Knowledge (XXG)

Action selection

Source đź“ť

3391: 3371: 270:
architectures, the agent's behaviour is typically described by a set of goals. Each goal can be achieved by a process or an activity, which is described by a prescripted plan. The agent must just decide which process to carry on to accomplish a given goal. The plan can expand to subgoals, which makes
745:
of those neurons sufficiently to cause the electrons to be routed to the neuron or neurons with the most post-synaptic activity for the purpose of action selection.  At the time, prevailing explanations of the purpose of those neurons was that they did not mediate action selection and were only
753:
While evidence of a number of physical predictions of the CNET hypothesis has thus been obtained, evidence of whether the hypothesis itself is correct has not been sought. One way to try to determine whether the CNET mechanism is present in these neurons would be to use quantum dot fluorophores and
504:
Sometimes to attempt to address the perceived inflexibility of dynamic planning, hybrid techniques are used. In these, a more conventional AI planning system searches for new plans when the agent has spare time, and updates the dynamic plan library when it finds good solutions. The important aspect
259:
is a decision-making strategy that attempts to meet criteria for adequacy, rather than identify an optimal solution. A satisficing strategy may often, in fact, be (near) optimal if the costs of the decision-making process itself, such as the cost of obtaining complete information, are considered in
749:
3) Several sources of electrons or excitons to provide the energy for the mechanism were hypothesized in 2018 but had not been observed at that time.  Dioxetane cleavage (which can occur during somatic dopamine metabolism by quinone degradation of melanin) was contemporaneously proposed to
734:
observed. Those structures would also need to provide a routing or switching function, which had also not previously been proposed or observed.  Evidence of the presence of ferritin and neuromelanin structures in those neurons and their ability to both conduct electrons by sequential
636:
and the control of behavior are now normally treated as involving information transmission rather than energy flow. Dynamic plans and neural networks are more similar to information transmission, while spreading activation is more similar to the diffuse control of emotional / hormonal systems.
733:
are present in high concentrations in those neurons, but it was unknown in 2018 whether they formed structures that would be capable of transmitting electrons over relatively long distances on the scale of microns between the largest of those neurons, which had not been previously proposed or
2369: 746:
modulatory and non-specific. Prof. Pascal Kaeser of Harvard Medical School subsequently obtained evidence that large SNc neurons can be temporally and spatially specific and mediate action selection.  Other evidence indicates that the large LC axons have similar behavior.
718:.  CNET is a hypothesized neural signaling mechanism in the SNc and LC (which are catecholaminergic neurons), that could assist with action selection by routing energy between neurons in each group as part of action selection, to help one or more neurons in each group to reach 962:
Poe, Gina R.; Foote, Stephen; Eschenko, Oxana; Johansen, Joshua P.; Bouret, Sebastien; Aston-Jones, Gary; Harley, Carolyn W.; Manahan-Vaughan, Denise; Weinshenker, David; Valentino, Rita; Berridge, Craig; Chandler, Daniel J.; Waterhouse, Barry; Sara, Susan J. (2020-09-17).
334:, Benjamin Johnston and their PhD student Rony Novianto. It orchestrates a diversity of modular distributed processes that can use their own representations and techniques to perceive the environment, process information, plan actions and propose actions to perform. 300:
running in parallel and determining the best action based on local expertise. In these idealized systems, overall coherence is expected to emerge somehow, possibly through careful design of the interacting components. This approach is often inspired by
2234:
Pisano, Filippo; Pisanello, Marco; Lee, Suk Joon; Lee, Jaeeon; Maglie, Emanuela; Balena, Antonio; Sileo, Leonardo; Spagnolo, Barbara; Bianco, Marco; Hyun, Minsuk; De Vittorio, Massimo; Sabatini, Bernardo L.; Pisanello, Ferruccio (November 2019).
253:. Critics of this approach complain that it is too slow for real-time planning and that, despite the proofs, it is still unlikely to produce optimal plans because reducing descriptions of reality to logic is a process prone to errors. 416:
Dynamic or reactive planning methods compute just one next action in every instant based on the current context and pre-scripted plans. In contrast to classical planning methods, reactive or dynamic approaches do not suffer
295:
In contrast to the symbolic approach, distributed systems of action selection actually have no one "box" in the agent which decides the next action. At least in their idealized form, distributed systems have many
2111:
Sulzer, David; Cassidy, Clifford; Horga, Guillermo; Kang, Un Jung; Fahn, Stanley; Casella, Luigi; Pezzoli, Gianni; Langley, Jason; Hu, Xiaoping P.; Zucca, Fabio A.; Isaias, Ioannis U.; Zecca, Luigi (2018-04-10).
376:, was a response to the slow speed of robots using symbolic action selection techniques. In this form, separate modules respond to different stimuli and generate their own responses. In the original form, the 2410: 89:
The agents are normally created to perform several different tasks. These tasks may conflict for resource allocation (e.g. can the agent put out a fire and deliver a cup of coffee at the same time?)
56:
One problem for understanding action selection is determining the level of abstraction used for specifying an "act". At the most basic level of abstraction, an atomic act could be anything from
3265: 1559:
Tribl, Florian; Asan, Esther; Arzberger, Thomas; Tatschner, Thomas; Langenfeld, Elmar; Meyer, Helmut E.; Bringmann, Gerhard; Riederer, Peter; Gerlach, Manfred; Marcus, Katrin (August 2009).
392:, which is adaptive. Their mechanism is reactive since the network at every time step determines the task that has to be performed by the pet. The network is described well in the paper of 583:
in action selection produces more smooth behaviour than can be produced by architectures exploiting boolean condition-action rules (like Soar or POSH). These architectures are mostly
496:. PRS, RAPs & TRP are no longer developed or supported. One still-active (as of 2006) descendant of this approach is the Parallel-rooted Ordered Slip-stack Hierarchical (or 860: 3107: 413:
Because purely distributed systems are difficult to construct, many researchers have turned to using explicit hard-coded plans to determine the priorities of their system.
2513: 741:
2) ) The axons of large SNc neurons were known to have extensive arbors, but it was unknown whether post-synaptic activity at the synapses of those axons would raise the
249:
still use this approach for action selection. It normally requires describing all sensor readings, the world, all of ones actions and all of one's goals in some form of
1446:"Ferritin and neuromelanin "quantum dot" array structures in dopamine neurons of the substantia nigra pars compacta and norepinephrine neurons of the locus coeruleus" 522: 2486: 1938:
Behl, Tapan; Kaur, Ishnoor; Sehgal, Aayush; Singh, Sukhbir; Makeen, Hafiz A.; Albratty, Mohammed; Alhazmi, Hassan A.; Bhatia, Saurabh; Bungau, Simona (July 2022).
1747:
Friedrich, I.; Reimann, K.; Jankuhn, S.; Kirilina, E.; Stieler, J.; Sonntag, M.; Meijer, J.; Weiskopf, N.; Reinert, T.; Arendt, T.; Morawski, M. (2021-03-22).
