Knowledge

Discontinuous linear map

Source đź“ť

4967: 4252: 3355:
The argument for the existence of discontinuous linear maps on normed spaces can be generalized to all metrizable topological vector spaces, especially to all Fréchet spaces, but there exist infinite-dimensional locally convex topological vector spaces such that every functional is continuous. On the
3346:
of a topological vector space is the collection of continuous linear maps from the space into the underlying field. Thus the failure of some linear maps to be continuous for infinite-dimensional normed spaces implies that for these spaces, one needs to distinguish the algebraic dual space from the
2655:
The upshot is that the existence of discontinuous linear maps depends on AC; it is consistent with set theory without AC that there are no discontinuous linear maps on complete spaces. In particular, no concrete construction such as the derivative can succeed in defining a discontinuous linear map
3172:
So the natural question to ask about linear operators that are not everywhere-defined is whether they are closable. The answer is, "not necessarily"; indeed, every infinite-dimensional normed space admits linear operators that are not closable. As in the case of discontinuous operators considered
473: 2651:
function is continuous (this is to be understood in the terminology of constructivism, according to which only representable functions are considered to be functions). Such stances are held by only a small minority of working mathematicians.
734: 1691: 2573:
Notice that by using the fact that any set of linearly independent vectors can be completed to a basis, we implicitly used the axiom of choice, which was not needed for the concrete example in the previous section.
875: 3347:
continuous dual space which is then a proper subset. It illustrates the fact that an extra dose of caution is needed in doing analysis on infinite-dimensional spaces as compared to finite-dimensional ones.
3368:. The upshot is that spaces with fewer convex sets have fewer functionals, and in the worst-case scenario, a space may have no functionals at all other than the zero functional. This is the case for the 3630: 2825: 1016: 210: 308: 1567: 299: 2619:
viewpoint. For example, H. G. Garnir, in searching for so-called "dream spaces" (topological vector spaces on which every linear map into a normed space is continuous), was led to adopt ZF +
613: 2615:
Solovay's result shows that it is not necessary to assume that all infinite-dimensional vector spaces admit discontinuous linear maps, and there are schools of analysis which adopt a more
540: 2586:(AC) is used in the general existence theorem of discontinuous linear maps. In fact, there are no constructive examples of discontinuous linear maps with complete domain (for example, 1417: 2189:
This example can be extended into a general theorem about the existence of discontinuous linear maps on any infinite-dimensional normed space (as long as the codomain is not trivial).
3061: 2994: 2864: 2772: 942: 3414: 1304: 2510: 1965: 1776: 1474: 1095: 3091: 4288: 3141: 2270: 908: 2356: 2239: 3360:, which applies to all locally convex spaces, guarantees the existence of many continuous linear functionals, and so a large dual space. In fact, to every convex set, the 2548: 4141: 3450: 3267: 3241: 2164: 2142: 2028: 1719: 1051: 3513: 3324: 3211: 3023: 2949: 2900: 2116: 2003: 125: 2443: 1593: 1876: 3481: 2383: 1850: 1221: 626: 2063: 1931: 1144: 3168: 3804: 3110: 2920: 2737: 2717: 2697: 2668:, a class of operators which share some of the features of continuous operators. It makes sense to ask which linear operators on a given space are closed. The 1820: 1796: 1598: 1494: 1327: 1241: 1115: 754: 2676:
closed operator on a complete domain is continuous, so to obtain a discontinuous closed operator, one must permit operators which are not defined everywhere.
4415: 4390: 3967: 2612:
in which every set of reals is measurable. This implies that there are no discontinuous linear real functions. Clearly AC does not hold in the model.
4372: 4094: 3949: 4840: 4342: 4281: 3925: 3529: 4409: 4585: 1878:
which assigns to each function its derivative is similarly discontinuous. Note that although the derivative operator is not continuous, it is
4798: 4850: 4347: 4317: 1499: 219: 545: 4970: 4274: 3817: 4758: 3906: 3797: 3776: 3761: 3729: 1885:
The fact that the domain is not complete here is important: discontinuous operators on complete spaces require a little more work.
478: 4176: 2777: 2590:). In analysis as it is usually practiced by working mathematicians, the axiom of choice is always employed (it is an axiom of 1340: 947: 5001: 3821: 767: 3648: 1910: 3294: 146: 3635:
One can consider even more general spaces. For example, the existence of a homomorphism between complete separable metric
2456: 2396:
is infinite-dimensional, to show the existence of a linear functional which is not continuous then amounts to constructing
4825: 4427: 4404: 3972: 4028: 4991: 4876: 4255: 3977: 3962: 3790: 2640: 2632: 2616: 3992: 3327: 4385: 4380: 4237: 3997: 1196:
Examples of discontinuous linear maps are easy to construct in spaces that are not complete; on any Cauchy sequence
4933: 4470: 4322: 4191: 4115: 60: 4232: 1429: 4729: 4539: 4048: 3982: 4996: 4502: 4497: 4485: 4357: 4297: 4084: 3885: 2867: 52: 4400: 3957: 3357: 3028: 2961: 2834: 2742: 2597:); thus, to the analyst, all infinite-dimensional topological vector spaces admit discontinuous linear maps. 913: 4763: 4744: 4420: 4181: 3372: 1246: 757: 468:{\displaystyle \|f(x)\|=\left\|\sum _{i=1}^{n}x_{i}f(e_{i})\right\|\leq \sum _{i=1}^{n}|x_{i}|\|f(e_{i})\|.} 4952: 4942: 4926: 4626: 4575: 4475: 4460: 4212: 4156: 4120: 2644: 36: 1936: 4921: 4621: 4608: 4590: 4555: 3683: 1724: 4395: 1306:
grow without bound. In a sense, the linear operators are not continuous because the space has "holes".
1056: 3066: 4937: 4881: 4860: 4195: 3173:
above, the proof requires the axiom of choice and so is in general nonconstructive, though again, if
3119: 2669: 2605: 2551: 2446: 2244: 884: 44: 2866:
That is, in studying operators that are not everywhere-defined, one may restrict one's attention to
2307: 2216: 2197:
Discontinuous linear maps can be proven to exist more generally, even if the space is complete. Let
17: 4820: 4815: 4773: 4352: 4161: 4099: 3813: 3636: 3519: 3218: 2515: 2171: 302: 3420: 3250: 3224: 2147: 2125: 2011: 1698: 1021: 4805: 4748: 4697: 4693: 4682: 4667: 4663: 4534: 4524: 4186: 4053: 3657: 3486: 620: 140: 3300: 3187: 2999: 2925: 2876: 2086: 1970: 2178:
real function is linear if and only if it is measurable, so for every such function there is a
4517: 4443: 4166: 3772: 3757: 3725: 3719: 3678: 3365: 2601: 1799: 98: 48: 2422: 1572: 4910: 4793: 4480: 4465: 4332: 4171: 4089: 4058: 4038: 4023: 4018: 4013: 3850: 3692: 3453: 2620: 1855: 3704: 3459: 2361: 1828: 1199: 4885: 4733: 4033: 3987: 3935: 3930: 3901: 3782: 3744:
For example, the weak topology w.r.t. the space of all (algebraically) linear functionals.
3700: 3361: 2665: 2583: 2048: 1933:, are linearly independent. One may find a Hamel basis containing them, and define a map 1916: 1879: 1330: 1120: 76: 3860: 3150: 1223:
of linearly independent vectors which does not have a limit, there is a linear operator
4916: 4865: 4580: 4222: 4074: 3875: 3452:
from which it follows that these spaces are nonconvex. Note that here is indicated the
3095: 2905: 2722: 2702: 2682: 2628: 2624: 1905:(note that some authors use this term in a broader sense to mean an algebraic basis of 1805: 1781: 1479: 1312: 1226: 1100: 739: 72: 56: 4985: 4900: 4810: 4753: 4713: 4641: 4616: 4560: 4512: 4448: 4227: 4151: 3880: 3865: 3855: 3681:(1970), "A model of set-theory in which every set of reals is Lebesgue measurable", 4947: 4895: 4855: 4845: 4723: 4570: 4565: 4362: 4312: 4266: 4217: 3870: 3840: 2587: 2206: 2175: 1496:
and with real values, is linear, but not continuous. Indeed, consider the sequence
1334: 64: 40: 3334:
is not complete here, as must be the case when there is such a constructible map.
