Knowledge (XXG)

Affiliated operator

Source đź“ť

237: 674:
showed, these spaces can be realised as unbounded operators only by using a certain positive power of the reference modular operator. Instead of being characterised by the simple affiliation relation
64:
could naturally be phrased in terms of unbounded operators affiliated with the von Neumann algebra of the group. Algebraic properties of affiliated operators have proved important in
363: 465:
need not necessarily be well-behaved under either addition or composition. However in the presence of a faithful semi-finite normal trace τ and the standard
434: 778: 771: 764: 728: 714: 700: 153: 466: 798: 553: 682:, there is a more complicated bimodule relation involving the analytic continuation of the modular automorphism group. 509:
sufficiently large. This algebra of unbounded operators is complete for a natural topology, generalising the notion of
49: 663: 395:, a positive self-adjoint operator commutes with a unitary operator if and only if each of its spectral projections 793: 604: 510: 100: 41: 596: 25: 591:
factor, then every affiliated operator is automatically measurable, so the affiliated operators form a
281: 33: 304: 89: 37: 325: 774: 767: 760: 724: 710: 696: 61: 53: 573: 392: 369: 120: 29: 569: 57: 398: 670:
spaces are no longer realised by operators affiliated with the von Neumann algebra. As
45: 787: 486: 93: 65: 671: 380: 17: 662:, the theory takes a quite different form. Indeed in this case, thanks to the 592: 494: 127: 517:
spaces defined by the trace and was introduced to facilitate their study.
73: 69: 315:
The last condition follows by uniqueness of the polar decomposition. If
461:
In general the operators affiliated with a von Neumann algebra
721:
L-Invariants: Theory and Applications to Geometry and K-Theory
647:), we simply recover the *-algebra of measurable functions on 232:{\displaystyle G(A)=\{(x,Ax):x\in D(A)\}\subseteq H\oplus H} 497:
with nice properties: these are operators such that τ(
444:| and the partial isometry in the polar decomposition of 520:
This theory can be applied when the von Neumann algebra
401: 328: 156: 40:
to study modules generated by a single vector. Later
556:, it gives the well-known theory of non-commutative 76:
that evolved from the study of such index theorems.
723:, (Chapter 8: the algebra of affiliated operators) 428: 357: 231: 595:, as originally observed in the first paper of 436:does. This gives another equivalent condition: 8: 214: 172: 587:von Neumann algebra, for example a type II 303:should commute with both operators in the 400: 354: 346: 338: 327: 155: 666:, it is known that the non-commutative 631:. Of course in the classical case when 757:Theory of Operator Algebras I, II, III 513:. It contains all the non-commutative 7: 746:Notes on non-commutative integration 741:(1936), 116–229 (Chapter XVI). 146:should leave invariant the graph of 623:defines a measurable operator with 607:: for on the closure of its image 134:. Equivalent conditions are that: 14: 733:F. J. Murray and J. von Neumann, 467:Gelfand–Naimark–Segal 505:()) < ∞ for 493:affiliated operators do form a 599:and von Neumann. In this case 544:) acting on the Hilbert space 423: 420: 408: 405: 347: 339: 211: 205: 190: 175: 166: 160: 1: 440:each spectral projection of | 103:and densely defined operator 635:is a probability space and 319:has a polar decomposition 288:, onto itself and satisfy 815: 387:should be affiliated with 611:has a measurable inverse 554:Hilbert–Schmidt operators 358:{\displaystyle A=V|A|,\,} 36:as a technique for using 737:, Annals of Mathematics 693:Non-commutative geometry 605:von Neumann regular ring 752:(1974), 103–116. 664:Tomita–Takesaki theory 511:convergence in measure 430: 379:and that the positive 359: 233: 431: 360: 234: 799:Von Neumann algebras 707:Von Neumann algebras 457:Measurable operators 399: 326: 242:the projection onto 154: 119:commutes with every 34:von Neumann algebras 22:affiliated operators 501: −  429:{\displaystyle E()} 305:polar decomposition 90:von Neumann algebra 38:unbounded operators 24:were introduced by 748:, J. Funct. Anal. 735:Rings of Operators 426: 391:. However, by the 355: 229: 68:, an area between 54:elliptic operators 583:is in addition a 368:it says that the 62:fundamental group 32:in the theory of 806: 489:proved that the 485:, τ), 435: 433: 432: 427: 393:spectral theorem 370:partial