Knowledge (XXG)

Material extrusion-based additive manufacturing

Source 📝

33: 219:
The brown parts, now washed, are transferred to a sintering furnace. This furnace adheres to a material-specific profile, depending on the material used. Initially, it burns away any remaining binder. Subsequently, it consolidates the metal powder, transforming it into a fully dense, finished metal
205:
printers, is infused with metal. The printer deposits the metal-infused filament layer by layer, building up the shape of the part. These printed parts are referred to as "green" parts. To compensate for predictable shrinkage during the subsequent sintering process, the green parts are scaled up by
212:
After printing, the green parts are placed in a debinding station. In this step, an organic solvent dissolves most of the plastic binding material. Consequently, the green parts transition into "brown" parts. The debinding process eliminates excess plastic, leaving behind a structure of metal
296:
have enabled material extrusion printers to utilize ceramic-based support materials, designed for easy removal. This advancement significantly facilitates the creation of complex geometries, as the support material can be effortlessly broken off after printing. A notable example is
249:
system, starting from a powder‐binder mixture which is squeezed out through a computer‐controlled nozzle. Parts are manufactured layer by layer and the “green parts” are debinded and sintered to reach their final density; IFAM restarted this line of research in
301:’s machine, which employs a ceramic interface layer on all support structures. This feature ensures that the supports can be snapped off with minimal effort, enhancing the overall efficiency and precision of the printing process. 170:
process category, the feedstock materials are mixtures of a polymeric binder (from 40% to 60% by volume) and a fine grain solid powder of metal or ceramic materials. Similar type of feedstock is also used in the
450: 274:, based on material extrusion, consisting of a mini-extruder with a single screw mounted on a high-precision positioning system, fed with bulk material in granulated form (pellets); 194:
The process for creating material extruded metal parts typically involves several stages, transforming them from plastic/metal composites to fully metal parts.
109: 81: 201:
The process begins with printing the part using a filament containing metal powder bound in plastic. This filament, similar to that used in conventional
88: 95: 466: 419: 57:
of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be
386: 77: 962: 351:
After year 2015, some commercial providers of the technology have started proposing their product, mostly for metal applications, e.g.:
523: 128: 17: 580: 54: 278: 175:(MIM) and in the Ceramic Injection Molding (CIM) processes. The extruder pushes the material towards a heated nozzle thanks to 957: 502: 102: 879:"Flexible interconnected ceramic parts 3D printed by two-component material extrusion with water-soluble support structures" 314:, and ALM3d have expanded the range of materials suitable for material extrusion printers. Some of these materials include: 253:
In 1998, the concept of hybrid, additive/subtractive Shape Deposition Manufacturing for ceramics was proposed and tested at
50: 533: 66: 306:
In the past few years, advances in material science and the expansion of material extrusion systems at companies like
650: 626: 440: 414: 293: 264: 254: 202: 163: 159: 142: 585: 486: 379: 549: 507: 476: 285:
metals and CIM ceramics, based on extrusion of pellets with a stationary piston-based extruder over a reversed
220:
part. The sintering process is integral as it ensures that the part attains its required mechanical properties.
158:, defined by the ISO international standard 17296-2. While it is mostly used for plastics, under the name of 674: 575: 481: 282: 172: 43: 947: 528: 167: 146: 799: 751: 711: 570: 471: 155: 62: 878: 952: 372: 242: 58: 424: 787: 260: 898: 859: 590: 409: 271: 246: 890: 849: 839: 779: 739: 699: 554: 812: 764: 724: 319: 315: 894: 600: 595: 941: 828:"An innovative machine for Fused Deposition Modeling of metals and advanced ceramics" 791: 335: 311: 298: 844: 827: 445: 395: 286: 267:
of multiple ceramic actuators and sensors, starting from green ceramic filaments
917: 783: 743: 703: 323: 307: 902: 863: 364: 331: 854: 226:
At this stage, the part becomes a fully metal component, ready for use.
327: 182:
or the controlled axial rotation of a screw inside a heated barrel,
18:
Additive Manufacturing by Material Extrusion of metals and ceramics
179:
the controlled axial movement of a piston inside a heated barrel,
49:
Please help to demonstrate the notability of the topic by citing
339: 368: 826:
Annoni, Massimiliano; Strano, Matteo; Giberti, Hermes (2016).
26: 675:"4 Types of Metal 3D Printing Processes and Their Materials" 166:, it can also be used for metals and ceramics. In this 563: 542: 516: 495: 459: 433: 402: 185:or the controlled rotation of two feeding rollers. 78:"Material extrusion-based additive manufacturing" 277:In 2015, a 3d printing machine was developed at 877:Wick-Joliat, RenĂŠ; Penner, Dirk (2023-09-01). 651:"Learn Metal 3D Printing: How Metal FFF Works" 627:"Learn Metal 3D Printing: How Metal FFF Works" 380: 8: 154:) represents one of the seven categories of 387: 373: 365: 853: 843: 270:In 2005, a system was development at the 129:Learn how and when to remove this message 259:In year 2000, a system was developed at 883:Journal of the European Ceramic Society 618: 808: 797: 760: 749: 720: 709: 467:Powder bed and inkjet head 3D printing 420:Continuous liquid interface production 7: 206:15-20% from their final dimensions. 190:Process of Creating EAM Metal Parts 895:10.1016/j.jeurceramsoc.2023.03.069 524:Electron beam freeform fabrication 25: 581:Digital modeling and fabrication 31: 358:Studio System by Desktop Metal, 42:may not meet Knowledge (XXG)'s 503:Laminated object manufacturing 1: 845:10.1051/matecconf/20164303003 534:Laser engineered net shaping 44:general notability guideline 979: 963:Fused filament fabrication 517:Directed energy deposition 451:EAM of metals and ceramics 441:Fused filament fabrication 415:Computed axial lithography 265:solid freeform fabrication 255:Carnegie Mellon University 51:reliable secondary sources 40:The topic of this article 784:10.1108/13552540510612901 744:10.1108/13552540010337047 704:10.1108/13552549510146649 586:Distributed manufacturing 487:Selective laser sintering 460:Powder bed binding/fusion 403:Resin photopolymerization 292:In 2016, developments in 832:MATEC Web of Conferences 550:Construction 3D printing 508:Ultrasonic consolidation 477:Selective heat sintering 396:3D printing technologies 576:3D printing marketplace 482:Selective laser melting 347:Commercial developments 294:multi-material printing 173:Metal Injection Molding 807:Cite journal requires 759:Cite journal requires 719:Cite journal requires 529:Laser metal deposition 355:Metal X by Markforged, 147:additive manufacturing 958:3D printing processes 571:3D printing processes 472:Electron beam melting 279:Politecnico di Milano 156:3d printing processes 236:R&D developments 425:Solid ground curing 778:"EmeraldInsight". 738:"EmeraldInsight". 698:"EmeraldInsight". 434:Material extrusion 334:Zirconium Copper, 261:Rutgers University 143:Material extrusion 46: 889:(11): 4877–4884. 609: 608: 591:Rapid prototyping 543:Building printing 410:Stereolithography 326:, Aluminum 6061, 272:Drexel University 247:Rapid Prototyping 139: 138: 131: 113: 41: 16:(Redirected from 970: 932: 931: 929: 928: 918:"Studio System™" 916:Metal, Desktop. 913: 907: 906: 874: 868: 867: 857: 847: 823: 817: 816: 810: 805: 803: 795: 775: 769: 768: 762: 757: 755: 747: 735: 729: 728: 722: 717: 715: 707: 695: 689: 688: 686: 685: 671: 665: 664: 662: 661: 647: 641: 640: 638: 637: 623: 555:Contour crafting 496:Sheet lamination 389: 382: 375: 366: 245:IFAM designed a 134: 127: 123: 120: 114: 112: 71: 35: 34: 27: 21: 978: 977: 973: 972: 971: 969: 968: 967: 938: 937: 936: 935: 926: 924: 915: 914: 910: 876: 875: 871: 825: 824: 820: 806: 796: 777: 776: 772: 758: 748: 737: 736: 732: 718: 708: 697: 696: 692: 683: 681: 679:www.xometry.com 673: 672: 668: 659: 657: 649: 648: 644: 635: 633: 625: 624: 620: 615: 610: 605: 559: 538: 512: 491: 455: 429: 398: 393: 349: 320:Low-Alloy Steel 316:Stainless Steel 238: 