Knowledge (XXG)

Acidithiobacillus

Source 📝

33: 53: 1234: 523:, which has a tuft of polar flagella and a glycocalyx. Nitrogen fixation also is an important ecological function carried out by some species in this genus, as is growth using molecular hydrogen as a source of energy - neither property is found in every species. Ferric iron can be used by some species as a terminal electron acceptor. 293:
can also grow mixotrophically. Currently, the genus comprises ten species which are capable of obtaining energy by oxidizing sulfur compounds, with certain species also utilizing both ferrous and ferric iron. Some species have also evolved to use hydrogen and nitrogen from the environment. They
1204: 213:
Acidithiobacillus albertensis, Acidithiobacillus caldus, Acidithiobacillus cuprithermicus, Acidithiobacillus ferrianus, Acidithiobacillus ferridurans, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus
468:
has been proven as a potent leaching organism, for dissolution of metals from low-grade sulfide ores. Recently, the attention has been focused upon the treatment of mineral concentrates, as well as complex sulfide ores using batch or continuous-flow reactors.
483:. The oxidation of ferrous iron and reduced sulfur oxyanions, metal sulfides and elementary sulfur results in the production of ferric sulfate in sulfuric acid, this in turn causes the solubilization of metals and other compounds. As a result, 1208: 518:
spp. occur as single cells or occasionally in pairs or chains, depending on growth conditions. Highly motile species have been described, as well as nonmotile ones. Motile strains have a single flagellum with the exception of
636:
class include the presence of enzymes which aid in the use of hydrogen sulfide, elemental sulfur, thiosulfate, and tetrathionate in sulfur metabolism. Species capable of iron oxidation also possess genes that are coded for
563:
and can flourish in environments where high concentrations of these metals are present. To obtain energy, they have evolved to couple sulfur oxidation to molecular oxygen but can also use other resources around them as
1232:, Курашов, Виктор Михайлович & Сахно, Тамара Владимировна, "Microbiological method of transmutation of chemical elements and conversion of isotopes of chemical elements", published 2015-09-20 554:
are sometimes present. Optimum pH conditions for these bacteria vary among species, but some have been observed at the genus level in pH conditions as high as 8.94 and temperatures as high as 97.6°C. All species of
446:. Biomining uses radioactive waste as an ore with the bacteria to obtain gold, platinum, polonium, radon, radium, uranium, neptunium, americium, nickel, manganese, bromine, mercury, and their isotopes. 700:
Moya-Beltrán, Ana; Beard, Simón; Rojas-Villalobos, Camila; Issotta, Francisco; Gallardo, Yasna; Ulloa, Ricardo; Giaveno, Alejandra; Degli Esposti, Mauro; Johnson, D. Barrie; Quatrini, Raquel (2021).
618:
is a significantly diverse genus, species have adapted to survive in differing environments under varying limitations such as acidity, temperature, and nutrient availability. For example
1723: 1009: 1294:
Li, X., Kappler, U., Jiang, G., & Bond, P. L. (2017). The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Frontiers in microbiology, 8, 683.
1377:
Li, Liangzhi; Liu, Zhenghua; Meng, Delong; Liu, Xueduan; Li, Xing; Zhang, Ming; Tao, Jiemeng; Gu, Yabing; Zhong, Shuiping; Yin, Huaqun (2019). Liu, Shuang-Jiang (ed.).
302:. The genus comprises motile, rod-shaped cells that can be isolated from low pH environments including low pH microenvironments on otherwise neutral mineral grains. 1697: 1047:
Williams, K. P.; Kelly, D. P. (2013). "Proposal for a new Class within the Proteobacteria, the Acidithiobacillia, with the Acidithiobacillales as the type Order".
1736: 1144:"Microorganisms Concerned in the Oxidation of Sulfur in the Soil II. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil" 1671: 1710: 1501:
Valdés, Jorge; Pedroso, Inti; Quatrini, Raquel; Dodson, Robert J.; Tettelin, Herve; Blake, Robert; Eisen, Jonathan A.; Holmes, David S. (2008).
550:
are currently an important research focus as they can provide known limiting conditions for the genus, but host microbial communities in which
1379:"Comparative Genomic Analysis Reveals the Distribution, Organization, and Evolution of Metal Resistance Genes in the Genus Acidithiobacillus" 784: 641:
and hydrogen utilization. The diversity in genomic composition allows these same species to inhabit both aerobic and anaerobic environments.