4905: 4890: 4783: 4677: 4672: 4657: 4636: 4600: 4507: 4327: 4146: 4136: 4043: 3845: 1902: 1894: 1153:
is infinite-dimensional, this proof will fail as there is no guarantee that the
75:, it is trickier; such maps can be proven to exist, but the proof relies on the 28: 3180:
In fact, there is even an example of a linear operator whose graph has closure
4718: 4631: 4595: 4455: 4337: 4079: 3919: 3915: 3911: 3343: 2609: 2594: 2179: 1823: 1421: 729:{\displaystyle \|f(x)\|\leq \left(\sum _{i=1}^{n}|x_{i}|\right)M\leq CM\|x\|.} 32: 4870: 4687: 3523: 1898: 2008:
acts as the identity on the rest of the Hamel basis, and extend to all of
1686:{\displaystyle T(f_{n})={\frac {n^{2}\cos(n^{2}\cdot 0)}{n}}=n\to \infty } 4835: 4830: 4788: 4768: 4738: 4529: 3369: 2401: 1595:. This sequence converges uniformly to the constantly zero function, but 1154: 1172:
is the zero map which is trivially continuous. In all other cases, when
4778: 2636: 3326:
so this provides a sort of maximally discontinuous linear map (confer
3696: 43:
and are often used as approximations to more general functions (see
3651: â€“ A vector space with a topology defined by convex open sets 83:
A linear map from a finite-dimensional space is always continuous
4270: 3786: 2292:, which will imply the existence of a discontinuous linear map 2280:
is not the zero space. We will find a discontinuous linear map
2635:
which states, among other things, that any linear map from an
2591: 2570:, and since it is clearly not bounded, it is not continuous. 1180:
is not the zero space, one can find a discontinuous map from
760:
and so is continuous. In fact, to see this, simply note that
3625:{\displaystyle \|f\|=\int _{I}{\frac {|f(x)|}{1+|f(x)|}}dx.} 2664:
Many naturally occurring linear discontinuous operators are
2550:
Complete this sequence of linearly independent vectors to a
3277:() respectively, and so normed spaces. Define an operator 2820:{\displaystyle T:\operatorname {Dom} (T)\subseteq X\to Y.} 1011:{\displaystyle f(B(x,\delta ))\subseteq B(f(x),\epsilon )} 621:
any two norms on a finite-dimensional space are equivalent
55:), then it makes sense to ask whether all linear maps are 3293:) on to the same function on . As a consequence of the 3632:
This non-locally convex space has a trivial dual space.
870:{\displaystyle \|f(x)-f(x')\|=\|f(x-x')\|\leq K\|x-x'\|} 3653:
Pages displaying short descriptions of redirect targets
2631:
is a negation of strong AC) as his axioms to prove the
205:{\displaystyle \left(e_{1},e_{2},\ldots ,e_{n}\right)} 63:
topological vector spaces (e.g., infinite-dimensional
3532: 3489: 3462: 3423: 3375: 3303: 3253: 3227: 3190: 3153: 3122: 3098: 3069: 3031: 3002: 2964: 2928: 2908: 2879: 2837: 2780: 2745: 2725: 2705: 2685: 2518: 2459: 2425: 2364: 2310: 2247: 2219: 2150: 2128: 2089: 2051: 2014: 1973: 1939: 1919: 1858: 1831: 1808: 1784: 1727: 1701: 1601: 1575: 1502: 1482: 1432: 1343: 1315: 1249: 1229: 1202: 1123: 1103: 1059: 1024: 950: 916: 887: 770: 742: 629: 548: 481: 311: 222: 149: 101: 4706: 4650: 4548: 4436: 4371: 4305: 4205: 4129: 4108: 4067: 4006: 3948: 3894: 3829: 3177:is not complete, there are constructible examples. 2566:so defined will extend uniquely to a linear map on 4142:Spectral theory of ordinary differential equations 3624: 3507: 3475: 3444: 3408: 3318: 3261: 3235: 3205: 3162: 3135: 3104: 3085: 3055: 3017: 2988: 2943: 2914: 2894: 2858: 2819: 2766: 2731: 2711: 2691: 2542: 2504: 2437: 2377: 2350: 2264: 2233: 2158: 2136: 2110: 2057: 2022: 1997: 1959: 1925: 1870: 1844: 1814: 1790: 1770: 1713: 1685: 1587: 1562:{\displaystyle f_{n}(x)={\frac {\sin(n^{2}x)}{n}}} 1561: 1488: 1468: 1411: 1321: 1298: 1235: 1215: 1138: 1109: 1089: 1045: 1010: 936: 902: 869: 748: 728: 607: 534: 467: 294:{\displaystyle f(x)=\sum _{i=1}^{n}x_{i}f(e_{i}),} 293: 204: 119: 3518:Another such example is the space of real-valued 2639:to a TVS is continuous. Going to the extreme of 1778:, as would hold for a continuous map. Note that 608:{\displaystyle \sum _{i=1}^{n}|x_{i}|\leq C\|x\|} 59:. It turns out that for maps defined on infinite- 2045:be any sequence of rationals which converges to 1357: 489: 2562:at the other vectors in the basis to be zero. 4282: 3798: 2627:(dependent choice is a weakened form and the 216:which may be taken to be unit vectors. Then, 8: 3539: 3533: 2498: 2485: 1350: 1344: 1293: 1280: 1272: 1250: 1164:is the zero space {0}, the only map between 864: 847: 838: 812: 806: 771: 720: 714: 645: 630: 602: 596: 535:{\displaystyle M=\sup _{i}\{\|f(e_{i})\|\},} 526: 523: 501: 498: 459: 437: 327: 312: 3247:the space of polynomial functions from to 2400:which is not bounded. For that, consider a 67:), the answer is generally no: there exist 4289: 4275: 4267: 3833: 3805: 3791: 3783: 3660: â€“ Type of function in linear algebra 1412:{\displaystyle \|f\|=\sup _{x\in }|f(x)|.} 79:and does not provide an explicit example. 39:which preserve the algebraic structure of 3605: 3588: 3575: 3558: 3555: 3549: 3531: 3488: 3467: 3461: 3422: 3390: 3389: 3380: 3374: 3302: 3297:, the graph of this operator is dense in 3255: 3254: 3252: 3229: 3228: 3226: 3189: 3152: 3123: 3121: 3097: 3070: 3068: 3032: 3030: 3001: 2965: 2963: 2927: 2907: 2878: 2836: 2779: 2744: 2724: 2704: 2684: 2517: 2501: 2492: 2470: 2458: 2424: 2369: 2363: 2342: 2309: 2255: 2254: 2246: 2227: 2226: 2218: 2152: 2151: 2149: 2130: 2129: 2127: 2088: 2050: 2016: 2015: 2013: 1972: 1947: 1946: 1938: 1918: 1857: 1836: 1830: 1807: 1783: 1738: 1726: 1700: 1650: 1631: 1624: 1612: 1600: 1574: 1541: 1525: 1507: 1501: 1481: 1465: 1431: 1401: 1384: 1360: 1342: 1314: 1287: 1275: 1263: 1248: 1228: 1207: 1201: 1122: 1102: 1058: 1023: 949: 926: 915: 886: 769: 741: 692: 686: 677: 671: 660: 628: 585: 579: 570: 564: 553: 547: 514: 492: 480: 450: 432: 426: 417: 411: 400: 379: 363: 353: 342: 310: 279: 263: 253: 242: 221: 191: 172: 159: 148: 100: 4095:Group algebra of a locally compact group 3769:Handbook of Analysis and its Foundations 3721:Handbook of Analysis and Its Foundations 3056:{\displaystyle {\overline {\Gamma (T)}}} 2989:{\displaystyle {\overline {\Gamma (T)}}} 2859:{\displaystyle \operatorname {Dom} (T).