isometry 364: 362: 361: 356: 350: 342: 250:) should lie in 238: 236: 235: 230: 121:unitary operator 58:closed manifolds 814: 813: 809: 808: 807: 805: 804: 803: 794:Operator theory 784: 783: 688: 590: 459: 397: 396: 324: 323: 256: 152: 151: 82: 12: 11: 5: 812: 810: 802: 801: 796: 786: 785: 782: 781: 753: 742: 731: 717: 703: 687: 684: 588: 458: 455: 454: 453: 425: 422: 419: 416: 413: 410: 407: 404: 375:should lie in 366: 365: 353: 349: 345: 341: 337: 334: 331: 313: 312: 293: 262: 254: 240: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 107:is said to be 81: 78: 60:with infinite 50:index theorems 13: 10: 9: 6: 4: 3: 2: 811: 800: 797: 795: 792: 791: 789: 780: 779:3-540-42913-1 776: 773: 772:3-540-42914-X 769: 766: 765:3-540-42248-X 762: 758: 755:M. Takesaki, 754: 751: 747: 743: 740: 736: 732: 730: 729:3-540-43566-2 726: 722: 718: 716: 715:0-444-86308-7 712: 708: 704: 702: 701:0-12-185860-X 698: 694: 690: 689: 685: 683: 681: 678: =  677: 673: 669: 665: 661: 657: 652: 650: 646: 642: 639: =  638: 634: 630: 627: =  626: 622: 619: =  618: 614: 610: 606: 602: 598: 594: 586: 582: 577: 575: 571: 567: 563: 559: 555: 551: 547: 543: 539: 536: =  535: 531: 527: 523: 518: 516: 512: 508: 504: 500: 496: 492: 488: 487:Edward Nelson 484: 480: 477: =  476: 472: 468: 464: 456: 451: 447: 443: 439: 438: 437: 417: 414: 411: 402: 394: 390: 386: 382: 378: 374: 371: 351: 343: 335: 332: 329: 322: 321: 320: 318: 310: 306: 302: 298: 295:each unitary 294: 291: 287: 283: 279: 275: 272:should carry 271: 267: 264:each unitary 263: 260: 253: 249: 245: 241: 226: 223: 220: 217: 208: 202: 199: 196: 193: 187: 184: 181: 178: 169: 163: 157: 149: 145: 141: 138:each unitary 137: 136: 135: 133: 129: 125: 122: 118: 114: 110: 106: 102: 98: 95: 94:Hilbert space 91: 87: 79: 77: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 756: 749: 745: 738: 734: 720: 706: 705:J. Dixmier, 692: 679: 675: 667: 659: 655: 653: 648: 644: 640: 636: 632: 628: 624: 620: 616: 612: 608: 600: 584: 580: 578: 565: 561: 557: 549: 545: 541: 537: 533: 529: 525: 521: 519: 514: 506: 502: 498: 490: 482: 478: 474: 470: 462: 460: 449: 445: 441: 388: 384: 381:self-adjoint 376: 372: 367: 316: 314: 308: 300: 296: 289: 285: 277: 273: 269: 265: 258: 251: 247: 243: 147: 143: 139: 131: 123: 116: 112: 108: 104: 96: 92:acting on a 85: 83: 66:L cohomology 48:showed that 21: 15: 744:E. Nelson, 691:A. Connes, 654:If however 574:von Neumann 150:defined by 30:von Neumann 18:mathematics 788:Categories 686:References 491:measurable 469:action of 109:affiliated 80:Definition 719:W. LĂĽck, 615:and then 593:*-algebra 568:) due to 495:*-algebra 383:operator 224:⊕ 218:⊆ 200:∈ 128:commutant 660:type III 570:Schatten 448:lies in 290:UAU* = A 74:geometry 70:analysis 560:spaces 532:. When 530:type II 280:), the 126:in the 777:  770:  763:  727:  713:  699:  672:Connes 597:Murray 585:finite 526:type I 292:there. 282:domain 101:closed 46:Singer 42:Atiyah 26:Murray 603:is a 579:When 552:) of 111:with 88:be a 775:ISBN 768:ISBN 761:ISBN 725:ISBN 711:ISBN 697:ISBN 572:and 99:. A 84:Let 72:and 52:for 44:and 28:and 676:UAU 658:is 625:ATA 609:|A| 528:or 524:is 473:on 385:|A| 307:of 299:in 284:of 268:in 142:in 130:of 115:if 56:on 16:In 790:: 759:, 750:15 739:37 709:, 695:, 651:. 621:BV 576:. 301:M' 270:M' 261:). 144:M' 20:, 680:A 668:L 656:M 649:X 645:X 643:( 641:L 637:M 633:X 629:A 617:T 613:B 601:M 589:1 581:M 566:H 564:( 562:L 558:L 550:H 548:( 546:L 542:H 540:( 538:B 534:M 522:M 515:L 507:N 503:E 499:I 483:M 481:( 479:L 475:H 471:M 463:M 452:. 450:M 446:A 442:A 424:) 421:] 418:N 415:, 412:0 409:[ 406:( 403:E 389:M 377:M 373:V 352:, 348:| 344:A 340:| 336:V 333:= 330:A 317:A 311:. 309:A 297:U 286:A 278:A 276:( 274:D 266:U 259:M 257:( 255:2 252:M 248:A 246:( 244:G 239:. 227:H 221:H 215:} 212:) 209:A 206:( 203:D 197:x 194:: 191:) 188:x 185:A 182:, 179:x 176:( 173:{ 170:= 167:) 164:A 161:( 158:G 148:A 140:U 132:M 124:U 117:A 113:M 105:A 97:H 86:M

Index

mathematics
Murray
von Neumann
von Neumann algebras
unbounded operators
Atiyah
Singer
index theorems
elliptic operators
closed manifolds
fundamental group
L cohomology
analysis
geometry
von Neumann algebra
Hilbert space
closed
unitary operator
commutant
domain
polar decomposition
partial isometry
self-adjoint
spectral theorem
Gelfand–Naimark–Segal
Edward Nelson
*-algebra
convergence in measure
Hilbert–Schmidt operators
Schatten

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