573: 1563: 669: 1571: 263:. A portion of the genes that support the survival of these bacteria in acidic environments are presumed to have been obtained by 1762: 464:”, which deals with all aspects of microbial mediated extraction of metals from minerals or solid wastes and acid mine drainage. 588:, possibly thermophilic, and throughout their evolutionary history further acid resistance genes were obtained from neighboring 600:
spp. has occurred over hundred of millions of years involving events of gene gain and gene loss. Some evidence points to the
172: 52: 1715: 332:, but the situation was resolved by whole-genome alignment studies and both genera have been reclassified to the new class 184: 1193:
Sand, W.; Bock, E. (1987). "Biotest System For Rapid Evaluation Of Concrete Resistance To Sulfur-Oxidizing Bacteria".
1014:
Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020).
601: 299: 142: 702:"Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions" 178: 1790: 1741: 882:"Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle" 403: 166: 160: 154: 130: 1312:"Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs" 941:"Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs" 148: 832:"Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans" 1795: 264: 136: 559:
can grow under pH and temperature conditions between 0.5 to 6.0, and 5°C to 52°C. They are highly tolerant of
456:, in the leaching of sulfide ores since its discovery in 1950 by Colmer, Temple and Hinkle. The discovery of 539: 1598: 577: 211:". This genus includes ten species of acidophilic microorganisms capable of sulfur and/or iron oxidation: 1636: 1257: 1767: 1658: 1390: 1269: 713: 1005: 766: 1442:
Zhang, Xian; Liu, Xueduan; Li, Liangzhi; Wei, Guanyun; Zhang, Danli; Liang, Yili; Miao, Bo (2019).
880:
González-Rosales, Carolina; Vergara, Eva; Dopson, Mark; Valdés, Jorge H.; Holmes, David S. (2022).
592:. While the trait of sulfur oxidation is ubiquitous among the genus, iron oxidation is specific to 317: 94: 1444:"Phylogeny, Divergent Evolution, and Speciation of Sulfur-Oxidizing Acidithiobacillus Populations" 32: 1359: 988: 859: 790: 663: 535: 476: 461: 453: 431: 244: 47: 1579: 1310:
Sriaporn, Chanenath; Campbell, Kathleen A.; Van Kranendonk, Martin J.; Handley, Kim M. (2021).
939:
Sriaporn, Chanenath; Campbell, Kathleen A.; Van Kranendonk, Martin J.; Handley, Kim M. (2021).
1749: 1702: 1645: 1542: 1524: 1483: 1465: 1424: 1406: 1351: 1333: 1173: 1124: 1064: 980: 962: 921: 903: 851: 780: 747: 729: 638: 632: 569: 201: 84: 328:, with considerable debate regarding their position and that they could also fall within the 1754: 1532: 1514: 1503:"Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications" 1473: 1455: 1414: 1398: 1341: 1323: 1277: 1163: 1155: 1114: 1056: 1027: 970: 952: 911: 893: 843: 772: 737: 721: 623: 414: 650: 1394: 1273: 717: 576:, but the basis by which they can survive in low pH environments likely evolved through 1537: 1502: 1478: 1443: 1419: 1378: 1346: 1311: 1182: 975: 940: 916: 881: 776: 742: 701: 565: 500: 496: 488: 410: 311: 207: 74: 1168: 1143: 507:
as the usual species present, although it is occasionally absent from such locations.
1784: 1363: 992: 817: 794: 630:
can survive under extremely acidic conditions with pH <1. Metabolic traits of the
399: 377: 295: 240: 1260:(2004). "Microbial influence on metal mobility and application for bioremediation". 863: 1281: 1229: 656: 560: 341: 1016:"List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ" 594:
A. ferrooxidans, A. ferridurans, A. ferriphilus, A. ferrivorans, and A. ferrianus.
1728: 1650: 1684: 1630: 1159: 585: 435: 369: 256: 1328: 957: 725: 1460: 1119: 1086: 898: 847: 589: 547: 282: 243:
and non-spore forming. They also play a significant role in the generation of
1621: 1528: 1469: 1410: 1337: 966: 907: 733: 1519: 831: 626:
of the genus, is adept to survive in extreme temperatures up to 52°C, while
443: 439: 286: 260: 1546: 1487: 1428: 1355: 1295: 1177: 1128: 1068: 1060: 1032: 1015: 984: 925: 855: 751: 1615: 1402: 543: 480: 407: 64: 1676: 1689: 452:
has emerged as an economically significant bacterium in the field of
395: 373: 365: 357: 248: 1592: 534:
spp. are known to inhabit diverse environments such as hot springs,
580:. It is probable that the foundational genes of acid resistance in 765:
Kumar, Pankaj; Jyoti, Bhim; Kumar, Ajay; Paliwal, Arunima (2019),
402:; first isolated from the soil, it has also been observed causing 1049:
International Journal of Systematic and Evolutionary Microbiology
1020:
International Journal of Systematic and Evolutionary Microbiology
442:, whereby metals are extracted from their ores through bacterial 361: 1596: 1663: 830:
Quatrini, Raquel; Jedlicki, Eugenia; Holmes, David S. (2005).
572:
They have adapted to living in these environments through
356:) can be isolated from iron-sulfur minerals such as 836:
Journal of Industrial Microbiology and Biotechnology
768:
Smart Bioremediation Technologies: Microbial Enzymes
247:; a major global environmental challenge within the 1605: 495:is also commonly abundant upon inner surfaces of 546:, acidic soils, and sulfidic caves. Terrestrial 294:assimilate carbon from carbon dioxide using the 339:Some members of this genus were classified as 345:spp., before they were reclassified in 2000. 223:is the most widely studied of the genus, but 8: 812:International Network for Acid Prevention, 281:are chemolithoautotrophs that can occur as 231:are also significant in research. Like all 1593: 31: 20: 1565:Acidithiobacillus ferrooxidans ATCC 23270 1536: 1518: 1477: 1459: 1418: 1345: 1327: 1167: 1118: 1031: 974: 956: 915: 897: 741: 1296:https://doi.org/10.3389/fmicb.2017.00683 1588:- the Bacterial Diversity Metadatabase 1080: 1078: 681: 1383:Applied and Environmental Microbiology 1305: 1303: 1142:Selman A. Waksman; J.S. Joffe (1922). 1087:"Reclassification of some species of 7: 875: 873: 695: 693: 691: 689: 687: 685: 777:10.1016/b978-0-12-818307-6.00008-1 608:appearing around the same time as 14: 670:Acidophiles in acid mine drainage 417:in sewage gas into sulfuric acid. 1085:Kelly, D.P.; Wood, A.P. (2000). 143:Acidithiobacillus cuprithermicus 51: 1091:to the newly designated genera 499:in areas exhibiting corrosion; 324:) were formerly members of the 179:Acidithiobacillus sulfuriphilus 1582:Acidithiobacillus ferrooxidans 1282:10.1016/j.geoderma.2004.01.002 771:, Elsevier, pp. 137–158, 473:Acidithiobacillus ferrooxidans 450:Acidithiobacillus ferrooxidans 350:Acidithiobacillus ferrooxidans 312:Pseudomonadota § taxonomy 218:Acidithiobacillus thiooxidans. 