} 2767:{\displaystyle \operatorname {Dom} (T),} 3670: 3213:Such an operator is not closable. Let 937:{\displaystyle \delta \leq \epsilon /K} 619:>0 which follows from the fact that 4428:Uniform boundedness (Banach–Steinhaus) 3515:which do have nontrivial dual spaces. 3409:{\displaystyle L^{p}(\mathbb {R} ,dx)} 2453:, which we normalize. Then, we define 1299:{\displaystyle \|T(e_{i})\|/\|e_{i}\|} 3639:can also be shown nonconstructively. 3063:is itself the graph of some operator 2505:{\displaystyle T(e_{n})=n\|e_{n}\|\,} 1798:is real-valued, and so is actually a 7: 3281:which takes the polynomial function 47:). If the spaces involved are also 35:form an important class of "simple" 18:A linear map which is not continuous 3456:on the real line. There are other 1960:{\displaystyle f:\mathbb {R} \to R} 3752:Constantin Costara, Dumitru Popa, 3035: 2968: 2958:. Otherwise, consider its closure 2880: 2633:Garnir–Wright closed graph theorem 2385:is an arbitrary nonzero vector in 2166:), but not continuous. Note that 1909:vector space). Note that any two 1771:{\displaystyle T(f_{n})\to T(0)=0} 1708: 1680: 71:. If the domain of definition is 25: 2827:We don't lose much if we replace 1090:{\displaystyle B(f(x),\epsilon )} 4966: 4965: 4251: 4250: 4177:Topological quantum field theory 3754:Exercises in Functional Analysis 3086:{\displaystyle {\overline {T}},} 2656:everywhere on a complete space. 1309:For example, consider the space 4953:With the approximation property 3724:, Academic Press, p. 136, 3136:{\displaystyle {\overline {T}}} 2265:{\displaystyle K=\mathbb {C} .} 2186:relies on the axiom of choice. 903:{\displaystyle \epsilon >0,} 4416:Open mapping (Banach–Schauder) 3649:Finest locally convex topology 3606: 3602: 3596: 3589: 3576: 3572: 3566: 3559: 3403: 3386: 3044: 3038: 2977: 2971: 2889: 2883: 2850: 2844: 2808: 2799: 2793: 2758: 2752: 2476: 2463: 2351:{\displaystyle g(x)=f(x)y_{0}} 2335: 2329: 2320: 2314: 2234:{\displaystyle K=\mathbb {R} } 2099: 2093: 1983: 1977: 1951: 1862: 1759: 1753: 1747: 1744: 1731: 1705: 1677: 1662: 1643: 1618: 1605: 1550: 1534: 1519: 1513: 1462: 1456: 1442: 1436: 1402: 1398: 1392: 1385: 1379: 1367: 1269: 1256: 1133: 1127: 1084: 1075: 1069: 1063: 1040: 1028: 1005: 996: 990: 984: 975: 972: 960: 954: 835: 818: 803: 792: 783: 777: 693: 678: 642: 636: 586: 571: 520: 507: 456: 443: 433: 418: 389: 385: 372: 334: 324: 318: 285: 272: 232: 226: 111: 1: 3973:Uniform boundedness principle 2543:{\displaystyle n=1,2,\ldots } 1822:(an element of the algebraic 3445:{\displaystyle 0<p<1,} 3262:{\displaystyle \mathbb {R} } 3236:{\displaystyle \mathbb {R} } 3128: 3075: 3048: 2981: 2870:without loss of generality. 2276:is infinite-dimensional and 2159:{\displaystyle \mathbb {R} } 2137:{\displaystyle \mathbb {Q} } 2023:{\displaystyle \mathbb {R} } 1714:{\displaystyle n\to \infty } 1469:{\displaystyle T(f)=f'(0)\,} 1176:is infinite-dimensional and 1097:are the normed balls around 1046:{\displaystyle B(x,\delta )} 877:for some universal constant 4637:Radially convex/Star-shaped 4622:Pre-compact/Totally bounded 3508:{\displaystyle 0<p<1} 3328:nowhere continuous function 2600:On the other hand, in 1970 2578:Role of the axiom of choice 1897:as a vector space over the 1893:An algebraic basis for the 1146:), which gives continuity. 5018: 4323:Continuous linear operator 4116:Invariant subspace problem 3522:on the unit interval with 3319:{\displaystyle X\times Y,} 3206:{\displaystyle X\times Y.} 3018:{\displaystyle X\times Y.} 2944:{\displaystyle X\times Y,} 2895:{\displaystyle \Gamma (T)} 2111:{\displaystyle f(\pi )=0.} 1998:{\displaystyle f(\pi )=0,} 1333:on the interval with the 4961: 4668:Algebraic interior (core) 4410:Vector-valued Hahn–Banach 4298:Topological vector spaces 4246: 3836: 3295:Stone–Weierstrass theorem 3269:. They are subspaces of 2868:densely defined operators 2679:To be more concrete, let 2193:General existence theorem 1889:A nonconstructive example 1243:such that the quantities 764:is linear, and therefore 95:be two normed spaces and 69:discontinuous linear maps 53:topological vector spaces 4498:Topological homomorphism 4358:Topological vector space 4085:Spectrum of a C*-algebra 3771:, Academic Press, 1997. 