425:, since the plans are coded in advance. At the same time, natural intelligence can be rigid in some contexts although it is fluid and able to adapt in others. 3425: 145:
property of an intelligent agent's behavior. However, if we consider how we are going to build an intelligent agent, then it becomes apparent there must be
2169:
Premi, S.; Wallisch, S.; Mano, C. M.; Weiner, A. B.; Bacchiocchi, A.; Wakamatsu, K.; Bechara, E. J. H.; Halaban, R.; Douki, T.; Brash, D. E. (2015-02-19).
127:
takes both time and space (in memory), agents cannot possibly consider every option available to them at every instant in time. Consequently, they must be
722:. It was first proposed in 2018, and is based on a number of physical parameters of those neurons, which can be broken down into three major components: 172:
sorts of actions may in turn result in modifying the agent's basic behavioural capacities, particularly in that updating memory implies some form of
309:
centralised system determining which module is "the most active" or has the most salience. There is evidence real biological brains also have such
2623: 2351: 754:
optical probes to determine whether electron tunneling associated with ferritin in the neurons is occurring in association with specific actions.
141:
One fundamental question about action selection is whether it is really a problem at all for an agent, or whether it is just a description of an
2451: 542:. Programmers can use the Soar development toolkit for building both reactive and planning agents, or any compromise between these two extremes. 2506: 769: 550:
was a research project led by Alexander Nareyek featuring any-time planning agents for computer games. The architecture is based on structural
160:
The action selection mechanism (ASM) determines not only the agent's actions in terms of impact on the world, but also directs its perceptual
2387: 1415: 750:
generate high energy triplet state electrons by Prof. Doug Brash at Yale, which could provide a source for electrons for the CNET mechanism.
1096:
Feng, Jiesi; Zhang, Changmei; Lischinsky, Julieta; Jing, Miao; Zhou, Jingheng; Wang, Huan; Zhang, Yajun; Dong, Ao; Wu, Zhaofa (2018-10-23).
3296: 811: 539: 480:
with automated planners, most structured reactive plans are hand coded (Bryson 2001, ch. 3). Examples of structured reactive plans include
442: 3397: 2948: 2685: 384: 356:
is a spreading activation architecture developed by Toby Tyrrell in 1993. The agent's behaviour is stored in the form of a hierarchical
338: 1628:"Indication of quantum mechanical electron transport in human substantia nigra tissue from conductive atomic force microscopy analysis" 365: 628:
of behavior. In ethology, these ideas were influential in the 1960s, but they are now regarded as outdated because of their use of an
230: 3209: 2836: 2643: 2499: 1530: 505:
of any such system is that when the agent needs to select an action, some solution exists that can be used immediately (see further
224: 200: 856: 3164: 1148:"Noradrenaline and Dopamine Neurons in the Reward/Effort Trade-Off: A Direct Electrophysiological Comparison in Behaving Monkeys" 656: 617: 137:
how do various types of animals constrain their search? Do all animals use the same approaches? Why do they use the ones they do?
3445: 472:. Many agent architectures from the mid-1990s included such plans as a "middle layer" that provided organization for low-level 422: 284: 3351: 3291: 2889: 1272:"Neurons gating behavior—developmental, molecular and functional features of neurons in the Substantia Nigra pars reticulata" 882: 2372:. In: Johnson, W. L. (eds.): Proceedings of the First International Conference on Autonomous Agents. ACM press (1997) 22-29 2884: 2573: 2461: 2434: 528: 149:
mechanism for action selection. This mechanism may be highly distributed (as in the case of distributed organisms such as
3430: 3326: 2680: 2633: 2628: 2478: 271:
the process slightly recursive. Technically, more or less, the plans exploits condition-rules. These architectures are
3377: 2673: 2599: 763: 1997:"Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets" 176:
is possible. Ideally, action selection itself should also be able to learn and adapt, but there are many problems of
1749:"Cell specific quantitative iron mapping on brain slices by immuno-µPIXE in healthy elderly and Parkinson's disease" 3001: 2936: 2537: 2114:"Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease" 609: 302: 3402: 3260: 2899: 2730: 2553: 2430:
van Waveren, J. M. P.: The Quake III Arena Bot. Master thesis. Faculty ITS, University of Technology Delft (2001)
489: 389: 2379:. In: Proceedings of the Third International Conference on Autonomous Agents (Agents'99). Seattle (1999) 236-243 3440: 3301: 2558: 675: 441:, or for virtual movie actors. Typically, the state-machines are hierarchical. For concrete game examples, see 437:
These are reactive architectures used mostly for computer game agents, in particular for first-person shooters
377: 2362: 1940:"The Locus Coeruleus – Noradrenaline system: Looking into Alzheimer's therapeutics with rose coloured glasses" 211:. Some approaches do not fall neatly into any one of these categories. Others are really more about providing 2472: 3346: 3331: 2984: 2979: 2879: 2747: 2528: 1329:
Stephenson-Jones, Marcus; Samuelsson, Ebba; Ericsson, Jesper; Robertson, Brita; Grillner, Sten (July 2011).
555: 551: 418: 30: 3435: 3306: 3066: 2785: 2780: 820: 535: 446: 238: 2352:
Intelligence by Design: Principles of Modularity and Coordination for Engineering Complex Adaptive Agents
64:. Typically for any one action-selection mechanism, the set of possible actions is predefined and fixed. 3336: 3321: 3286: 2974: 2874: 2742: 2424: 1720: 1119: 629: 3204: 2344: 380:, these consisted of different layers which could monitor and suppress each other's inputs and outputs. 1331:"Evolutionary Conservation of the Basal Ganglia as a Common Vertebrate Mechanism for Action Selection" 393: 3356: 3311: 2757: 2702: 2548: 2543: 2448: 2340:
Bratman, M.: Intention, plans, and practical reason. Cambridge, Mass: Harvard University Press (1987)
2182: 1639: 1457: 1342: 1033: 621: 613: 575: 433: 348: 297: 96:, who may make things more difficult for the agent (either intentionally or by attempting to assist.) 2931: 2909: 2658: 2653: 2611: 2563: 204: 83: 3370: 2383: 361: 3316: 2894: 2723: 2319: 2272: 1977: 1863: 1796: 1702: 1691:"Indication of Highly Correlated Electron Transport in Disordered Multilayer Ferritin Structures" 1671: 1608: 1536: 1491: 1376: 1195: 1069: 944: 775: 742: 735: 605: 565: 481: 331: 276: 188: 38: 233:, it was assumed that the best way for an agent to choose what to do next would be to compute a 3382: 3174: 2826: 2697: 2690: 2482: 2311: 2264: 2256: 2216: 2198: 2151: 2133: 2093: 2075: 2036: 2018: 1969: 1961: 1920: 1902: 1855: 1837: 1788: 1770: 1663: 1655: 1600: 1582: 1526: 1483: 1475: 1421: 1411: 1368: 1360: 1311: 1293: 1252: 1234: 1187: 1169: 1061: 1002: 984: 936: 928: 887: 796: 584: 506: 473: 438: 372: 272: 208: 181: 76: 72: 46: 34: 29:
is a way of characterizing the most basic problem of intelligent systems: what to do next. In
2292:"Amine-Functionalized Graphene Quantum Dots for Fluorescence-Based Immunosensing of Ferritin" 3117: 2924: 2718: 2668: 2663: 2606: 2594: 2303: 2248: 2206: 2190: 2141: 2125: 2083: 2067: 2026: 2008: 1951: 1910: 1894: 1845: 1827: 1778: 1760: 1694: 1647: 1590: 1572: 1518: 1465: 1403: 1350: 1301: 1283: 1242: 1226: 1177: 1159: 1105: 1051: 1043: 992: 976: 920: 790: 719: 477: 310: 275:
or hybrid. Classical examples of goal driven architectures are implementable refinements of
234: 212: 173: 2467: 596:
Many dynamic models of artificial action selection were originally inspired by research in
3240: 3184: 3006: 2648: 2568: 2455: 2391: 1733: 1132: 864: 695: 660: 250: 246: 199:
Generally, artificial action selection mechanisms can be divided into several categories:
2417: 2404: 2171:"Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure" 546: 341:
architectures, in which the single selected action takes full control of the motor system
2420:. In: Computer Graphics International (CGI), IEEE Computer SocietyPress, New York (2005) 2186: 1643: 1461: 1346: 500:) action selection system, which is a part of Joanna Bryson's Behaviour Oriented Design. 111:
For these reasons action selection is not trivial and attracts a good deal of research.
