171: 2160: 2159: 2153: 2129: 2125: 2109: 2108: 2096: 2086: 2059: 2044: 2019: 2018: 1993: 1989: 1973: 1972: 1960: 1950: 1923: 1908: 1880: 1879: 1871:If we take the 1869: 1845: 1835: 1823: 1804: 1803: 1767: 1766: 1742: 1732: 1720: 1698: 1697: 1661: 1660: 1651: 1602: 1584: 1578: 1567: 1564: 1546: 1542: 1538: 1527: 1523: 1519: 1475: 1451: 1441: 1396: 1373: 1363: 1331: 1330: 1321: 1290: 1280: 1262: 1261: 1249: 1243: 1212: 1166: 1165: 1152: 1142: 1104: 1103: 1049: 1010: 1005: 978: 977: 944: 943: 914: 913: 878: 877: 872:angular impulse 846: 845: 816: 815: 784: 783: 746: 741: 740: 715: 714: 683: 682: 673: 650: 642: 618: 617: 606: 573: 572: 561: 522: 521: 510: 471: 470: 462: 432: 422: 382: 381: 366: 335: 316: 315: 304: 266: 265: 254: 233: 223: 212: 211: 189: 188: 154: 149: 148: 113: 107: 87:vector notation 72: 37: 17: 12: 11: 5: 2979: 2977: 2969: 2968: 2963: 2961:1865 documents 2958: 2953: 2948: 2946:Physics papers 2943: 2938: 2928: 2927: 2924: 2923: 2903: 2896: 2871: 2862: 2856: 2841: 2838: 2836: 2835: 2824: 2788: 2767: 2738: 2727: 2718: 2659: 2657: 2654: 2653: 2652: 2647: 2638: 2635: 2627: 2626: 2619: 2618: 2582: 2579: 2560: 2556: 2552: 2549: 2546: 2537: 2533: 2527: 2523: 2517: 2512: 2509: 2499: 2483: 2474: 2464: 2458: 2454: 2450: 2445: 2441: 2434: 2423: 2419: 2415: 2409: 2403: 2399: 2385: 2372: 2363: 2353: 2347: 2343: 2339: 2334: 2330: 2323: 2312: 2308: 2304: 2298: 2292: 2288: 2274: 2260: 2235: 2229: 2225: 2221: 2217: 2212: 2208: 2205: 2201: 2197: 2194: 2190: 2185: 2181: 2178: 2174: 2170: 2167: 2157: 2136: 2132: 2128: 2122: 2116: 2112: 2103: 2099: 2093: 2089: 2085: 2082: 2078: 2074: 2071: 2065: 2062: 2058: 2051: 2047: 2043: 2039: 2035: 2032: 2029: 2026: 2000: 1996: 1992: 1986: 1980: 1976: 1967: 1963: 1957: 1953: 1949: 1946: 1942: 1938: 1935: 1929: 1926: 1922: 1915: 1911: 1907: 1904: 1900: 1896: 1893: 1890: 1887: 1877: 1866: 1865: 1851: 1848: 1842: 1838: 1830: 1826: 1822: 1818: 1814: 1811: 1800: 1799: 1788: 1785: 1781: 1777: 1774: 1763: 1762: 1748: 1745: 1739: 1735: 1727: 1723: 1719: 1716: 1712: 1708: 1705: 1694: 1693: 1682: 1679: 1675: 1671: 1668: 1655: 1650: 1647: 1601: 1598: 1464: 1457: 1454: 1448: 1444: 1438: 1434: 1428: 1422: 1418: 1415: 1410: 1402: 1399: 1395: 1390: 1386: 1379: 1376: 1370: 1366: 1360: 1357: 1354: 1350: 1345: 1341: 1338: 1329: 1308: 1305: 1302: 1296: 1293: 1287: 1283: 1277: 1274: 1270: 1260: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1164: 1140:electric field 1127: 1124: 1120: 1115: 1111: 1008:Clarifications 1006: 1004: 1003: 985: 975: 951: 941: 921: 911: 886: 875: 874:" by Maxwell). 854: 843: 842:" by Maxwell). 823: 813: 812:" by Maxwell). 