3718:Schechter, Eric (1996), 3364:associates a continuous 542:and using the fact that 120:{\displaystyle f:X\to Y} 4182:Noncommutative geometry 2438:{\displaystyle n\geq 1} 2182:. The construction of 1588:{\displaystyle n\geq 1} 758:bounded linear operator 5002:Functions and mappings 4556:Absolutely convex/disk 4238:Tomita–Takesaki theory 4213:Approximation property 4157:Calculus of variations 3626: 3509: 3477: 3446: 3410: 3338:Impact for dual spaces 3320: 3263: 3237: 3207: 3164: 3137: 3106: 3087: 3057: 3019: 2990: 2945: 2916: 2896: 2860: 2821: 2768: 2733: 2713: 2693: 2544: 2506: 2439: 2379: 2352: 2266: 2235: 2160: 2138: 2112: 2059: 2024: 1999: 1961: 1927: 1872: 1871:{\displaystyle X\to X} 1846: 1816: 1792: 1772: 1715: 1687: 1589: 1563: 1490: 1470: 1413: 1323: 1300: 1237: 1217: 1140: 1111: 1091: 1047: 1012: 938: 904: 871: 750: 730: 676: 609: 569: 536: 469: 416: 358: 295: 258: 206: 121: 4591:Complemented subspace 4405:hyperplane separation 4233:Banach–Mazur distance 4196:Generalized functions 3684:Annals of Mathematics 3627: 3510: 3478: 3476:{\displaystyle L^{p}} 3447: 3411: 3321: 3264: 3238: 3208: 3165: 3138: 3107: 3088: 3058: 3020: 2991: 2946: 2917: 2897: 2861: 2822: 2769: 2734: 2714: 2694: 2545: 2507: 2440: 2380: 2378:{\displaystyle y_{0}} 2353: 2304:given by the formula 2267: 2236: 2161: 2139: 2113: 2060: 2025: 2000: 1962: 1928: 1873: 1847: 1845:{\displaystyle X^{*}} 1817: 1793: 1773: 1716: 1688: 1590: 1564: 1491: 1471: 1414: 1324: 1301: 1238: 1218: 1216:{\displaystyle e_{i}} 1141: 1112: 1092: 1048: 1013: 939: 905: 872: 751: 731: 656: 610: 549: 537: 470: 396: 338: 296: 238: 207: 122: 4841:Locally convex space 4391:Closed graph theorem 4343:Locally convex space 3978:Kakutani fixed-point 3963:Riesz representation 3530: 3520:measurable functions 3487: 3460: 3421: 3373: 3351:Beyond normed spaces 3301: 3251: 3225: 3219:polynomial functions 3188: 3151: 3120: 3096: 3067: 3029: 3000: 2962: 2926: 2906: 2877: 2835: 2778: 2743: 2723: 2703: 2683: 2670:closed graph theorem 2647:, which states that 2582:As noted above, the 2516: 2457: 2447:linearly independent 2423: 2362: 2308: 2245: 2217: 2148: 2126: 2087: 2058:{\displaystyle \pi } 2049: 2030:by linearity. Let { 2012: 1971: 1937: 1926:{\displaystyle \pi } 1917: 1856: 1829: 1806: 1782: 1725: 1699: 1599: 1573: 1500: 1480: 1430: 1341: 1313: 1247: 1227: 1200: 1139:{\displaystyle f(x)} 1121: 1101: 1057: 1022: 948: 914: 885: 768: 740: 627: 546: 479: 309: 220: 147: 99: 45:linear approximation 4992:Functional analysis 4821:Interpolation space 4353:Operator topologies 4162:Functional calculus 4121:Mahler's conjecture 4100:Von Neumann algebra 3814:Functional analysis 3358:Hahn–Banach theorem 1913:numbers, say 1 and 1852:). The linear map 303:triangle inequality 4851:(Pseudo)Metrizable 4683:Minkowski addition 4535:Sublinear function 4187:Riemann hypothesis 3886:Topological vector 3756:, Springer, 2003. 3679:Solovay, Robert M. 3658:Sublinear function 3622: 3505: 3473: 3442: 3406: 3316: 3259: 3233: 3203: 3163:{\displaystyle T.} 3160: 3133: 3102: 3083: 3053: 3015: 2986: 2941: 2912: 2892: 2856: 2831:by the closure of 2817: 2764: 2729: 2709: 2689: 2674:everywhere-defined 2552:vector space basis 2540: 2502: 2435: 2375: 2348: 2262: 2231: 2156: 2134: 2108: 2055: 2020: 1995: 1957: 1923: 1868: 1842: 1812: 1788: 1768: 1711: 1683: 1585: 1559: 1486: 1466: 1409: 1383: 1319: 1296: 1233: 1213: 1192:A concrete example 1136: 1107: 1087: 1043: 1008: 934: 900: 867: 746: 726: 605: 532: 497: 465: 291: 202: 141:finite-dimensional 127:a linear map from 117: 49:topological spaces 4979: 4978: 4698:Relative interior 4444:Bilinear operator 4328:Linear functional 4264: 4263: 4167:Integral operator 3944: 3943: 3767:Schechter, Eric, 3687:, Second Series, 3611: 3366:linear functional 3131: 3105:{\displaystyle T} 3078: 3051: 2984: 2915:{\displaystyle T} 2732:{\displaystyle Y} 2712:{\displaystyle X} 2692:{\displaystyle T} 2602:Robert M. Solovay 2118:By construction, 1815:{\displaystyle X} 1800:linear functional 1791:{\displaystyle T} 1669: 1557: 1489:{\displaystyle X} 1356: 1322:{\displaystyle X} 1236:{\displaystyle T} 1110:{\displaystyle x} 749:{\displaystyle f} 488: 143:, choose a basis 16:(Redirected from 5009: 4969: 4968: 4943:Uniformly smooth 4612: 4604: 4571:Balanced/Circled 4561:Absorbing/Radial 4291: 4284: 4277: 4268: 4254: 4253: 4172:Jones polynomial 4090:Operator algebra 3834: 3807: 3800: 3793: 3784: 3745: 3742: 3736: 3734: 3715: 3709: 3707: 3675: 3654: 3631: 3629: 3628: 3623: 3612: 3610: 3609: 3592: 3580: 3579: 3562: 3556: 3554: 3553: 3514: 3512: 3511: 3506: 3482: 3480: 3479: 3474: 3472: 3471: 3454:Lebesgue measure 3451: 3449: 3448: 3443: 3415: 3413: 3412: 3407: 3393: 3385: 3384: 3356:other hand, the 3325: 3323: 3322: 3317: 3268: 3266: 3265: 3260: 3258: 3242: 3240: 3239: 3234: 3232: 3217:be the space of 3212: 3210: 3209: 3204: 3169: 3167: 3166: 3161: 3142: 3140: 3139: 3134: 3132: 3124: 3111: 3109: 3108: 3103: 3092: 3090: 3089: 3084: 3079: 3071: 3062: 3060: 3059: 3054: 3052: 3047: 3033: 3024: 3022: 3021: 3016: 2995: 2993: 2992: 2987: 2985: 2980: 2966: 2950: 2948: 2947: 2942: 2921: 2919: 2918: 2913: 2901: 2899: 2898: 2893: 2865: 2863: 2862: 2857: 2826: 2824: 2823: 2818: 2773: 2771: 2770: 2765: 2738: 2736: 2735: 2730: 2718: 2716: 2715: 2710: 2698: 2696: 2695: 2690: 2672:asserts that an 2660:Closed operators 2645:Ceitin's theorem 2549: 2547: 2546: 2541: 2511: 2509: 2508: 2503: 2497: 2496: 2475: 2474: 2444: 2442: 2441: 2436: 2384: 2382: 2381: 2376: 2374: 2373: 2357: 2355: 2354: 2349: 2347: 2346: 2271: 2269: 2268: 2263: 2258: 2240: 2238: 2237: 2232: 2230: 2165: 2163: 2162: 2157: 2155: 2143: 2141: 2140: 2135: 2133: 2117: 2115: 2114: 2109: 2064: 2062: 2061: 2056: 2029: 2027: 2026: 2021: 2019: 2004: 2002: 2001: 1996: 1966: 1964: 1963: 1958: 1950: 1932: 1930: 1929: 1924: 1911:noncommensurable 1877: 1875: 1874: 1869: 1851: 1849: 1848: 1843: 1841: 1840: 1821: 1819: 1818: 1813: 1797: 1795: 1794: 1789: 1777: 1775: 1774: 1769: 1743: 1742: 1720: 1718: 1717: 1712: 1692: 1690: 1689: 1684: 1670: 1665: 1655: 1654: 1636: 1635: 1625: 1617: 1616: 1594: 1592: 1591: 1586: 1568: 1566: 1565: 1560: 1558: 1553: 1546: 1545: 1526: 1512: 1511: 1495: 1493: 1492: 1487: 1475: 1473: 1472: 1467: 1455: 1418: 1416: 1415: 