3214: 3179: 3169: 2994: 2752: 2578: 2211: 2146: 2088: 2031: 1996: 1915: 1850: 1815: 1783: 1748: 1595: 1560: 1306: 1271: 1247: 1182: 1147: 1056: 997: 832: 826: 814: â€“ computer program typically used to provide some form of artificial intelligence 699: 633: 100: 20: 1627: 714:
in the brain, and has been associated with action selection, primarily as part of the
670:
Some researchers create elaborate models of neural action selection. See for example:
652: 493: 131:, and constrain their search in some way. For AI, the question of action selection is 3419: 3159: 3139: 3056: 2735: 2323: 2276: 1981: 1800: 1706: 1651: 1561:"Identification of L-ferritin in Neuromelanin Granules of the Human Substantia Nigra" 1540: 1470: 1445: 1073: 948: 784: 715: 707: 640: 601: 357: 177: 150: 1675: 1612: 1495: 1214: 360:
network, which Tyrrell named free-flow hierarchy. Recently exploited for example by
3245: 3076: 2236: 1867: 1380: 1230: 1199: 1164: 730: 469: 461: 318: 2427:. Ph.D. Dissertation. Centre for Cognitive Science, University of Edinburgh (1993) 2413:. In: Computer Graphics, 21(4) (SIGGRAPH '87 Conference Proceedings) (1987) 25–34. 2055: 2071: 1956: 1939: 1395: 1047: 460:
tend to look a little more like conventional plans, often with ways to represent
215:
than practical AI control; these last are described further in the next section.
3341: 3112: 3021: 3016: 2638: 2616: 2376: 2054:
Brash, Douglas E.; Goncalves, Leticia C.P.; Bechara, Etelvino J.H. (June 2018).
1995:
Breton-Provencher, Vincent; Drummond, Gabrielle T.; Sur, Mriganka (2021-06-07).
1882: 1510: 1407: 908: 580: 476:
while being directed by a higher level real-time planner. Despite this supposed
280: 256: 124: 2290:
Garg, Mayank; Vishwakarma, Neelam; Sharma, Amit L.; Singh, Suman (2021-07-08).
2113: 1898: 1765: 1577: 1522: 1021: 964: 924: 787: â€“ Computer system emulating the decision-making ability of a human expert 3235: 3194: 3189: 3102: 3011: 2919: 2831: 2811: 2252: 2129: 2013: 1832: 1355: 1330: 1288: 1038: 980: 625: 497: 465: 242: 169: 154: 120: 2363:
AI Game Development: Synthetic Creatures with learning and Reactive Behaviors
2315: 2260: 2237:"Depth-resolved fiber photometry with a single tapered optical fiber implant" 2202: 2170: 2137: 2079: 2022: 1965: 1906: 1841: 1774: 1659: 1586: 1479: 1364: 1297: 1238: 1173: 988: 932: 485: 3230: 3199: 3097: 2941: 2904: 2841: 2795: 2790: 2775: 2397: 2370:
Creatures: Artificial life autonomous software-agents for home entertainment
2291: 2194: 1698: 703: 647:
is the right perspective to take in understanding the role and evolution of
450: 314: 161: 142: 104: 2491: 2307: 2268: 2220: 2155: 2097: 2040: 1973: 1924: 1859: 1792: 1690: 1667: 1604: 1487: 1425: 1372: 1315: 1256: 1191: 1065: 1006: 940: 421:. On the other hand, they are sometimes seen as too rigid to be considered 67:
Most researchers working in this field place high demands on their agents:
1517:, Advances in Quantum Chemistry, vol. 82, Elsevier, pp. 25–111, 3132: 2964: 1689:
Rourk, Christopher; Huang, Yunbo; Chen, Minjing; Shen, Cai (2021-06-16).
726: 711: 597: 50: 2355: 3255: 3092: 3046: 2969: 2869: 2864: 2816: 1215:"Mechanisms of Action Selection and Timing in Substantia Nigra Neurons" 738:
and to route/switch the path of the neurons was subsequently obtained.
1394:
Guatteo, Ezia; Cucchiaroni, Maria Letizia; Mercuri, Nicola B. (2009),
1146:
Varazzani, C.; San-Galli, A.; Gilardeau, S.; Bouret, S. (2015-05-20).
778: â€“ robot with processing architecture that will allow it to learn 525:(belief-desire-intention), it includes built in teamwork capabilities. 3270: 3250: 3122: 2914: 1400:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra
532: 397: 267: 165: 93: 42: 682: 1110: 1097: 3071: 3051: 3041: 3036: 3031: 3026: 2989: 2821: 561: 241:
hypothesis, that a physical agent that can manipulate symbols is
3061: 1098:"A genetically encoded fluorescent sensor for rapid and specific 802: 648: 313:
which evaluate which of the competing systems deserves the most
128: 2495: 1881:
Liu, Changliang; Goel, Pragya; Kaeser, Pascal S. (2021-04-09).
877: 772: â€“ AI used for video games, usually non-player characters 388:
are virtual pets from a computer game driven by three-layered
37:, "the action selection problem" is typically associated with 859:." Biologically Inspired Cognitive Architectures (2010): 98. 2462:
Introduction to agents and their action selection mechanisms
401: 184:
that may require restricting the search space for learning.
2468:
Slides on a course on action selection of artificial beings
2418:
A motivational Model of Action Selection for Virtual Humans
2411:
Flocks, Herds, and Schools: A Distributed Behavioral Model
2343:
Brom, C., LukavskĂ˝, J., Ĺ erĂ˝, O., Poch, T., Ĺ afrata, P.:
1402:, no. 73, Vienna: Springer Vienna, pp. 91–101, 805: â€“ rule-based or production system computer language 449:
by Jan Paul van Waveren (2001). For a movie example, see
187:
In AI, an ASM is also sometimes either referred to as an
86:; therefore they must make decisions in a timely fashion. 45:—artificial systems that exhibit complex behaviour in an 702:
in the brain, and has been associated with selection of
468:
structure. Some, such as PRS's 'acts', have support for
2347:. In: Proceedings of Game Set and Match 2, Delft (2006) 518: 1883:"Spatial and temporal scales of dopamine transmission" 2345:
Affordances and level-of-detail AI for virtual humans
1022:"The locus coeruleus mediates behavioral flexibility" 909:"Locus Coeruleus in time with the making of memories" 837:
Pages displaying wikidata descriptions as a fallback
816:
Pages displaying wikidata descriptions as a fallback
807:
Pages displaying wikidata descriptions as a fallback
793: â€“ Component of artificial intelligence systems 780:
Pages displaying wikidata descriptions as a fallback
3279: 3223: 3152: 3085: 2957: 2857: 2850: 2804: 2768: 2711: 2587: 2527: 568:
learning system to help prioritize the productions.