173:Acidithiobacillus ferrooxidans 41:Acidithiobacillus ferrooxidans 1: 1107:Int. J. Syst. Evol. Microbiol 596:The transition to modern day 505:Acidothiobacillus thiooxidans 384:Acidithiobacillus thiooxidans 368:as energy sources to support 185:Acidithiobacillus thiooxidans 167:Acidithiobacillus ferrivorans 161:Acidithiobacillus ferriphilus 155:Acidithiobacillus ferridurans 131:Acidithiobacillus albertensis 866:– via Oxford Academic. 584:were first inherited from a 460:led to the development of “ 1160:10.1128/jb.7.2.239-256.1922 602:most recent common ancestor 434:industry in methods called 300:Calvin-Benson-Bassham cycle 149:Acidithiobacillus ferrianus 1812: 1329:10.1186/s40168-021-01090-1 958:10.1186/s40168-021-01090-1 820:  Accessed July 2018. 726:10.1038/s41396-021-00995-x 404:biogenic sulfide corrosion 392:Thiobacillus concretivorus 309: 251:industry. Some species of 1461:10.1186/s12864-019-5827-6 1120:10.1099/00207713-50-2-511 899:10.3389/fmicb.2021.822229 886:Frontiers in Microbiology 848:10.1007/s10295-005-0233-2 612:, 800 million years ago. 354:Thiobacillus ferrooxidans 127: 122: 48:Scientific classification 46: 39: 30: 23: 622:which is the only known 574:horizontal gene transfer 388:Thiobacillus thiooxidans 291:Acidithiobacillus caldus 265:horizontal gene transfer 137:Acidithiobacillus caldus 1520:10.1186/1471-2164-9-597 540:abandoned mine drainage 487:may be of interest for 289:, or mesothermophilic. 1729:acidithiobacillus.html 1061:10.1099/ijs.0.049270-0 1033:10.1099/ijsem.0.004332 578:vertical gene transfer 1195:Materials Performance 475:is commonly found in 372:growth and producing 1403:10.1128/AEM.02153-18 360:deposits, oxidising 105:Acidithiobacillaceae 1395:2019ApEnM..85E2153L 1274:2004Geode.122..109G 1006:Acidithiobacillales 718:2021ISMEJ..15.3221M 326:Gammaproteobacteria 318:Acidithiobacillales 95:Acidithiobacillales 1101:Thermithiobacillus 842:(11–12): 606–614. 664:Thermithiobacillus 536:acid mine drainage 501:genetic sequencing 477:acid mine drainage 462:biohydrometallurgy 454:biohydrometallurgy 432:biohydrometallurgy 413:pipes by altering 330:Betaproteobacteria 322:Thermithiobacillus 245:acid mine drainage 199:is a genus of the 1791:Acidithiobacillia 1778: 1777: 1750:Open Tree of Life 1637:Acidithiobacillus 1607:Acidithiobacillus 1599:Taxon identifiers 1093:Acidithiobacillus 1026:(11): 5607–5612. 786:978-0-12-818307-6 712:(11): 3221–3238. 639:nitrogen fixation 633:Acidithiobacillia 616:Acidithiobacillus 606:Acidithiobacillus 598:Acidithiobacillus 582:Acidithiobacillus 557:Acidithiobacillus 552:Acidithiobacillus 532:Acidithiobacillus 516:Acidithiobacillus 493:Acidithiobacillus 428:Acidothiobacillus 334:Acidithiobacillia 279:Acidithiobacillus 273:Acidithiobacillus 253:Acidithiobacillus 237:Acidithiobacillus 202:Acidithiobacillia 196:Acidithiobacillus 192: 191: 116:Acidithiobacillus 85:Acidithiobacillia 25:Acidithiobacillus 16:Genus of bacteria 1803: 1771: 1770: 1758: 1757: 1745: 1744: 1732: 1731: 1719: 1718: 1706: 1705: 1693: 1692: 1680: 1679: 1667: 1666: 1654: 1653: 1641: 1640: 1639: 1626: 1625: 1624: 1594: 1551: 1550: 1540: 1522: 1498: 1492: 1491: 1481: 1463: 1439: 1433: 1432: 1422: 1389:(2): e02153–18. 