1410: 1405: 1388: 1382: 1331:smooth functions 1328: 1326: 1325: 1320: 1305: 1303: 1302: 1297: 1292: 1291: 1279: 1268: 1267: 1242: 1240: 1239: 1234: 1222: 1220: 1219: 1214: 1212: 1211: 1145: 1143: 1142: 1137: 1116: 1114: 1113: 1108: 1096: 1094: 1093: 1088: 1052: 1050: 1049: 1044: 1017: 1015: 1014: 1009: 943: 941: 940: 935: 930: 909: 907: 906: 901: 876: 874: 873: 868: 863: 834: 802: 755: 753: 752: 747: 735: 733: 732: 727: 701: 697: 696: 691: 690: 681: 675: 670: 614: 612: 611: 606: 589: 584: 583: 574: 568: 563: 541: 539: 538: 533: 519: 518: 496: 474: 472: 471: 466: 455: 454: 436: 431: 430: 421: 415: 410: 392: 388: 384: 383: 368: 367: 357: 352: 300: 298: 297: 292: 284: 283: 268: 267: 257: 252: 211: 209: 208: 203: 201: 197: 196: 195: 177: 176: 164: 163: 126: 124: 123: 118: 21: 5017: 5016: 5012: 5011: 5010: 5008: 5007: 5006: 4997:Axiom of choice 4982: 4981: 4980: 4975: 4957: 4719:B-complete/Ptak 4702: 4646: 4610: 4602: 4581:Bounding points 4544: 4486:Densely defined 4432: 4421:Bounded inverse 4367: 4301: 4295: 4265: 4260: 4242: 4206:Advanced topics 4201: 4125: 4104: 4063: 4029:Hilbert–Schmidt 4002: 3993:Gelfand–Naimark 3940: 3890: 3825: 3811: 3749: 3748: 3743: 3739: 3732: 3717: 3716: 3712: 3697:10.2307/1970696 3677: 3676: 3672: 3667: 3652: 3645: 3581: 3557: 3545: 3528: 3527: 3485: 3484: 3463: 3458: 3457: 3419: 3418: 3376: 3371: 3370: 3362:Minkowski gauge 3353: 3340: 3299: 3298: 3249: 3248: 3223: 3222: 3186: 3185: 3149: 3148: 3118: 3117: 3094: 3093: 3065: 3064: 3034: 3027: 3026: 2998: 2997: 2967: 2960: 2959: 2924: 2923: 2904: 2903: 2875: 2874: 2833: 2832: 2776: 2775: 2741: 2740: 2721: 2720: 2701: 2700: 2681: 2680: 2662: 2584:axiom of choice 2580: 2514: 2513: 2488: 2466: 2455: 2454: 2421: 2420: 2418: 2412: 2365: 2360: 2359: 2338: 2306: 2305: 2243: 2242: 2215: 2214: 2209:over the field 2195: 2146: 2145: 2124: 2123: 2122:is linear over 2085: 2084: 2082: 2070: 2047: 2046: 2044: 2038: 2010: 2009: 1969: 1968: 1935: 1934: 1915: 1914: 1891: 1854: 1853: 1832: 1827: 1826: 1804: 1803: 1780: 1779: 1734: 1723: 1722: 1697: 1696: 1646: 1627: 1626: 1608: 1597: 1596: 1571: 1570: 1537: 1527: 1503: 1498: 1497: 1478: 1477: 1448: 1428: 1427: 1339: 1338: 1329:of real-valued 1311: 1310: 1283: 1259: 1245: 1244: 1225: 1224: 1203: 1198: 1197: 1194: 1119: 1118: 1099: 1098: 1055: 1054: 1020: 1019: 946: 945: 912: 911: 883: 882: 881:. Thus for any 856: 827: 795: 766: 765: 738: 737: 682: 655: 651: 625: 624: 575: 544: 543: 510: 477: 476: 446: 422: 375: 359: 337: 333: 307: 306: 275: 259: 218: 217: 187: 168: 155: 154: 150: 145: 144: 97: 96: 85: 77:axiom of choice 23: 22: 15: 12: 11: 5: 5015: 5013: 5005: 5004: 4999: 4994: 4984: 4983: 4977: 4976: 4974: 4973: 4962: 4959: 4958: 4956: 4955: 4950: 4945: 4940: 4938:Ultrabarrelled 4930: 4924: 4919: 4913: 4908: 4903: 4898: 4893: 4888: 4879: 4873: 4868: 4866:Quasi-complete 4863: 4861:Quasibarrelled 4858: 4853: 4848: 4843: 4838: 4833: 4828: 4823: 4818: 4813: 4808: 4803: 4802: 4801: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4751: 4741: 4736: 4726: 4721: 4716: 4710: 4708: 4704: 4703: 4701: 4700: 4690: 4685: 4680: 4675: 4670: 4660: 4654: 4652: 4651:Set operations 4648: 4647: 4645: 4644: 4639: 4634: 4629: 4624: 4619: 4614: 4606: 4598: 4593: 4588: 4583: 4578: 4573: 4568: 4563: 4558: 4552: 4550: 4546: 4545: 4543: 4542: 4537: 4532: 4527: 4522: 4521: 4520: 4515: 4510: 4500: 4495: 4494: 4493: 4488: 4483: 4478: 4473: 4468: 4463: 4453: 4452: 4451: 4440: 4438: 4434: 4433: 4431: 4430: 4425: 4424: 4423: 4413: 4407: 4398: 4393: 4388: 4386:Banach–Alaoglu 4383: 4381:Anderson–Kadec 4377: 4375: 4369: 4368: 4366: 4365: 4360: 4355: 4350: 4345: 4340: 4335: 4330: 4325: 4320: 4315: 4309: 4307: 4306:Basic concepts 4303: 4302: 4296: 4294: 4293: 4286: 4279: 4271: 4262: 4261: 4259: 4258: 4247: 4244: 4243: 4241: 4240: 4235: 4230: 4225: 4223:Choquet theory 4220: 4215: 4209: 4207: 4203: 4202: 4200: 4199: 4189: 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4144: 4139: 4133: 4131: 4127: 4126: 4124: 4123: 4118: 4112: 4110: 4106: 4105: 4103: 4102: 4097: 4092: 4087: 4082: 4077: 4075:Banach algebra 4071: 4069: 4065: 4064: 4062: 4061: 4056: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4016: 4010: 4008: 4004: 4003: 4001: 4000: 3998:Banach–Alaoglu 3995: 3990: 3985: 3980: 3975: 3970: 3965: 3960: 3954: 3952: 3946: 3945: 3942: 3941: 3939: 3938: 3933: 3928: 3926:Locally convex 3923: 3909: 3904: 3898: 3896: 3892: 3891: 3889: 3888: 3883: 3878: 3873: 3868: 3863: 3858: 3853: 3848: 3843: 3837: 3831: 3827: 3826: 3812: 3810: 3809: 3802: 3795: 3787: 3781: 3780: 3765: 3747: 3746: 3737: 3730: 3710: 3669: 3668: 3666: 3663: 3662: 3661: 3655: 3644: 3641: 3621: 3618: 3615: 3608: 3604: 3601: 3598: 3595: 3591: 3587: 3584: 3578: 3574: 3571: 3568: 3565: 3561: 3552: 3548: 3544: 3541: 3538: 3535: 3504: 3501: 3498: 3495: 3492: 3470: 3466: 3441: 3438: 3435: 3432: 3429: 3426: 3405: 3402: 3399: 3396: 3392: 3388: 3383: 3379: 3352: 3349: 3339: 3336: 3330:). Note that 3315: 3312: 3309: 3306: 3257: 3231: 3202: 3199: 3196: 3193: 3159: 3156: 3143:is called the 3130: 3127: 3101: 3082: 3077: 3074: 3050: 3046: 3043: 3040: 3037: 3014: 3011: 3008: 3005: 2983: 2979: 2976: 2973: 2970: 2940: 2937: 2934: 2931: 2911: 2891: 2888: 2885: 2882: 2855: 2852: 2849: 2846: 2843: 2840: 2816: 2813: 2810: 2807: 2804: 2801: 2798: 2795: 2792: 2789: 2786: 2783: 2763: 2760: 2757: 2754: 2751: 2748: 2728: 2708: 2699:be a map from 2688: 2661: 2658: 2641:constructivism 2629:Baire property 2617:constructivist 2579: 2576: 2539: 2536: 2533: 2530: 2527: 2524: 2521: 2500: 2495: 2491: 2487: 