2400:. In: SIGART Bulletin, 2 (4), pages 115–120 (1991) 2056:"Chemiexcitation and Its Implications for Disease" 1396:"Substantia Nigra Control of Basal Ganglia Nuclei" 690:Catecholaminergic Neuron Electron Transport (CNET) 237:plan, and then execute that plan. This led to the 92:The environment the agents operate in may include 538:. It is based on condition-action rules known as 1213:Fan, D.; Rossi, M. A.; Yin, H. H. (2012-04-18). 1020:McBurney-Lin, Jim; Yang, Hongdian (2022-09-04). 330:is an attention-based architecture developed by 2487:Philosophical Transactions of the Royal Society 115:Characteristics of the action selection problem 2377:JAM: A BDI-theoretic mobile agent architecture 965:"Locus coeruleus: a new look at the blue spot" 799: â€“ Software agent which acts autonomously 706:, such as attention and behavioral tasks. The 305:research. In practice, there is almost always 2507: 2425:Computational Mechanisms for Action Selection 428:Example dynamic planning mechanisms include: 133:what is the best way to constrain this search 8: 857:Attention in the ASMO cognitive architecture 317:, or more properly, has its desired actions 191:or thought of as a substantial part of one. 135:? For biology and ethology, the question is 99:The agents themselves are often intended to 2854: 2514: 2500: 2492: 1444:Rourk, Christopher John (September 2018). 1270:Partanen, Juha; Achim, Kaia (2022-09-06). 2210: 2145: 2087: 2030: 2012: 1955: 1914: 1849: 1831: 1782: 1764: 1594: 1576: 1469: 1354: 1305: 1287: 1246: 1181: 1163: 1109: 1055: 1037: 996: 835: â€“ modeling approach for video games 157:) or it may be a special-purpose module. 119:The main problem for action selection is 676:Computational Cognitive Neuroscience Lab 521:is a decision making engine it based on 447:the Master's Thesis about Quake III bots 1816:"Reward functions of the basal ganglia" 878:"PRS-CL: A Procedural Reasoning System" 848: 710:(SNc) is one of the primary sources of 203:sometimes known as classical planning, 1729: 1718: 1511:"Functional neural electron transport" 1128: 1117: 770:Artificial intelligence in video games 698:(LC) is one of the primary sources of 592:Theories of action selection in nature 21:Game mechanics § Action selection 2435:An Introduction to MultiAgent Systems 2386:. In: Gamastura online, 03/11 (2005) 2356:Massachusetts Institute of Technology 49:. The term is also sometimes used in 7: 3352:Generative adversarial network (GAN) 2398:The agent network architecture (ANA) 2368:Grand, S., Cliff, D., Malhotra, A.: 1753:Acta Neuropathologica Communications 1091: 1089: 666:AI models of neural action selection 103:animals or humans, and animal/human 75:typically must select its action in 3426:Problems in artificial intelligence 1565:Molecular & Cellular Proteomics 2479:Modelling natural action selection 1626:Rourk, Christopher J. (May 2019). 829: â€“ Pattern matching algorithm 766: â€“ Robot programming language 612:to explain instinctive behaviors ( 564:is similar to Soar. It includes a 231:history of artificial intelligence 14: 1944:Biomedicine & Pharmacotherapy 823: â€“ Field of machine learning 683:Adaptive Behaviour Research Group 398:The Creatures Developer Resources 225:Automated planning and scheduling 3390: 3389: 3369: 1652:10.1016/j.biosystems.2019.02.003 1471:10.1016/j.biosystems.2018.07.008 620:, Lorenz developed this into a " 354:Extended Rosenblatt & Payton 2481:, a special issue published by 1814:Schultz, Wolfram (2016-02-02). 913:Current Opinion in Neurobiology 907:Sara, Susan J (December 2015). 79:and unpredictable environments. 3302:Recurrent neural network (RNN) 3292:Differentiable neural computer 2437:. John Wiley & Sons (2002) 1820:Journal of Neural Transmission 1509:Rourk, Christopher J. (2020), 1231:10.1523/jneurosci.5924-11.2012 1165:10.1523/jneurosci.0454-15.2015 883:Artificial Intelligence Center 708:substantia nigra pars compacta 616:). Influenced by the ideas of 1: 3347:Variational autoencoder (VAE) 3307:Long short-term memory (LSTM) 2574:Computational learning theory 2384:Handling complexity in Halo 2 653:the action selection paradigm 3327:Convolutional neural network 2072:10.1016/j.molmed.2018.04.004 2060:Trends in Molecular Medicine 2001:Frontiers in Neural Circuits 1957:10.1016/j.biopha.2022.113179 1102:detection of norepinephrine" 1048:10.1016/j.celrep.2022.111534 82:The agents typically act in 3322:Multilayer perceptron (MLP) 2447:The University of Memphis: 1887:Nature Reviews Neuroscience 1408:10.1007/978-3-211-92660-4_7 969:Nature Reviews Neuroscience 764:Action description language 409:Dynamic planning approaches 3462: 3398:Artificial neural networks 3312:Gated recurrent unit (GRU) 2538:Differentiable programming 2449:Agents by action selection 2416:de Sevin, E. Thalmann, D.: 2296:ACS Applied Nano Materials 1899:10.1038/s41583-021-00455-7 1766:10.1186/s40478-021-01145-2 1578:10.1074/mcp.m900006-mcp200 1523:10.1016/bs.aiq.2020.08.001 1515:Quantum Boundaries of Life 925:10.1016/j.conb.2015.07.004 610:innate releasing mechanism 311:executive decision systems 303:artificial neural networks 222: 18: 3365: 2731:Artificial neural network 2554:Automatic differentiation 2475:. University of Michigan. 