1374: 1368: 1367: 1349: 1331: 1307: 1298: 1292: 1286: 1285: 1254: 1248: 1245: 1239: 1238: 1237: 1233: 1226: 1220: 1219: 1217: 1216: 1207:. Archived from 1202: 1190: 1184: 1181: 1171: 1139: 1133: 1132: 1122: 1097:Halothiobacillus 1082: 1073: 1072: 1055:(Pt 8): 2901–6. 1044: 1038: 1037: 1035: 1003: 997: 996: 978: 960: 936: 930: 929: 919: 901: 877: 868: 867: 827: 821: 810: 804: 803: 802: 801: 762: 756: 755: 745: 706:The ISME Journal 697: 624:thermoacidophile 430:are used in the 415:hydrogen sulfide 255:are utilized in 233:"Pseudomonadota" 56: 55: 35: 21: 1811: 1810: 1806: 1805: 1804: 1802: 1801: 1800: 1796:Bacteria genera 1781: 1780: 1779: 1774: 1766: 1761: 1753: 1748: 1740: 1735: 1727: 1722: 1714: 1709: 1701: 1696: 1688: 1683: 1675: 1670: 1662: 1657: 1649: 1644: 1635: 1634: 1629: 1620: 1619: 1614: 1601: 1580:Type strain of 1560: 1555: 1554: 1500: 1499: 1495: 1441: 1440: 1436: 1376: 1375: 1371: 1309: 1308: 1301: 1293: 1289: 1256: 1255: 1251: 1246: 1242: 1235: 1228: 1227: 1223: 1214: 1212: 1203: 1192: 1191: 1187: 1141: 1140: 1136: 1084: 1083: 1076: 1046: 1045: 1041: 1013: 1004: 1000: 938: 937: 933: 879: 878: 871: 829: 828: 824: 811: 807: 799: 797: 787: 764: 763: 759: 699: 698: 683: 678: 651:Talvivaara mine 647: 628:A. ferrooxidans 566:electron donors 529: 513: 485:A. ferrooxidans 466:A. ferrooxidans 458:A. ferrooxidans 426:Species within 424: 314: 308: 298:variant of the 276: 205:in the phylum " 182: 176: 170: 164: 158: 152: 146: 140: 134: 50: 17: 12: 11: 5: 1809: 1807: 1799: 1798: 1793: 1783: 1782: 1776: 1775: 1773: 1772: 1759: 1746: 1733: 1720: 1707: 1694: 1681: 1668: 1655: 1642: 1627: 1611: 1609: 1603: 1602: 1597: 1591: 1590: 1577: 1569: 1559: 1558:External links 1556: 1553: 1552: 1493: 1434: 1369: 1299: 1287: 1268:(2): 109–119. 1249: 1240: 1230:RU RU2563511C2 1221: 1185: 1154:(2): 239–256. 1134: 1099:gen. nov. and 1074: 1039: 998: 931: 869: 822: 805: 785: 757: 680: 679: 677: 674: 673: 672: 667: 660: 653: 646: 643: 528: 525: 521:A. albertensis 512: 509: 489:bioremediation 423: 420: 419: 418: 381: 310:Main article: 307: 304: 275: 269: 229:A. thiooxidans 221:A. ferooxidans 214:sulfuriphilus, 208:Pseudomonadota 190: 189: 125: 124: 120: 119: 112: 108: 107: 102: 98: 97: 92: 88: 87: 82: 78: 77: 75:Pseudomonadota 72: 68: 67: 62: 58: 57: 44: 43: 37: 36: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 1808: 1797: 1794: 1792: 1789: 1788: 1786: 1769: 1764: 1760: 1756: 1751: 1747: 1743: 1738: 1734: 1730: 1725: 1721: 1717: 1712: 1708: 1704: 1699: 1695: 1691: 1686: 1682: 1678: 1673: 1669: 1665: 1660: 1656: 1652: 1647: 1643: 1638: 1632: 1628: 1623: 1617: 1613: 1612: 1610: 1608: 1604: 1600: 1595: 1589: 1587: 1583: 1578: 1576: 1574: 1570: 1568: 1566: 1562: 1561: 1557: 1548: 1544: 1539: 1534: 1530: 1526: 1521: 1516: 1512: 1508: 1504: 1497: 1494: 1489: 1485: 1480: 1475: 1471: 1467: 1462: 1457: 1453: 1449: 1445: 1438: 1435: 1430: 1426: 1421: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1373: 1370: 1365: 1361: 1357: 1353: 1348: 1343: 1339: 1335: 1330: 1325: 1321: 1317: 1313: 1306: 1304: 1300: 1297: 1291: 1288: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1253: 1250: 1244: 1241: 1231: 1225: 1222: 1211:on 2011-05-20 1210: 1206: 1200: 1196: 1189: 1186: 1183: 1179: 1175: 1170: 1165: 1161: 1157: 1153: 1149: 1145: 1138: 1135: 1130: 1126: 1121: 1116: 1112: 