2484: 2481: 2478: 2473: 2469: 2465: 2462: 2434: 2431: 2428: 2414: 2408: 2372: 2368: 2345: 2341: 2337: 2334: 2331: 2328: 2325: 2322: 2319: 2316: 2313: 2261: 2257: 2253: 2250: 2229: 2225: 2222: 2194: 2191: 2154: 2132: 2107: 2104: 2101: 2098: 2095: 2092: 2078: 2066: 2054: 2040: 2034: 2018: 1994: 1991: 1988: 1985: 1982: 1979: 1976: 1956: 1953: 1949: 1945: 1942: 1922: 1901:is known as a 1890: 1887: 1867: 1864: 1861: 1839: 1835: 1811: 1787: 1767: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1741: 1737: 1733: 1730: 1710: 1707: 1704: 1682: 1679: 1676: 1673: 1668: 1664: 1661: 1658: 1653: 1649: 1645: 1642: 1639: 1634: 1630: 1623: 1620: 1615: 1611: 1607: 1604: 1584: 1581: 1578: 1556: 1552: 1549: 1544: 1540: 1536: 1533: 1530: 1524: 1521: 1518: 1515: 1510: 1506: 1485: 1464: 1461: 1458: 1454: 1451: 1447: 1444: 1441: 1438: 1435: 1426:map, given by 1408: 1404: 1400: 1397: 1394: 1391: 1387: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1359: 1355: 1352: 1349: 1346: 1318: 1295: 1290: 1286: 1282: 1278: 1274: 1271: 1266: 1262: 1258: 1255: 1252: 1232: 1210: 1206: 1193: 1190: 1135: 1132: 1129: 1126: 1106: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1042: 1039: 1036: 1033: 1030: 1027: 1007: 1004: 1001: 998: 995: 992: 989: 986: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 933: 929: 925: 922: 919: 910:we can choose 899: 896: 893: 890: 866: 862: 859: 855: 852: 849: 846: 843: 840: 837: 833: 830: 826: 823: 820: 817: 814: 811: 808: 805: 801: 798: 794: 791: 788: 785: 782: 779: 776: 773: 745: 725: 722: 719: 716: 713: 710: 707: 704: 700: 695: 689: 685: 680: 674: 669: 666: 663: 659: 654: 650: 647: 644: 641: 638: 635: 632: 604: 601: 598: 595: 592: 588: 582: 578: 573: 567: 562: 559: 556: 552: 531: 528: 525: 522: 517: 513: 509: 506: 503: 500: 495: 491: 487: 484: 464: 461: 458: 453: 449: 445: 442: 439: 435: 429: 425: 420: 414: 409: 406: 403: 399: 395: 391: 387: 382: 378: 374: 371: 366: 362: 356: 351: 348: 345: 341: 336: 332: 329: 326: 323: 320: 317: 314: 301:and so by the 290: 287: 282: 278: 274: 271: 266: 262: 256: 251: 248: 245: 241: 237: 234: 231: 228: 225: 200: 194: 190: 186: 183: 180: 175: 171: 167: 162: 158: 153: 116: 113: 110: 107: 104: 84: 81: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5014: 5003: 5000: 4998: 4995: 4993: 4990: 4989: 4987: 4972: 4964: 4963: 4960: 4954: 4951: 4949: 4946: 4944: 4941: 4939: 4935: 4931: 4929:) convex 4928: 4925: 4923: 4920: 4918: 4914: 4912: 4909: 4907: 4904: 4902: 4901:Semi-complete 4899: 4897: 4894: 4892: 4889: 4887: 4883: 4880: 4878: 4874: 4872: 4869: 4867: 4864: 4862: 4859: 4857: 4854: 4852: 4849: 4847: 4844: 4842: 4839: 4837: 4834: 4832: 4829: 4827: 4824: 4822: 4819: 4817: 4816:Infrabarreled 4814: 4812: 4809: 4807: 4804: 4800: 4797: 4796: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4774:Distinguished 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4746: 4742: 4740: 4737: 4735: 4731: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4711: 4709: 4707:Types of TVSs 4705: 4699: 4695: 4691: 4689: 4686: 4684: 4681: 4679: 4676: 4674: 4671: 4669: 4665: 4661: 4659: 4656: 4655: 4653: 4649: 4643: 4640: 4638: 4635: 4633: 4630: 4628: 4627:Prevalent/Shy 4625: 4623: 4620: 4618: 4617:Extreme point 4615: 4613: 4607: 4605: 4599: 4597: 4594: 4592: 4589: 4587: 4584: 4582: 4579: 4577: 4574: 4572: 4569: 4567: 4564: 4562: 4559: 4557: 4554: 4553: 4551: 4549:Types of sets 4547: 4541: 4538: 4536: 4533: 4531: 4528: 4526: 4523: 4519: 4516: 4514: 4511: 4509: 4506: 4505: 4504: 4501: 4499: 4496: 4492: 4491:Discontinuous 4489: 4487: 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4467: 4464: 4462: 4459: 4458: 4457: 4454: 4450: 4447: 4446: 4445: 4442: 4441: 4439: 4435: 4429: 4426: 4422: 4419: 4418: 4417: 4414: 4411: 4408: 4406: 4402: 4399: 4397: 4394: 4392: 4389: 4387: 4384: 4382: 4379: 4378: 4376: 4374: 4370: 4364: 4361: 4359: 4356: 4354: 4351: 4349: 4348:Metrizability 4346: 4344: 4341: 4339: 4336: 4334: 4333:FrĂ©chet space 4331: 4329: 4326: 4324: 4321: 4319: 4316: 4314: 4311: 4310: 4308: 4304: 4299: 4292: 4287: 4285: 4280: 4278: 4273: 4272: 4269: 4257: 4249: 4248: 4245: 4239: 4236: 4234: 4231: 4229: 4228:Weak topology 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4210: 4208: 4204: 4197: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4152:Index theorem 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4134: 4132: 4128: 4122: 4119: 4117: 4114: 4113: 4111: 4109:Open problems 4107: 4101: 4098: 4096: 4093: 4091: 4088: 4086: 4083: 4081: 4078: 4076: 4073: 4072: 4070: 4066: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4020: 4017: 4015: 4012: 4011: 4009: 4005: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3955: 3953: 3951: 3947: 3937: 3934: 3932: 3929: 3927: 3924: 3921: 3917: 3913: 3910: 3908: 3905: 3903: 3900: 3899: 3897: 3893: 3887: 3884: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3838: 3835: 3832: 3828: 3823: 3819: 3815: 3808: 3803: 3801: 3796: 3794: 3789: 3788: 3785: 3778: 3777:0-12-622760-8 3774: 3770: 3766: 3763: 3762:1-4020-1560-7 3759: 3755: 3751: 3750: 3741: 3738: 3733: 3731:9780080532998 3727: 3723: 3722: 3714: 3711: 3706: 3702: 3698: 3694: 3690: 3686: 3685: 3680: 3674: 3671: 3664: 3659: 3656: 3650: 3647: 3646: 3642: 3640: 3638: 3633: 3619: 3616: 3613: 3599: 3593: 3585: 3582: 3569: 3563: 3550: 3546: 3542: 3536: 3525: 3521: 3516: 3502: 3499: 3496: 3493: 3490: 3468: 3464: 3455: 3439: 3436: 3433: 3430: 3427: 3424: 3416: 3400: 3397: 3394: 3381: 3377: 3367: 3363: 3359: 3350: 3348: 3345: 3337: 3335: 3333: 3329: 3313: 3310: 3307: 3304: 3296: 