2253:10.1038/s41592-019-0581-x 2130:10.1038/s41531-018-0047-3 2014:10.3389/fncir.2021.638007 1833:10.1007/s00702-016-1510-0 1356:10.1016/j.cub.2011.05.001 1289:10.3389/fnins.2022.976209 1276:Frontiers in Neuroscience 1039:10.1101/2022.09.01.506286 981:10.1038/s41583-020-0360-9 458:structured reactive plans 445:by Damian Isla (2005) or 264:Goal driven architectures 58:contracting a muscle cell 2559:Neuromorphic engineering 2522:Differentiable computing 2365:. New Riders, USA (2003) 608:provided the idea of an 378:subsumption architecture 243:necessary and sufficient 178:combinatorial complexity 19:Not to be confused with 3332:Residual neural network 2748:Artificial Intelligence 2195:10.1126/science.1256022 2118:npj Parkinson's Disease 1219:Journal of Neuroscience 1152:Journal of Neuroscience 556:artificial intelligence 554:, which is an advanced 552:constraint satisfaction 419:combinatorial explosion 362:de Sevin & Thalmann 277:belief-desire-intention 245:for intelligence. Many 31:artificial intelligence 3446:Management cybernetics 2308:10.1021/acsanm.1c01398 1728:Cite journal requires 1127:Cite journal requires 821:Reinforcement learning 536:cognitive architecture 291:Distributed approaches 260:the outcome calculus. 239:physical symbol system 3287:Neural Turing machine 2875:Human image synthesis 1699:10.31219/osf.io/7gqmt 614:fixed action patterns 434:Finite-state machines 205:distributed solutions 107:is quite complicated. 3378:Computer programming 3357:Graph neural network 2932:Text-to-video models 2910:Text-to-image models 2758:Large language model 2743:Scientific computing 2549:Statistical manifold 2544:Information geometry 2460:Michael Wooldridge: 2361:Champandard, A. J.: 855:Samsonovich, A. V. " 704:cognitive processing 494:Teleo-reactive plans 345:Spreading activation 201:symbol-based systems 53:or animal behavior. 3431:Functional analysis 2724:In-context learning 2564:Pattern recognition 2187:2015Sci...347..842P 1644:2019BiSys.179...30R 1462:2018BiSys.171...48R 1347:2011CBio...21.1081S 576:Fuzzy architectures 219:Symbolic approaches 3317:Echo state network 3205:JĂĽrgen Schmidhuber 2900:Facial recognition 2895:Speech recognition 2805:Software libraries 2454:2006-04-18 at the 2390:2006-01-08 at the 863:2022-11-06 at the 776:Cognitive robotics 743:membrane potential 659:2006-10-09 at the 651:. See his page on 643:has proposed that 606:Nikolaas Tinbergen 332:Mary-Anne Williams 279:architecture like 207:, and reactive or 189:agent architecture 180:and computational 164:, and updates its 39:intelligent agents 33:and computational 3413: 3412: 3175:Stephen Grossberg 3148: 3147: 2483:The Royal Society 2405:Excalibur project 2247:(11): 1185–1192. 2181:(6224): 842–847. 1417:978-3-211-92659-8 1341:(13): 1081–1091. 1225:(16): 5534–5548. 1158:(20): 7866–7877. 888:SRI International 812:Production system 797:Intelligent agent 618:William McDougall 600:. In particular, 507:anytime algorithm 443:Halo 2 bots paper 373:Behavior based AI 337:Various types of 213:scientific models 47:agent environment 35:cognitive science 16:Computing concept 3453: 3403:Machine learning 3393: 3392: 3373: 3128:Action selection 3118:Self-driving car 2925:Stable Diffusion 2890:Speech synthesis 2855: 2719:Machine learning 2595:Gradient descent 2516: 2509: 2502: 2493: 2409:Reynolds, C. W. 2328: 2327: 2302:(7): 7416–7425. 2287: 2281: 2280: 2231: 2225: 2224: 2214: 2166: 2160: 2159: 2149: 2108: 2102: 2101: 2091: 2051: 2045: 2044: 2034: 2016: 1992: 1986: 1985: 1959: 1935: 1929: 1928: 1918: 1878: 1872: 1871: 1853: 1835: 1811: 1805: 1804: 1786: 1768: 1744: 1738: 1737: 1731: 1726: 1724: 1716: 1714: 1713: 1686: 1680: 1679: 1623: 1617: 1616: 1598: 1580: 1571:(8): 1832–1838. 1556: 1550: 1549: 1548: 1547: 1506: 1500: 1499: 1473: 1441: 1435: 1434: 1433: 1432: 1391: 1385: 1384: 1358: 1326: 1320: 1319: 1309: 1291: 1267: 1261: 1260: 1250: 1210: 1204: 1203: 1185: 1167: 1143: 1137: 1136: 1130: 1125: 1123: 1115: 1113: 1093: 1084: 1083: 1081: 1080: 1059: 1041: 1017: 1011: 1010: 1000: 959: 953: 952: 904: 898: 897: 895: 894: 876:Karen L. Myers. 873: 867: 853: 838: 817: 808: 791:Inference engine 781: 720:action potential 645:action selection 478:interoperability 474:behavior modules 329: 328: 235:probably optimal 209:dynamic planning 174:machine learning 27:Action selection 3461: 3460: 3456: 3455: 3454: 3452: 3451: 3450: 3441:Motor cognition 3416: 3415: 3414: 3409: 3361: 3275: 3241:Google DeepMind 3219: 3185:Geoffrey Hinton 3144: 3081: 3007:Project Debater 2953: 2851:Implementations 2846: 2800: 2764: 2707: 2649:Backpropagation 2583: 2569:Tensor calculus 2523: 2520: 2456:Wayback Machine 2444: 2433:Wooldridge, M. 2392:Wayback Machine 2337: 2335:Further reading 2332: 2331: 2289: 2288: 2284: 2233: 2232: 2228: 2168: 2167: 2163: 2110: 2109: 2105: 2053: 2052: 2048: 1994: 1993: 1989: 1937: 1936: 1932: 1880: 1879: 1875: 1813: 1812: 1808: 1746: 1745: 1741: 1727: 1717: 1711: 1709: 1688: 1687: 1683: 1625: 1624: 1620: 1558: 1557: 1553: 1545: 1543: 1533: 1508: 1507: 1503: 1443: 1442: 1438: 1430: 1428: 1418: 1393: 1392: 1388: 1335:Current Biology 1328: 1327: 1323: 1269: 1268: 1264: 1212: 1211: 1207: 1145: 1144: 1140: 1126: 1116: 1095: 1094: 1087: 1078: 1076: 1019: 1018: 1014: 975:(11): 644–659. 