233: 192: 135: 124: 118: 115: 72: 70: 48: 36: 32: 23: 22: 15: 12: 11: 5: 976: 974: 966: 965: 960: 955: 950: 940: 939: 934: 933: 908: 869: 818: 809:|journal= 770: 761:|journal= 730: 721:|journal= 690: 666: 655:markforged.com 642: 631:markforged.com 617: 616: 614: 613:Reference List 611: 607: 606: 604: 603: 601:3D bioprinting 598: 596:RepRap project 593: 588: 583: 578: 573: 567: 565: 564:Related topics 561: 560: 558: 557: 552: 546: 544: 540: 539: 537: 536: 531: 526: 520: 518: 514: 513: 511: 510: 505: 499: 497: 493: 492: 490: 489: 484: 479: 474: 469: 463: 461: 457: 456: 454: 453: 448: 443: 437: 435: 431: 430: 428: 427: 422: 417: 412: 406: 404: 400: 399: 394: 392: 391: 384: 377: 369: 363: 362: 361:ExAM by AIM3d. 359: 356: 348: 345: 344: 343: 303: 302: 290: 275: 268: 257: 251: 237: 234: 232: 229: 228: 227: 221: 214: 207: 191: 188: 187: 186: 183: 180: 137: 136: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 975: 964: 961: 959: 956: 954: 951: 949: 948:Manufacturing 946: 945: 943: 923: 922:Desktop Metal 919: 912: 909: 904: 900: 896: 892: 888: 884: 880: 873: 870: 865: 861: 856: 851: 846: 841: 837: 833: 829: 822: 819: 814: 801: 793: 789: 785: 781: 774: 771: 766: 753: 745: 741: 734: 731: 726: 713: 705: 701: 694: 691: 680: 676: 670: 667: 656: 652: 646: 643: 632: 628: 622: 619: 612: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 568: 566: 562: 556: 553: 551: 548: 547: 545: 541: 535: 532: 530: 527: 525: 522: 521: 519: 515: 509: 506: 504: 501: 500: 498: 494: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 464: 462: 458: 452: 449: 447: 444: 442: 439: 438: 436: 432: 426: 423: 421: 418: 416: 413: 411: 408: 407: 405: 401: 397: 390: 385: 383: 378: 376: 371: 370: 367: 360: 357: 354: 353: 352: 346: 341: 337: 336:Cobalt Chrome 333: 329: 325: 321: 317: 313: 312:Desktop Metal 309: 305: 304: 300: 299:Desktop Metal 295: 291: 288: 284: 280: 276: 273: 269: 266: 262: 258: 256: 252: 248: 244: 241:In 1995, the 240: 239: 235: 230: 225: 222: 218: 215: 211: 208: 204: 200: 197: 196: 195: 189: 184: 181: 178: 177: 176: 174: 169: 165: 161: 157: 153: 149: 148: 144: 133: 130: 122: 111: 108: 104: 101: 97: 94: 90: 87: 83: 80: â€“  79: 75: 74:Find sources: 68: 64: 60: 56: 52: 45: 38: 29: 28: 19: 925:. Retrieved 921: 911: 886: 882: 872: 855:11311/978778 835: 831: 821: 800:cite journal 773: 752:cite journal 733: 712:cite journal 693: 682:. Retrieved 678: 669: 658:. Retrieved 654: 645: 634:. Retrieved 630: 621: 350: 223: 216: 209: 198: 193: 151: 141: 140: 125: 116: 106: 99: 92: 85: 73: 953:3D printing 446:Robocasting 287:Delta Robot 55:independent 942:Categories 927:2024-02-20 684:2024-02-20 660:2024-02-20 636:2024-02-20 338:, or even 324:Tool Steel 308:Markforged 243:Fraunhofer 217:Sintering: 210:Debinding: 119:March 2019 89:newspapers 63:redirected 903:0955-2219 864:2261-236X 838:: 03003. 792:137263740 199:Printing: 53:that are 332:Chromium 263:for the 231:History 213:powder. 145:-based 103:scholar 67:deleted 901:  862:  790:  328:Bronze 289:table; 105:  98:  91:  84:  76:  59:merged 788:S2CID 250:2017; 110:JSTOR 96:books 65:, or 899:ISSN 860:ISSN 813:help 765:help 725:help 340:gold 281:for 224:Use: 82:news 891:doi 850:hdl 840:doi 780:doi 740:doi 700:doi 283:MIM 203:FFF 164:FFF 162:or 160:FDM 152:EAM 944:: 920:. 897:. 887:43 885:. 881:. 858:. 848:. 836:43 834:. 830:. 804:: 802:}} 798:{{ 786:. 756:: 754:}} 750:{{ 716:: 714:}} 710:{{ 677:. 653:. 629:. 330:, 322:, 318:, 310:, 168:AM 61:, 930:. 905:. 893:: 866:. 852:: 842:: 815:) 811:( 794:. 782:: 767:) 763:( 746:. 742:: 727:) 723:( 706:. 702:: 687:. 663:. 639:. 388:e 381:t 374:v 342:. 150:( 132:) 126:( 121:) 117:( 107:¡ 100:¡ 93:¡ 86:¡ 69:. 47:. 20:)

Index

Additive Manufacturing by Material Extrusion of metals and ceramics
general notability guideline
reliable secondary sources
independent
merged
redirected
deleted
"Material extrusion-based additive manufacturing"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Material extrusion
additive manufacturing
3d printing processes
FDM
FFF
AM
Metal Injection Molding
FFF
Fraunhofer
Rapid Prototyping
Carnegie Mellon University
Rutgers University
solid freeform fabrication
Drexel University
Politecnico di Milano
MIM

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