792: 781: 762: 759: 756: 750: 739:density (with 723: 712: 705:magnetic field 691: 679: 678: 677: 656: 653: 648: 645: 639: 636: 632: 628: 625: 615: 614: 613: 594: 591: 587: 583: 580: 570: 569: 568: 548: 542: 539: 534: 530: 519: 518: 517: 497: 491: 488: 483: 479: 468: 467: 466: 450: 447: 444: 438: 435: 429: 425: 419: 416: 412: 408: 404: 400: 397: 394: 390: 379: 378: 377: 351: 348: 345: 339: 334: 330: 326: 323: 313: 312: 311: 291: 287: 284: 281: 277: 273: 263: 262: 261: 239: 236: 230: 226: 219: 198: 176: 170: 167: 164: 158: 146: 145: 144: 129:component form 106: 103: 71: 68: 36: 33: 15: 13: 10: 9: 6: 4: 3: 2: 2978: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2937: 2934: 2933: 2931: 2913: 2909: 2904: 2901: 2897: 2885: 2881: 2877: 2872: 2868: 2863: 2859: 2857:1-57910-015-5 2853: 2849: 2844: 2843: 2839: 2833: 2828: 2825: 2813: 2798: 2792: 2789: 2785: 2781: 2777: 2771: 2768: 2763: 2756: 2749: 2747: 2745: 2743: 2739: 2736: 2731: 2728: 2722: 2719: 2716: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2683: 2679: 2675: 2669: 2667: 2665: 2661: 2655: 2651: 2648: 2646: 2645: 2641: 2640: 2636: 2634: 2632: 2624: 2623: 2622: 2616: 2615: 2614: 2612: 2609: 2608: 2603: 2599: 2595: 2591: 2588: 2580: 2578: 2574: 2558: 2554: 2550: 2547: 2544: 2535: 2531: 2525: 2521: 2515: 2510: 2507: 2498: 2494: 2481: 2472: 2456: 2448: 2443: 2439: 2432: 2421: 2417: 2401: 2383: 2370: 2361: 2345: 2337: 2332: 2328: 2321: 2310: 2306: 2290: 2273: 2247: 2227: 2219: 2215: 2206: 2199: 2192: 2188: 2179: 2172: 2168: 2156: 2152: 2134: 2130: 2114: 2101: 2097: 2091: 2087: 2083: 2080: 2072: 2063: 2049: 2045: 2041: 2033: 2027: 2016: 1998: 1994: 1978: 1965: 1961: 1955: 1951: 1947: 1944: 1936: 1927: 1913: 1909: 1905: 1902: 1894: 1888: 1876: 1874: 1849: 1828: 1824: 1820: 1812: 1802: 1801: 1786: 1783: 1775: 1765: 1764: 1746: 1725: 1721: 1717: 1714: 1706: 1696: 1695: 1680: 1677: 1669: 1659: 1658: 1654: 1648: 1646: 1641: 1636: 1633: 1631: 1627: 1619: 1614: 1606: 1599: 1597: 1595: 1594: 1588: 1581: 1574: 1570: 1562: 1557: 1554: 1551: 1541: 1535: 1532: 1522: 1517: 1513: 1510: 1505: 1503: 1499: 1495: 1491: 1486: 1484: 1480: 1477:which is the 1462: 1455: 1436: 1432: 1416: 1400: 1388: 1384: 1377: 1358: 1352: 1348: 1339: 1328: 1326: 1306: 1300: 1294: 1275: 1272: 1259: 1257: 1252: 1246: 1241: 1237: 1236: 1231: 1230: 1225: 1221: 1217: 1192: 1184: 1176: 1163: 1161: 1156: 1150: 1145: 1141: 1125: 1118: 1101: 1097: 1093: 1089: 1084: 1082: 1078: 1074: 1071:Substituting 1069: 1067: 1063: 1059: 1053: 1047: 1043: 1041: 1037: 1034: 1030: 1027: 1023: 1022:nondispersive 1019: 1015: 1009: 1001: 1000: 976: 973: 969: 965: 949: 942: 939: 935: 919: 912: 909: 905: 901: 876: 873: 870:(called the " 869: 844: 841: 837: 821: 814: 811: 808:(called the " 807: 782: 779: 738: 713: 710: 706: 681: 