961: 960: 956: 906: 905: 901: 892: 890: 875: 874: 870: 865:Wayback Machine 854: 850: 845: 836: 815: 806: 779: 760: 696:locus coeruleus 692: 668: 661:Wayback Machine 624:" model of the 622:psychohydraulic 594: 515: 488:System and the 411: 400:. See also the 349:Maes Nets (ANA) 339:winner-take-all 326: 325: 293: 251:predicate logic 247:software agents 227: 221: 197: 117: 62:provoking a war 24: 17: 12: 11: 5: 3459: 3457: 3449: 3448: 3443: 3438: 3433: 3428: 3418: 3417: 3411: 3410: 3408: 3407: 3406: 3405: 3400: 3387: 3386: 3385: 3380: 3366: 3363: 3362: 3360: 3359: 3354: 3349: 3344: 3339: 3334: 3329: 3324: 3319: 3314: 3309: 3304: 3299: 3294: 3289: 3283: 3281: 3277: 3276: 3274: 3273: 3268: 3263: 3258: 3253: 3248: 3243: 3238: 3233: 3227: 3225: 3221: 3220: 3218: 3217: 3215:Ilya Sutskever 3212: 3207: 3202: 3197: 3192: 3187: 3182: 3180:Demis Hassabis 3177: 3172: 3170:Ian Goodfellow 3167: 3162: 3156: 3154: 3150: 3149: 3146: 3145: 3143: 3142: 3137: 3136: 3135: 3125: 3120: 3115: 3110: 3105: 3100: 3095: 3089: 3087: 3083: 3082: 3080: 3079: 3074: 3069: 3064: 3059: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3019: 3014: 3009: 3004: 2999: 2998: 2997: 2987: 2982: 2977: 2972: 2967: 2961: 2959: 2955: 2954: 2952: 2951: 2946: 2945: 2944: 2939: 2929: 2928: 2927: 2922: 2917: 2907: 2902: 2897: 2892: 2887: 2882: 2877: 2872: 2867: 2861: 2859: 2852: 2848: 2847: 2845: 2844: 2839: 2834: 2829: 2824: 2819: 2814: 2808: 2806: 2802: 2801: 2799: 2798: 2793: 2788: 2783: 2778: 2772: 2770: 2766: 2765: 2763: 2762: 2761: 2760: 2753:Language model 2750: 2745: 2740: 2739: 2738: 2728: 2727: 2726: 2715: 2713: 2709: 2708: 2706: 2705: 2703:Autoregression 2700: 2695: 2694: 2693: 2683: 2681:Regularization 2678: 2677: 2676: 2671: 2666: 2656: 2651: 2646: 2644:Loss functions 2641: 2636: 2631: 2626: 2621: 2620: 2619: 2609: 2604: 2603: 2602: 2591: 2589: 2585: 2584: 2582: 2581: 2579:Inductive bias 2576: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2533: 2531: 2525: 2524: 2521: 2519: 2518: 2511: 2504: 2496: 2490: 2489: 2476: 2470: 2464: 2458: 2443: 2442:External links 2440: 2439: 2438: 2431: 2428: 2421: 2414: 2407: 2401: 2394: 2380: 2375:Huber, M. J.: 2373: 2366: 2359: 2354:. PhD thesis, 2348: 2341: 2336: 2333: 2330: 2329: 2282: 2241:Nature Methods 2226: 2161: 2103: 2066:(6): 527–541. 2046: 1987: 1930: 1893:(6): 345–358. 1873: 1826:(7): 679–693. 1806: 1739: 1730:|journal= 1681: 1618: 1551: 1531: 1501: 1436: 1416: 1386: 1321: 1262: 1205: 1138: 1129:|journal= 1111:10.1101/449546 1085: 1012: 954: 899: 868: 847: 846: 844: 841: 840: 839: 833:Utility system 830: 827:Rete algorithm 824: 818: 809: 800: 794: 788: 782: 773: 767: 759: 756: 691: 688: 687: 686: 679: 667: 664: 634:nervous system 632:metaphor; the 593: 590: 589: 588: 581:fuzzy approach 572: 569: 559: 543: 526: 514: 511: 502: 501: 454: 410: 407: 406: 405: 402:Creatures Wiki 396:(1997) and in 390:neural network 381: 369: 351: 342: 335: 292: 289: 223:Main article: 220: 217: 196: 193: 116: 113: 109: 108: 97: 90: 87: 80: 15: 13: 10: 9: 6: 4: 3: 2: 3458: 3447: 3444: 3442: 3439: 3437: 3436:Motor control 3434: 3432: 3429: 3427: 3424: 3423: 3421: 3404: 3401: 3399: 3396: 3395: 3388: 3384: 3381: 3379: 3376: 3375: 3372: 3368: 3367: 3364: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3340: 3338: 3335: 3333: 3330: 3328: 3325: 3323: 3320: 3318: 3315: 3313: 3310: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3284: 3282: 3280:Architectures 3278: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3232: 3229: 3228: 3226: 3224:Organizations 3222: 3216: 3213: 3211: 3208: 3206: 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3160:Yoshua Bengio 3158: 3157: 3155: 3151: 3141: 3140:Robot control 3138: 3134: 3131: 3130: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3090: 3088: 3084: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3057:Chinchilla AI 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2996: 2993: 2992: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2962: 2960: 2956: 2950: 2947: 2943: 2940: 2938: 2935: 2934: 2933: 2930: 2926: 2923: 2921: 2918: 2916: 2913: 2912: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2862: 2860: 2856: 2853: 2849: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2809: 2807: 2803: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2773: 2771: 2767: 2759: 2756: 2755: 2754: 2751: 2749: 2746: 2744: 2741: 2737: 2736:Deep learning 2734: 2733: 2732: 2729: 2725: 2722: 2721: 2720: 2717: 2716: 2714: 2710: 2704: 2701: 2699: 2696: 2692: 2689: 2688: 2687: 2684: 2682: 2679: 2675: 2672: 2670: 2667: 2665: 2662: 2661: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2624:Hallucination 2622: 2618: 2615: 2614: 2613: 2610: 2608: 2605: 2601: 2598: 2597: 2596: 2593: 2592: 2590: 2586: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2539: 2535: 2534: 2532: 2530: 2526: 2517: 2512: 2510: 2505: 2503: 2498: 2497: 2494: 2488: 2484: 2480: 2477: 2474: 2471: 2469: 2465: 2463: 2459: 2457: 2453: 2450: 2446: 2445: 2441: 2436: 2432: 2429: 2426: 2423:Tyrrell, T.: 2422: 2419: 2415: 2412: 2408: 2406: 2402: 2399: 2395: 2393: 2389: 2385: 2381: 2378: 2374: 2371: 2367: 2364: 2360: 2357: 2353: 2349: 2346: 2342: 2339: 2338: 2334: 2325: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2286: 2283: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2230: 2227: 2222: 2218: 2213: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2165: 2162: 2157: 2153: 2148: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2107: 2104: 2099: 2095: 2090: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2050: 2047: 2042: 2038: 2033: 2028: 2024: 2020: 2015: 