3292: 3288: 3284: 3280: 3276: 3272: 3246: 3220: 3216: 3200: 3197: 3194: 3191: 3183: 3178: 3176: 3170: 3157: 3154: 3146: 3125: 3115: 3099: 3080: 3072: 3041: 3012: 3009: 3006: 3003: 2974: 2957: 2954: 2938: 2935: 2932: 2929: 2922:is closed in 2909: 2886: 2873:If the graph 2871: 2869: 2853: 2847: 2841: 2838: 2830: 2814: 2811: 2805: 2802: 2796: 2790: 2787: 2784: 2781: 2761: 2755: 2749: 2746: 2726: 2706: 2686: 2677: 2675: 2671: 2667: 2659: 2657: 2653: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2618: 2613: 2611: 2607: 2603: 2598: 2596: 2593: 2589: 2588:Banach spaces 2585: 2577: 2575: 2571: 2569: 2565: 2561: 2557: 2553: 2537: 2534: 2531: 2528: 2525: 2522: 2519: 2493: 2489: 2482: 2479: 2471: 2467: 2460: 2452: 2448: 2432: 2429: 2426: 2417: 2411: 2407: 2403: 2399: 2395: 2390: 2388: 2370: 2366: 2343: 2339: 2332: 2326: 2323: 2317: 2311: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2259: 2251: 2248: 2223: 2220: 2212: 2208: 2207:normed spaces 2204: 2200: 2192: 2190: 2187: 2185: 2181: 2177: 2173: 2169: 2121: 2105: 2102: 2096: 2090: 2081: 2077: 2073: 2069: 2052: 2043: 2037: 2033: 2007: 1992: 1989: 1986: 1980: 1974: 1954: 1943: 1940: 1920: 1912: 1908: 1904: 1900: 1896: 1888: 1886: 1883: 1881: 1865: 1859: 1837: 1833: 1825: 1809: 1801: 1785: 1765: 1762: 1756: 1750: 1739: 1735: 1728: 1702: 1693: 1674: 1671: 1666: 1659: 1656: 1651: 1647: 1640: 1637: 1632: 1628: 1621: 1613: 1609: 1602: 1582: 1579: 1576: 1554: 1547: 1542: 1538: 1531: 1528: 1522: 1516: 1508: 1504: 1483: 1459: 1452: 1449: 1445: 1439: 1433: 1425: 1423: 1406: 1395: 1389: 1376: 1373: 1370: 1364: 1361: 1353: 1347: 1336: 1332: 1316: 1307: 1288: 1284: 1276: 1264: 1260: 1253: 1230: 1208: 1204: 1191: 1189: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1156: 1152: 1147: 1130: 1124: 1104: 1081: 1078: 1072: 1066: 1060: 1037: 1034: 1031: 1025: 1002: 999: 993: 987: 981: 978: 969: 966: 963: 957: 951: 931: 927: 923: 920: 917: 897: 894: 891: 888: 880: 860: 857: 853: 850: 844: 841: 831: 828: 824: 821: 815: 809: 799: 796: 789: 786: 780: 774: 763: 759: 743: 723: 717: 711: 708: 705: 702: 698: 687: 683: 672: 667: 664: 661: 657: 652: 648: 639: 633: 623:, one finds 622: 618: 599: 593: 590: 580: 576: 565: 560: 557: 554: 550: 529: 515: 511: 504: 493: 485: 482: 462: 451: 447: 440: 427: 423: 412: 407: 404: 401: 397: 393: 380: 376: 369: 364: 360: 354: 349: 346: 343: 339: 330: 321: 315: 304: 288: 280: 276: 269: 264: 260: 254: 249: 246: 243: 239: 235: 229: 223: 215: 198: 192: 188: 184: 181: 178: 173: 169: 165: 160: 156: 151: 142: 138: 134: 130: 114: 108: 105: 102: 94: 90: 82: 80: 78: 74: 70: 66: 65:normed spaces 62: 58: 54: 50: 46: 42: 41:linear spaces 38: 34: 30: 19: 4877:Polynomially 4806:Grothendieck 4799:tame FrĂ©chet 4749:Bornological 4609:Linear cone 4601:Convex cone 4576:Banach disks 4518:Sesquilinear 4490: 4373:Main results 4363:Vector space 4318:Completeness 4313:Banach space 4218:Balanced set 4192:Distribution 4130:Applications 3983:Krein–Milman 3968:Closed graph 3768: 3753: 3740: 3720: 3713: 3688: 3682: 3673: 3634: 3517: 3483:spaces with 3417:spaces with 3354: 3341: 3331: 3290: 3286: 3282: 3278: 3274: 3270: 3244: 3214: 3181: 3179: 3174: 3171: 3144: 3113: 2955: 2952: 2872: 2828: 2739:with domain 2678: 2673: 2663: 2654: 2648: 2614: 2604:exhibited a 2599: 2581: 2572: 2567: 2563: 2559: 2558:by defining 2555: 2450: 2415: 2409: 2405: 2397: 2393: 2391: 2386: 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2273: 2272:Assume that 2210: 2202: 2198: 2196: 2188: 2183: 2170:is also not 2167: 2119: 2079: 2075: 2071: 2067: 2041: 2035: 2031: 2005: 1906: 1895:real numbers 1892: 1884: 1694: 1420: 1337:, that is, 1335:uniform norm 1308: 1195: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1160:exists. If 1157: 1150: 1148: 878: 761: 616: 213: 136: 132: 128: 92: 88: 86: 68: 26: 4871:Quasinormed 4784:FK-AK space 4678:Linear span 4673:Convex hull 4658:Affine hull 4461:Almost open 4401:Hahn–Banach 4147:Heat kernel 4137:Hardy space 4044:Trace class 3958:Hahn–Banach 3920:Topological 2643:, there is 2449:vectors in 2083:) = Ď€, but 2065:. Then lim 1903:Hamel basis 1721:instead of 1476:defined on 1424:-at-a-point 61:dimensional 33:linear maps 29:mathematics 4986:Categories 4911:Stereotype 4769:(DF)-space 4764:Convenient 4503:Functional 4471:Continuous 4456:Linear map 4396:F. Riesz's 4338:Linear map 4080:C*-algebra 3895:Properties 3665:References 3526:given by 3344:dual space 3112:is called 2610:set theory 2595:set theory 2180:Vitali set 2172:measurable 2144:(not over 1824:dual space 1422:derivative 57:continuous 51:(that is, 4927:Uniformly 4886:Reflexive 4734:Barrelled 4730:Countably 4642:Symmetric 4540:Transpose 4054:Unbounded 4049:Transpose 4007:Operators 3936:Separable 3931:Reflexive 3916:Algebraic 3902:Barrelled 3547:∫ 3540:‖ 3534:‖ 3524:quasinorm 3308:× 3221:from to 3195:× 3129:¯ 3076:¯ 3049:¯ 3036:Γ 3007:× 2982:¯ 2969:Γ 2933:× 2881:Γ 2842:⁡ 2809:→ 2803:⊆ 2791:⁡ 2750:⁡ 2538:… 2512:for each 2499:‖ 2486:‖ 2430:≥ 2097:π 2053:π 1981:π 1952:→ 1921:π 1899:rationals 1863:→ 1838:∗ 1748:→ 1709:∞ 1706:→ 1681:∞ 1678:→ 1657:⋅ 1641:⁡ 1580:≥ 1532:⁡ 1365:∈ 1351:‖ 1345:‖ 1294:‖ 1281:‖ 1273:‖ 1251:‖ 1082:ϵ 1038:δ 1003:ϵ 979:⊆ 970:δ 924:ϵ 921:≤ 918:δ 889:ϵ 865:‖ 854:− 848:‖ 842:≤ 839:‖ 825:− 813:‖ 807:‖ 787:− 772:‖ 721:‖ 715:‖ 706:≤ 658:∑ 649:≤ 646:‖ 631:‖ 615:for some 603:‖ 597:‖ 591:≤ 551:∑ 524:‖ 502:‖ 475:Letting 460:‖ 438:‖ 398:∑ 394:≤ 340:∑ 328:‖ 313:‖ 240:∑ 182:… 112:→ 37:functions 4971:Category 4922:Strictly 4896:Schwartz 4836:LF-space 4831:LB-space 4789:FK-space 4759:Complete 