680: 675: 674: 672: 654: 646: 637: 634: 626: 612: 608: 607: 605: 592: 589: 581: 567: 563: 562: 560: 540: 537: 532: 516: 512: 511: 509: 489: 486: 481: 464: 463: 461: 448: 442: 436: 417: 406: 395: 392: 376: 372: 371:Lorentz force 368: 367: 365: 332: 324: 310: 306: 305: 303: 285: 279: 271: 260: 256: 255: 253: 237: 217: 210: 174: 142: 141: 140: 138: 134: 130: 126: 122: 118: 112: 102: 100: 96: 92: 88: 83: 81: 77: 67: 64: 60: 59: 54: 50: 46: 42: 41:Royal Society 34: 32: 30: 26: 22: 2915:. Retrieved 2911: 2899: 2890:September 7, 2888:. Retrieved 2884:the original 2879: 2866: 2847: 2827: 2796: 2791: 2783: 2779: 2770: 2761: 2730: 2721: 2714: 2685: 2681: 2650:Gauge theory 2642: 2628: 2620: 2605: 2601: 2592: 2584: 2576: 2500: 2496: 2386: 2275: 2249: 2158: 2154: 2017: 1878: 1870: 1652: 1643: 1638: 1634: 1622: 1591: 1586: 1579: 1572: 1568: 1558: 1552: 1549: 1539: 1533: 1530: 1520: 1506: 1487: 1476: 1322: 1250: 1244: 1240:transformers 1233: 1229:motional emf 1227: 1213: 1154: 1149:conservative 1143: 1099: 1085: 1070: 1051: 1044: 1035: 1033:permeability 1028: 1026:permittivity 1011: 1007: 997: 967: 937: 899: 871: 839: 809: 708: 616: 571: 520: 469: 380: 314: 264: 147: 114: 84: 73: 62: 56: 38: 20: 18: 2688:: 459–512. 1571:+ ∇⋅  1258:reduces to 1162:reduces to 1062:divergences 1042:materials. 1040:anisotropic 1024:media with 972:resistivity 836:free charge 566:Gauss's law 91:Gauss's Law 49:Lord Kelvin 45:peer review 35:Publication 2930:Categories 2656:References 2548:2.99792458 1618:Peter Tait 1494:rest frame 1158:, so that 1068:is zero). 1060:by taking 117:vectorized 109:See also: 2710:186207827 2702:25533062M 2551:× 2532:ε 2522:μ 2453:∇ 2449:⋅ 2433:− 2414:∂ 2398:∂ 2342:∇ 2338:⋅ 2322:− 2303:∂ 2287:∂ 2224:∇ 2220:− 2207:⋅ 2204:∇ 2196:∇ 2180:× 2177:∇ 2169:× 2166:∇ 2127:∂ 2111:∂ 2098:ε 2088:μ 2084:− 2073:× 2070:∇ 2061:∂ 2057:∂ 2046:ε 2034:× 2031:∇ 2028:× 2025:∇ 1991:∂ 1975:∂ 1962:ε 1952:μ 1948:− 1937:× 1934:∇ 1925:∂ 1921:∂ 1910:μ 1906:− 1895:× 1892:∇ 1889:× 1886:∇ 1847:∂ 1837:∂ 1825:ε 1813:× 1810:∇ 1776:⋅ 1773:∇ 1744:∂ 1734:∂ 1722:μ 1718:− 1707:× 1704:∇ 1670:⋅ 1667:∇ 1453:∂ 1443:∂ 1437:− 1417:× 1414:∇ 1398:∂ 1394:∂ 1389:− 1375:∂ 1365:∂ 1359:× 1356:∇ 1353:− 1340:× 1337:∇ 1307:ϕ 1304:∇ 1301:− 1292:∂ 1282:∂ 1276:− 1193:× 1123:∂ 1110:∂ 1086:Equation 1050:∇⋅  1018:isotropic 984:∇ 950:σ 920:ϕ 822:ρ 652:∂ 647:ρ 644:∂ 638:− 627:⋅ 624:∇ 593:ρ 582:⋅ 579:∇ 541:σ 515:Ohm's law 490:ε 449:ϕ 446:∇ 443:− 434:∂ 424:∂ 418:− 407:× 396:μ 369:(D) The 325:× 322:∇ 286:× 283:∇ 272:μ 235:∂ 225:∂ 2676:(1865). 