1108: 1104: 1102: 1098: 1094: 1090: 1081: 1079: 1075: 1070: 1066: 1062: 1058: 1054: 1050: 1043: 1040: 1034: 1029: 1025: 1021: 1017: 1011: 1007: 1002: 999: 994: 990: 986: 982: 977: 972: 968: 964: 959: 954: 950: 946: 942: 935: 932: 927: 923: 918: 913: 909: 905: 900: 895: 891: 887: 883: 876: 874: 870: 865: 861: 857: 853: 849: 845: 841: 837: 833: 826: 823: 819: 815: 809: 806: 796: 792: 788: 782: 778: 774: 770: 769: 761: 758: 753: 749: 744: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 696: 694: 692: 690: 688: 686: 682: 675: 671: 668: 666: 665: 661: 659: 658: 654: 652: 649: 648: 644: 642: 640: 635: 634: 629: 625: 621: 617: 613: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 562: 558: 553: 549: 545: 544:mine tailings 541: 537: 533: 526: 524: 522: 517: 510: 508: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 467: 463: 459: 455: 451: 447: 445: 441: 437: 433: 429: 421: 416: 412: 409: 405: 401: 400:sulfuric acid 398:and produces 397: 393: 389: 385: 382: 379: 378:sulfuric acid 375: 371: 367: 363: 359: 355: 351: 348: 347: 346: 344: 343: 337: 335: 331: 327: 323: 319: 313: 305: 303: 301: 297: 296:transaldolase 292: 288: 284: 280: 274: 270: 268: 266: 262: 258: 254: 250: 246: 242: 241:Gram-negative 238: 234: 230: 226: 222: 219: 215: 210: 209: 204: 203: 198: 197: 188: 187: 186: 181: 180: 175: 174: 169: 168: 163: 162: 157: 156: 151: 150: 145: 144: 139: 138: 133: 132: 126: 121: 118: 117: 113: 110: 109: 106: 103: 100: 99: 96: 93: 90: 89: 86: 83: 80: 79: 76: 73: 70: 69: 66: 63: 60: 59: 54: 49: 45: 42: 38: 34: 29: 26: 22: 19: 1606: 1585: 1581: 1573:Thiobacillus 1572: 1564: 1510: 1507:BMC Genomics 1506: 1496: 1451: 1448:BMC Genomics 1447: 1437: 1386: 1382: 1372: 1319: 1315: 1290: 1265: 1261: 1252: 1243: 1224: 1213:. Retrieved 1209:the original 1198: 1194: 1188: 1151: 1147: 1137: 1113:(2): 511–6. 1110: 1106: 1100: 1096: 1092: 1089:Thiobacillus 1088: 1052: 1048: 1042: 1023: 1019: 1001: 948: 944: 934: 889: 885: 839: 835: 825: 813: 808: 798:, retrieved 767: 760: 709: 705: 662: 657:Thiobacillus 655: 631: 627: 619: 615: 614: 609: 605: 597: 593: 581: 561:heavy metals 556: 551: 531: 530: 520: 515: 514: 504: 492: 484: 472: 471: 465: 457: 449: 448: 427: 425: 391: 387: 383: 353: 349: 342:Thiobacillus 340: 338: 333: 329: 325: 321: 315: 290: 278: 277: 272: 252: 236: 232: 228: 224: 220: 217: 212: 206: 200: 195: 194: 193: 183: 177: 171: 165: 159: 153: 147: 141: 135: 129: 128: 115: 114: 104: 40: 24: 18: 1685:iNaturalist 1631:Wikispecies 1567:Genome Page 1258:Gadd, G. M. 1247:Torma, 1980 1201:(3): 14–17. 1148:J Bacteriol 1095:gen. nov., 590:acidophiles 586:neutrophile 548:hot springs 503:identifies 491:processes. 436:bioleaching 422:Bioleaching 394:) oxidises 370:autotrophic 283:acidophilic 257:bioleaching 1785:Categories 1513:(1): 597. 1454:(1): 438. 1322:(1): 135. 1316:Microbiome 1215:2008-02-13 951:(1): 135. 945:Microbiome 892:: 822229. 814:GARD Guide 800:2023-04-23 676:References 620:A. caldus, 570:acceptors. 