2010: 2006: 2002: 1998: 1991: 1988: 1983: 1979: 1975: 1971: 1967: 1963: 1958: 1953: 1949: 1945: 1941: 1934: 1931: 1926: 1922: 1917: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1877: 1874: 1869: 1865: 1861: 1857: 1852: 1847: 1843: 1839: 1834: 1829: 1825: 1821: 1817: 1810: 1807: 1802: 1798: 1794: 1790: 1785: 1780: 1776: 1772: 1767: 1762: 1758: 1754: 1750: 1743: 1740: 1735: 1722: 1708: 1704: 1700: 1696: 1692: 1685: 1682: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1633: 1629: 1622: 1619: 1614: 1610: 1606: 1602: 1597: 1592: 1588: 1584: 1579: 1574: 1570: 1566: 1562: 1555: 1552: 1542: 1538: 1534: 1532:9780128226391 1528: 1524: 1520: 1516: 1512: 1505: 1502: 1497: 1493: 1489: 1485: 1481: 1477: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1440: 1437: 1427: 1423: 1419: 1413: 1409: 1405: 1401: 1397: 1390: 1387: 1382: 1378: 1374: 1370: 1366: 1362: 1357: 1352: 1348: 1344: 1340: 1336: 1332: 1325: 1322: 1317: 1313: 1308: 1303: 1299: 1295: 1290: 1285: 1281: 1277: 1273: 1266: 1263: 1258: 1254: 1249: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1206: 1201: 1197: 1193: 1189: 1184: 1179: 1175: 1171: 1166: 1161: 1157: 1153: 1149: 1142: 1139: 1134: 1121: 1112: 1107: 1103: 1101: 1092: 1090: 1086: 1075: 1071: 1067: 1063: 1058: 1053: 1049: 1045: 1040: 1035: 1032:(4): 111534. 1031: 1027: 1023: 1016: 1013: 1008: 1004: 999: 994: 990: 986: 982: 978: 974: 970: 966: 958: 955: 950: 946: 942: 938: 934: 930: 926: 922: 918: 914: 910: 903: 900: 889: 885: 884: 879: 872: 869: 866: 862: 858: 852: 849: 842: 834: 831: 828: 825: 822: 819: 813: 810: 804: 801: 798: 795: 792: 789: 786: 785:Expert system 783: 777: 774: 771: 768: 765: 762: 761: 757: 755: 751: 747: 744: 739: 737: 732: 728: 723: 721: 717: 716:basal ganglia 713: 709: 705: 701: 700:noradrenaline 697: 689: 684: 680: 678:(CU Boulder). 677: 673: 672: 671: 665: 663: 662: 658: 654: 650: 646: 642: 641:Stan Franklin 638: 635: 631: 627: 623: 619: 615: 611: 607: 603: 602:Konrad Lorenz 599: 591: 587:and symbolic. 586: 582: 578: 577: 573: 570: 567: 563: 560: 557: 553: 549: 548: 544: 541: 537: 534: 530: 527: 524: 520: 517: 516: 512: 510: 508: 499: 495: 491: 487: 483: 479: 475: 471: 470:partial plans 467: 463: 459: 455: 452: 448: 444: 440: 436: 435: 431: 430: 429: 426: 424: 420: 414: 408: 403: 399: 395: 391: 387: 386: 382: 379: 375: 374: 370: 367: 363: 359: 358:connectionism 355: 352: 350: 346: 343: 340: 336: 333: 324: 323: 322: 320: 316: 312: 308: 304: 299: 290: 288: 286: 282: 278: 274: 269: 265: 261: 258: 254: 252: 248: 244: 240: 236: 232: 229:Early in the 226: 218: 216: 214: 210: 206: 202: 195:AI mechanisms 194: 192: 190: 185: 183: 179: 175: 171: 167: 163: 158: 156: 152: 151:social insect 148: 144: 139: 138: 134: 130: 126: 122: 114: 112: 106: 102: 98: 95: 91: 88: 85: 81: 78: 74: 70: 69: 68: 65: 63: 59: 54: 52: 48: 44: 40: 36: 32: 28: 22: 3246:Hugging Face 3210:David Silver 3127: 2858:Audio–visual 2712:Applications 2691:Augmentation 2536: 2473:Soar project 2466:Cyril Brom: 2403:Nareyek, A. 2350:Bryson, J.: 2299: 2295: 2285: 2244: 2240: 2229: 2178: 2174: 2164: 2121: 2117: 2106: 2063: 2059: 2049: 2004: 2000: 1990: 1947: 1943: 1933: 1890: 1886: 1876: 1823: 1819: 1809: 1756: 1752: 1742: 1721:cite journal 1710:. Retrieved 1684: 1635: 1631: 1621: 1568: 1564: 1554: 1544:, retrieved 1514: 1504: 1453: 1449: 1439: 1429:, retrieved 1399: 1389: 1338: 1334: 1324: 1279: 1275: 1265: 1222: 1218: 1208: 1155: 1151: 1141: 1120:cite journal 1099: 1077:. Retrieved 1029: 1026:Cell Reports 1025: 1015: 972: 968: 957: 916: 912: 902: 891:. Retrieved 881: 871: 851: 752: 748: 740: 731:neuromelanin 724: 693: 685:(Sheffield). 669: 644: 639: 595: 574: 545: 503: 490:Nils Nilsson 462:hierarchical 457: 432: 427: 415: 412: 394:Grand et al. 383: 371: 353: 344: 319:disinhibited 306: 294: 263: 262: 255: 228: 198: 186: 182:tractability 159: 153:colonies or 146: 140: 136: 132: 123:. Since all 118: 110: 66: 61: 57: 55: 26: 25: 3394:Categories 3342:Autoencoder 3297:Transformer 3165:Alex Graves 3113:OpenAI Five 3017:IBM Watsonx 2639:Convolution 2617:Overfitting 630:energy flow 540:productions 482:James Firby 266:– In these 257:Satisficing 125:computation 71:The acting 3420:Categories 3383:Technology 3236:EleutherAI 3195:Fei-Fei Li 3190:Yann LeCun 3103:Q-learning 3086:Decisional 3012:IBM Watson 2920:Midjourney 2812:TensorFlow 2659:Activation 2612:Regression 2607:Clustering 2396:Maes, P.: 2382:Isla, D.: 2007:: 638007. 1950:: 113179. 1712:2022-11-13 1632:Biosystems 1546:2022-11-13 1450:Biosystems 1431:2022-11-13 1282:: 976209. 1079:2022-11-13 893:2013-06-13 843:References 626:motivation 558:technique. 466:sequential 364:(2005) or 347:including 170:egocentric 155:slime mold 121:complexity 3266:MIT CSAIL 3231:Anthropic 3200:Andrew Ng 3098:AlphaZero 2942:VideoPoet 2905:AlphaFold 2842:MindSpore 2796:SpiNNaker 2791:Memristor 2698:Diffusion 2674:Rectifier 2654:Batchnorm 2634:Attention 2629:Adversary 2324:237804893 2316:2574-0970 2277:203848191 2261:1548-7091 2203:0036-8075 2138:2373-8057 2124:(1): 11. 2080:1471-4914 2023:1662-5110 1982:249137521 1966:0753-3322 1907:1471-003X 1842:0300-9564 1801:232322739 1775:2051-5960 1759:(1): 47. 1707:241118606 1660:0303-2647 1638:: 30–38. 1587:1535-9476 1541:229230562 1480:0303-2647 1456:: 48–58. 1365:0960-9822 1298:1662-453X 1239:0270-6474 1174:0270-6474 1074:252187005 989:1471-003X 949:206952441 933:0959-4388 919:: 87–94. 