4739:BK-space 4664:Relative 4611:(subset) 4603:(subset) 4530:Seminorm 4513:Bilinear 4256:Category 4068:Algebras 3950:Theorems 3907:Complete 3876:Schwartz 3822:glossary 3691:: 1–56, 3643:See also 3114:closable 2951:we call 2774:written 2402:sequence 2176:additive 1967:so that 1453:′ 1155:supremum 944:so that 861:′ 832:′ 800:′ 390:‖ 335:‖ 73:complete 4936:)  4884:)  4826:K-space 4811:Hilbert 4794:FrĂ©chet 4779:F-space 4754:Brauner 4747:)  4732:)  4714:Asplund 4696:)  4666:)  4586:Bounded 4481:Compact 4466:Bounded 4403: ( 4059:Unitary 4039:Nuclear 4024:Compact 4019:Bounded 4014:Adjoint 3988:Min–max 3881:Sobolev 3866:Nuclear 3856:Hilbert 3851:FrĂ©chet 3816: ( 3705:0265151 3273:() and 3145:closure 2637:F-space 4948:Webbed 4934:Quasi- 4856:Montel 4846:Mackey 4745:Ultra- 4724:Banach 4632:Radial 4596:Convex 4566:Affine 4508:Linear 4476:Closed 4300:(TVSs) 4034:Normal 3871:Orlicz 3861:Hölder 3841:Banach 3830:Spaces 3818:topics 3775:  3760:  3728:  3703:  3637:groups 3116:, and 2956:closed 2666:closed 2358:where 2213:where 1880:closed 736:Thus, 4906:Smith 4891:Riesz 4882:Semi- 4694:Quasi 4688:Polar 3846:Besov 2649:every 2606:model 2445:) of 2296:from 2284:from 2174:; an 756:is a 135:. If 4525:Norm 4449:form 4437:Maps 4194:(or 3912:Dual 3773:ISBN 3758:ISBN 3726:ISBN 3500:< 3494:< 3434:< 3428:< 3342:The 3243:and 2201:and 1569:for 1419:The 1168:and 1117:and 1053:and 892:> 91:and 87:Let 3693:doi 3184:of 3182:all 3147:of 3025:If 2996:in 2902:of 2839:Dom 2788:Dom 2747:Dom 2719:to 2608:of 2592:ZFC 2554:of 2392:If 2300:to 2288:to 2241:or 2205:be 1907:any 1802:on 1695:as 1638:cos 1529:sin 1358:sup 1184:to 1149:If 490:sup 305:, 212:in 139:is 131:to 27:In 4988:: 3820:– 3701:MR 3699:, 3689:92 3285:↦ 2625:BP 2623:+ 2621:DC 2389:. 2106:0. 1882:. 1188:. 31:, 4932:( 4917:B 4915:( 4875:( 4743:( 4728:( 4692:( 4662:( 4412:) 4290:e 4283:t 4276:v 4198:) 3922:) 3918:/ 3914:( 3824:) 3806:e 3799:t 3792:v 3779:. 3764:. 3735:. 3708:. 3695:: 3620:. 3617:x 3614:d 3607:| 3603:) 3600:x 3597:( 3594:f 3590:| 3586:+ 3583:1 3577:| 3573:) 3570:x 3567:( 3564:f 3560:| 3551:I 3543:= 3537:f 3503:1 3497:p 3491:0 3469:p 3465:L 3440:, 3437:1 3431:p 3425:0 3404:) 3401:x 3398:d 3395:, 3391:R 3387:( 3382:p 3378:L 3332:X 3314:, 3311:Y 3305:X 3291:x 3289:( 3287:p 3283:x 3279:T 3275:C 3271:C 3256:R 3245:Y 3230:R 3215:X 3201:. 3198:Y 3192:X 3175:X 3158:. 3155:T 3126:T 3100:T 3081:, 3073:T 3045:) 3042:T 3039:( 3013:. 3010:Y 3004:X 2978:) 2975:T 2972:( 2953:T 2939:, 2936:Y 2930:X 2910:T 2890:) 2887:T 2884:( 2854:. 2851:) 2848:T 2845:( 2829:X 2815:. 2812:Y 2806:X 2800:) 2797:T 2794:( 2785:: 2782:T 2762:, 2759:) 2756:T 2753:( 2727:Y 2707:X 2687:T 2568:X 2564:T 2560:T 2556:X 2535:, 2532:2 2529:, 2526:1 2523:= 2520:n 2494:n 2490:e 2483:n 2480:= 2477:) 2472:n 2468:e 2464:( 2461:T 2451:X 2433:1 2427:n 2419:( 2416:n 2413:) 2410:n 2406:e 2404:( 2398:f 2394:X 2387:Y 2371:0 2367:y 2344:0 2340:y 2336:) 2333:x 2330:( 2327:f 2324:= 2321:) 2318:x 2315:( 2312:g 2302:Y 2298:X 2294:g 2290:K 2286:X 2282:f 2278:Y 2274:X 2260:. 2256:C 2252:= 2249:K 2228:R 2224:= 2221:K 2211:K 2203:Y 2199:X 2184:f 2168:f 2153:R 2131:Q 2120:f 2103:= 2100:) 2094:( 2091:f 2080:n 2076:r 2074:( 2072:f 2068:n 2042:n 2039:} 2036:n 2032:r 2017:R 2006:f 1993:, 1990:0 1987:= 1984:) 1978:( 1975:f 1955:R 1948:R 1944:: 1941:f 1866:X 1860:X 1834:X 1810:X 1786:T 1766:0 1763:= 1760:) 1757:0 1754:( 1751:T 1745:) 1740:n 1736:f 1732:( 1729:T 1703:n 1675:n 1672:= 1667:n 1663:) 1660:0 1652:2 1648:n 1644:( 1633:2 1629:n 1622:= 1619:) 1614:n 1610:f 1606:( 1603:T 1583:1 1577:n 1555:n 1551:) 1548:x 1543:2 1539:n 1535:( 1523:= 1520:) 1517:x 1514:( 1509:n 1505:f 1484:X 1463:) 1460:0 1457:( 1450:f 1446:= 1443:) 1440:f 1437:( 1434:T 1407:. 1403:| 1399:) 1396:x 1393:( 1390:f 1386:| 1380:] 1377:1 1374:, 1371:0 1368:[ 1362:x 1354:= 1348:f 1317:X 1289:i 1285:e 1277:/ 1270:) 1265:i 1261:e 1257:( 1254:T 1231:T 1209:i 1205:e 1186:Y 1182:X 1178:Y 1174:X 1170:Y 1166:X 1162:Y 1158:M 1151:X 1134:) 1131:x 1128:( 1125:f 1105:x 1085:) 1079:, 1076:) 1073:x 1070:( 1067:f 1064:( 1061:B 1041:) 1035:, 1032:x 1029:( 1026:B 1018:( 1006:) 1000:, 997:) 994:x 991:( 988:f 985:( 982:B 976:) 973:) 967:, 964:x 961:( 958:B 955:( 952:f 932:K 928:/ 898:, 895:0 879:K 858:x 851:x 845:K 836:) 829:x 822:x 819:( 816:f 810:= 804:) 797:x 793:( 790:f 784:) 781:x 778:( 775:f 762:f 744:f 724:. 718:x 712:M 709:C 703:M 699:) 694:| 688:i 684:x 679:| 673:n 668:1 665:= 662:i 653:( 643:) 640:x 637:( 634:f 617:C 600:x 594:C 587:| 581:i 577:x 572:| 566:n 561:1 558:= 555:i 530:, 527:} 521:) 516:i 512:e 508:( 505:f 499:{ 494:i 486:= 483:M 463:. 457:) 452:i 448:e 444:( 441:f 434:| 428:i 424:x 419:| 413:n 408:1 405:= 402:i 386:) 381:i 377:e 373:( 370:f 365:i 361:x 355:n 350:1 347:= 344:i 331:= 325:) 322:x 319:( 316:f 289:, 286:) 281:i 277:e 273:( 270:f 265:i 261:x 255:n 250:1 247:= 244:i 236:= 233:) 230:x 227:( 224:f 214:X 199:) 193:n 189:e 185:, 179:, 174:2 170:e 166:, 161:1 157:e 152:( 137:X 133:Y 129:X 115:Y 109:X 106:: 103:f 93:Y 89:X 20:)

Index

A linear map which is not continuous
mathematics
linear maps
functions
linear spaces
linear approximation
topological spaces
topological vector spaces
continuous
dimensional
normed spaces
complete
axiom of choice
finite-dimensional
triangle inequality
any two norms on a finite-dimensional space are equivalent
bounded linear operator
supremum
smooth functions
uniform norm
derivative
linear functional
dual space
closed
real numbers
rationals
Hamel basis
noncommensurable
measurable
additive

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