511:Morphology 316:The order 287:mesophilic 1529:1471-2164 1470:1471-2164 1411:0099-2240 1364:256332390 1338:2049-2618 1103:gen. nov" 993:256332390 967:2049-2618 908:1664-302X 818:Chapter 2 795:199107288 734:1751-7362 610:A. caldus 527:Evolution 479:and mine 444:oxidation 440:biomining 386:(basonym 376:iron and 352:(basonym 306:Phylogeny 261:biomining 239:spp. are 225:A. caldus 1616:Wikidata 1547:19077236 1488:31146680 1429:30389769 1356:34116726 1262:Geoderma 1178:16558952 1129:10758854 1069:23334881 985:34116726 926:35242113 864:35943141 856:15895264 752:34007059 645:See also 481:tailings 408:concrete 123:Species 101:Family: 71:Phylum: 65:Bacteria 61:Domain: 1703:1042148 1677:3222916 1622:Q142671 1538:2621215 1479:6543593 1420:6328783 1391:Bibcode 1347:8196465 1270:Bibcode 976:8196465 917:8886135 743:8528912 714:Bibcode 111:Genus: 91:Order: 81:Class: 1768:570914 1755:950845 1742:119977 1716:956608 1690:553397 1584:at Bac 1545:  1535:  1527:  1486:  1476:  1468:  1427:  1417:  1409:  1362:  1354:  1344:  1336:  1236:  1176:  1169:378965 1166:  1127:  1067:  991:  983:  973:  965:  924:  914:  906:  862:  854:  793:  783:  750:  740:  732:  497:sewers 396:sulfur 374:ferric 366:sulfur 358:pyrite 320:(i.e. 271:Genus 249:mining 1763:WoRMS 1698:IRMNG 1664:97352 1360:S2CID 1205:"CSA" 989:S2CID 860:S2CID 791:S2CID 542:) or 411:sewer 1737:NCBI 1724:LPSN 1711:ITIS 1672:GBIF 1586:Dive 1543:PMID 1525:ISSN 1484:PMID 1466:ISSN 1425:PMID 1407:ISSN 1352:PMID 1334:ISSN 1174:PMID 1125:PMID 1065:PMID 1010:LPSN 981:PMID 963:ISSN 922:PMID 904:ISSN 852:PMID 781:ISBN 748:PMID 730:ISSN 438:and 364:and 362:iron 259:and 227:and 216:and 1659:EoL 1651:MWS 1646:CoL 1575:sp. 1533:PMC 1515:doi 1474:PMC 1456:doi 1415:PMC 1399:doi 1342:PMC 1324:doi 1278:doi 1266:122 1164:PMC 1156:doi 1115:doi 1057:doi 1028:doi 1008:in 971:PMC 953:doi 912:PMC 894:doi 844:doi 773:doi 738:PMC 722:doi 604:of 568:or 406:of 336:. 1787:: 1765:: 1752:: 1739:: 1726:: 1713:: 1700:: 1687:: 1674:: 1661:: 1648:: 1633:: 1618:: 1541:. 1531:. 1523:. 1509:. 1505:. 1482:. 1472:. 1464:. 1452:20 1450:. 1446:. 1423:. 1413:. 1405:. 1397:. 1387:85 1385:. 1381:. 1358:. 1350:. 1340:. 1332:. 1318:. 1314:. 1302:^ 1276:. 1264:. 1199:26 1197:. 1172:. 1162:. 1150:. 1146:. 1123:. 1111:50 1109:. 1105:. 1077:^ 1063:. 1053:63 1051:. 1024:70 1022:. 1018:. 1012:; 987:. 979:. 969:. 961:. 947:. 943:. 920:. 910:. 902:. 890:12 888:. 884:. 872:^ 858:. 850:. 840:32 838:. 834:. 816:, 789:, 779:, 746:. 736:. 728:. 720:. 710:15 708:. 704:. 684:^ 390:, 285:, 267:. 235:, 1549:. 1517:: 1511:9 1490:. 1458:: 1431:. 1401:: 1393:: 1366:. 1326:: 1320:9 1284:. 1280:: 1272:: 1218:. 1180:. 1158:: 1152:7 1131:. 1117:: 1071:. 1059:: 1036:. 1030:: 995:. 955:: 949:9 928:. 896:: 846:: 775:: 754:. 724:: 716:: 538:( 380:.

Index


Scientific classification
Edit this classification
Bacteria
Pseudomonadota
Acidithiobacillia
Acidithiobacillales
Acidithiobacillaceae
Acidithiobacillus
Acidithiobacillus albertensis
Acidithiobacillus caldus
Acidithiobacillus cuprithermicus
Acidithiobacillus ferrianus
Acidithiobacillus ferridurans
Acidithiobacillus ferriphilus
Acidithiobacillus ferrivorans
Acidithiobacillus ferrooxidans
Acidithiobacillus sulfuriphilus
Acidithiobacillus thiooxidans
Acidithiobacillia
Pseudomonadota
Gram-negative
acid mine drainage
mining
bioleaching
biomining
horizontal gene transfer
acidophilic
mesophilic
transaldolase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.