736:tunneling 547:Excalibur 451:Softimage 423:strong AI 385:Creatures 315:attention 162:attention 105:behaviour 84:real time 3374:Portals 3133:Auto-GPT 2965:Word2vec 2769:Hardware 2686:Datasets 2588:Concepts 2452:Archived 2388:Archived 2269:31591577 2221:25700512 2156:29644335 2098:29751974 2041:34163331 1974:35676784 1925:33837376 1860:26838982 1793:33752749 1676:73509918 1668:30826349 1613:23650245 1605:19318681 1496:51722018 1488:30048795 1426:20411770 1373:21700460 1316:36148148 1257:22514315 1192:25995472 1066:36288712 1007:32943779 941:26241632 861:Archived 758:See also 727:Ferritin 712:dopamine 657:Archived 598:ethology 585:reactive 566:Bayesian 533:symbolic 519:CogniTAO 366:KadleÄŤek 273:reactive 268:symbolic 168:. These 143:emergent 51:ethology 3256:Meta AI 3093:AlphaGo 3077:PanGu-ÎŁ 3047:ChatGPT 3022:Granite 2970:Seq2seq 2949:Whisper 2870:WaveNet 2865:AlexNet 2837:Flux.jl 2817:PyTorch 2669:Sigmoid 2664:Softmax 2529:General 2212:4432913 2183:Bibcode 2175:Science 2147:5893576 2089:5975183 2032:8215268 1916:8220193 1868:3894133 1851:5495848 1784:7986300 1640:Bibcode 1596:2722774 1458:Bibcode 1381:9327412 1343:Bibcode 1307:9485944 1248:6703499 1200:6531661 1183:6795183 1100:in vivo 1057:9662304 1034:bioRxiv 998:8991985 571:ABL/Hap 368:(2001). 298:modules 77:dynamic 43:animats 3271:Huawei 3251:OpenAI 3153:People 3123:MuZero 2985:Gemini 2980:Claude 2915:DALL-E 2827:Theano 2358:(2001) 2322:  2314:  2275:  2267:  2259:  2219:  2209:  2201:  2154:  2144:  2136:  2096:  2086:  2078:  2039:  2029:  2021:  1980:  1972:  1964:  1923:  1913:  1905:  1866:  1858:  1848:  1840:  1799:  1791:  1781:  1773:  1705:  1674:  1666:  1658:  1611:  1603:  1593:  1585:  1539:  1529:  1494:  1486:  1478:  1424:  1414:  1379:  1371:  1363:  1314:  1304:  1296:  1255:  1245:  1237:  1198:  1190:  1180:  1172:  1072:  1064:  1054:  1036:  1005:  995:  987:  947:  939:  931:  513:Others 456:Other 166:memory 129:biased 94:humans 3337:Mamba 3108:SARSA 3072:LLaMA 3067:BLOOM 3052:GPT-J 3042:GPT-4 3037:GPT-3 3032:GPT-2 3027:GPT-1 2990:LaMDA 2822:Keras 2320:S2CID 2273:S2CID 1978:S2CID 1864:S2CID 1797:S2CID 1703:S2CID 1672:S2CID 1609:S2CID 1537:S2CID 1492:S2CID 1377:S2CID 1196:S2CID 1070:S2CID 945:S2CID 562:ACT-R 531:is a 101:model 73:agent 3261:Mila 3062:PaLM 2995:Bard 2975:BERT 2958:Text 2937:Sora 2312:ISSN 2265:PMID 2257:ISSN 2217:PMID 2199:ISSN 2152:PMID 2134:ISSN 2094:PMID 2076:ISSN 2037:PMID 2019:ISSN 1970:PMID 1962:ISSN 1921:PMID 1903:ISSN 1856:PMID 1838:ISSN 1789:PMID 1771:ISSN 1734:help 1664:PMID 1656:ISSN 1601:PMID 1583:ISSN 1527:ISBN 1484:PMID 1476:ISSN 1422:PMID 1412:ISBN 1369:PMID 1361:ISSN 1312:PMID 1294:ISSN 1253:PMID 1235:ISSN 1188:PMID 1170:ISSN 1133:help 1062:PMID 1003:PMID 985:ISSN 937:PMID 929:ISSN 803:OPS5 729:and 694:The 681:The 674:The 649:mind 604:and 579:The 529:Soar 498:POSH 464:and 439:bots 327:ASMO 307:some 147:some 41:and 3002:NMT 2885:OCR 2880:HWR 2832:JAX 2786:VPU 2781:TPU 2776:IPU 2600:SGD 2304:doi 2249:doi 2207:PMC 2191:doi 2179:347 2142:PMC 2126:doi 2084:PMC 2068:doi 2027:PMC 2009:doi 1952:doi 1948:151 1911:PMC 1895:doi 1846:PMC 1828:doi 1824:123 1779:PMC 1761:doi 1695:doi 1648:doi 1636:179 1591:PMC 1573:doi 1519:doi 1466:doi 1454:171 1404:doi 1351:doi 1302:PMC 1284:doi 1243:PMC 1227:doi 1178:PMC 1160:doi 1106:doi 1052:PMC 1044:doi 993:PMC 977:doi 921:doi 725:1) 523:BDI 509:). 492:'s 486:RAP 484:'s 285:IVE 283:or 281:JAM 60:to 3422:: 2485:- 2318:. 2310:. 2298:. 2294:. 2271:. 2263:. 2255:. 2245:16 2243:. 2239:. 2215:. 2205:. 2197:. 2189:. 2177:. 2173:. 2150:. 2140:. 2132:. 2120:. 2116:. 2092:. 2082:. 2074:. 2064:24 2062:. 2058:. 2035:. 2025:. 2017:. 2005:15 2003:. 1999:. 1976:. 1968:. 1960:. 1946:. 1942:. 1919:. 1909:. 1901:. 1891:22 1889:. 1885:. 1862:. 1854:. 1844:. 1836:. 1822:. 1818:. 1795:. 1787:. 1777:. 1769:. 1755:. 1751:. 1725:: 1723:}} 1719:{{ 1701:. 1693:. 1670:. 1662:. 1654:. 1646:. 1634:. 1630:. 1607:. 1599:. 1589:. 1581:. 1567:. 1563:. 1535:, 1525:, 1513:, 1490:. 1482:. 1474:. 1464:. 1452:. 1448:. 1420:, 1410:, 1398:, 1375:. 1367:. 1359:. 1349:. 1339:21 1337:. 1333:. 1310:. 1300:. 1292:. 1280:16 1278:. 1274:. 1251:. 1241:. 1233:. 1223:32 1221:. 1217:. 1194:. 1186:. 1176:. 1168:. 1156:35 1154:. 1150:. 1124:: 1122:}} 1118:{{ 1104:. 1088:^ 1068:. 1060:. 1050:. 1042:. 1030:41 1028:. 1024:. 1001:. 991:. 983:. 973:21 971:. 967:. 943:. 935:. 927:. 917:35 915:. 911:. 886:. 880:. 655:. 321:. 287:. 2515:e 2508:t 2501:v 2326:. 2306:: 2300:4 2279:. 2251:: 2223:. 2193:: 2185:: 2158:. 2128:: 2122:4 2100:. 2070:: 2043:. 2011:: 1984:. 1954:: 1927:. 1897:: 1870:. 1830:: 1803:. 1763:: 1757:9 1736:) 1732:( 1715:. 1697:: 1678:. 1650:: 1642:: 1615:. 1575:: 1569:8 1521:: 1498:. 1468:: 1460:: 1406:: 1383:. 1353:: 1345:: 1318:. 1286:: 1259:. 1229:: 1202:. 1162:: 1135:) 1131:( 1114:. 1108:: 1082:. 1046:: 1009:. 979:: 951:. 923:: 896:. 453:. 404:. 23:.

Index

Game mechanics § Action selection
artificial intelligence
cognitive science
intelligent agents
animats
agent environment
ethology
agent
dynamic
real time
humans
model
behaviour
complexity
computation
biased
emergent
social insect
slime mold
attention
memory
egocentric
machine learning
combinatorial complexity
tractability
agent architecture
symbol-based systems
distributed solutions
dynamic planning
scientific models

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