2637:See also 1325:gradient 1147:becomes 1098:. For a 676:Notation 2816:‍ 2810:‍ 2801:  2782:  1565:‍ 1547:  1543:  1528:  1524:  962:is the 932:is the 866:is the 834:is the 804:is the 735:is the 703:is the 2917:Sep 7, 2854:  2708:  2700:  2611:papers 2497:where 2479:  2476:  2470:  2467:  2436:  2430:  2368:  2365:  2359:  2356:  2325:  2319:  2250:where 1100:static 1014:linear 906:; see 2814:, eq. 2758:(PDF) 2706:S2CID 1640:laws. 1502:below 1075:into 908:below 564:(G) 513:(F) 307:(C) 2919:2009 2892:2009 2852:ISBN 2621:and 1873:curl 1537:and 1514:and 1507:The 1066:curl 1031:and 373:and 135:and 2812:233 2690:doi 2686:155 1575:= 0 1561:(G) 1516:(F) 1512:(E) 1504:). 1498:(D) 1483:(D) 1256:(D) 1216:(D) 1160:(D) 1088:(D) 1077:(C) 1073:(A) 1058:(B) 1054:= 0 999:del 940:"). 137:(H) 133:(G) 125:(F) 123:to 121:(A) 82:". 27:on 2932:: 2910:. 2878:. 2822:). 2808:p. 2806:, 2804:II 2784:60 2760:. 2741:^ 2704:. 2698:OL 2696:. 2684:. 2680:. 2663:^ 2633:. 2555:10 1632:. 1556:. 1220:77 1153:−∇ 1083:. 1020:, 1016:, 974:). 910:). 780:). 711:". 671:. 101:. 2921:. 2894:. 2860:. 2820:J 2818:( 2764:. 2712:. 2692:: 2559:8 2545:= 2536:o 2526:o 2516:1 2511:= 2508:c 2482:0 2473:= 2463:H 2457:2 2444:2 2440:c 2422:2 2418:t 2408:H 2402:2 2371:0 2362:= 2352:E 2346:2 2333:2 2329:c 2311:2 2307:t 2297:E 2291:2 2259:V 2234:V 2228:2 2216:) 2211:V 2200:( 2193:= 2189:) 2184:V 2173:( 2135:2 2131:t 2121:H 2115:2 2102:o 2092:o 2081:= 2077:E 2064:t 2050:o 2042:= 2038:H 1999:2 1995:t 1985:E 1979:2 1966:o 1956:o 1945:= 1941:H 1928:t 1914:o 1903:= 1899:E 1850:t 1841:E 1829:o 1821:= 1817:H 1787:0 1784:= 1780:H 1747:t 1738:H 1726:o 1715:= 1711:E 1681:0 1678:= 1674:E 1587:D 1585:− 1580:D 1573:D 1569:ρ 1553:E 1550:σ 1545:= 1540:J 1534:E 1531:Ďľ 1526:= 1521:D 1463:, 1456:t 1447:B 1433:= 1427:) 1421:A 1409:( 1401:t 1385:= 1378:t 1369:A 1349:= 1344:E 1320:. 1295:t 1286:A 1273:= 1269:E 1251:E 1245:f 1211:. 1197:B 1189:v 1185:+ 1181:E 1177:= 1173:f 1155:ϕ 1144:E 1126:t 1119:/ 1114:A 1052:B 1048:( 1036:Îź 1029:Ďľ 1002:. 885:f 853:A 791:D 761:t 758:o 755:t 749:J 722:J 690:H 655:t 635:= 631:J 590:= 586:D 547:J 538:1 533:= 529:f 496:D 487:1 482:= 478:f 437:t 428:A 415:) 411:H 403:v 399:( 393:= 389:f 350:t 347:o 344:t 338:J 333:= 329:H 290:A 280:= 276:H 238:t 229:D 218:+ 197:J 175:= 169:t 166:o 163:t 157:J 19:"

Index

James Clerk Maxwell
electromagnetism
Royal Society
peer review
Lord Kelvin
George Gabriel Stokes
Philosophical Transactions of the Royal Society
Maxwell's equations
On Physical Lines of Force
vector notation
Gauss's Law
Ampère's circuital law
displacement current
Oliver Heaviside
vectorized
(A)
(F)
component form
(G)
(H)
J {\displaystyle \,\mathbf {J} }
magnetic potential
Ampère's circuital law
Lorentz force
Faraday's law of induction
Ohm's law
Gauss's law
continuity of charge
magnetic field
electric current

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