Knowledge (XXG)

Affine group

Source 📝

2968: 2100: 2963:{\displaystyle {\begin{array}{c|cccccc}&{\color {Blue}C_{id}}&{\color {Blue}C_{1}}&{\color {Blue}C_{g}}&{\color {Blue}C_{g^{2}}}&{\color {Gray}\dots }&{\color {Blue}C_{g^{p-2}}}\\\hline {\color {Blue}\chi _{1}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Blue}e^{\frac {2\pi i}{p-1}}}&{\color {Blue}e^{\frac {4\pi i}{p-1}}}&{\color {Gray}\dots }&{\color {Blue}e^{\frac {2\pi (p-2)i}{p-1}}}\\{\color {Blue}\chi _{2}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Blue}e^{\frac {4\pi i}{p-1}}}&{\color {Blue}e^{\frac {8\pi i}{p-1}}}&{\color {Gray}\dots }&{\color {Blue}e^{\frac {4\pi (p-2)i}{p-1}}}\\{\color {Blue}\chi _{3}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Blue}e^{\frac {6\pi i}{p-1}}}&{\color {Blue}e^{\frac {12\pi i}{p-1}}}&{\color {Gray}\dots }&{\color {Blue}e^{\frac {6\pi (p-2)i}{p-1}}}\\{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }\\{\color {Blue}\chi _{p-1}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Gray}1}&{\color {Gray}1}&{\color {Gray}\dots }&{\color {Gray}1}\\{\color {Blue}\chi _{p}}&{\color {Gray}p-1}&{\color {Gray}-1}&{\color {Gray}0}&{\color {Gray}0}&{\color {Gray}\dots }&{\color {Gray}0}\end{array}}} 3573: 3048: 1707: 3568:{\displaystyle {\begin{aligned}{\text{1.}}&&(x,y)&\mapsto (x+a,y+b),\\{\text{2.}}&&(x,y)&\mapsto (ax,by),&\qquad {\text{where }}ab\neq 0,\\{\text{3.}}&&(x,y)&\mapsto (ax,y+b),&\qquad {\text{where }}a\neq 0,\\{\text{4.}}&&(x,y)&\mapsto (ax+y,ay),&\qquad {\text{where }}a\neq 0,\\{\text{5.}}&&(x,y)&\mapsto (x+y,y+a)\\{\text{6.}}&&(x,y)&\mapsto (a(x\cos t+y\sin t),a(-x\sin t+y\cos t)),&\qquad {\text{where }}a\neq 0.\end{aligned}}} 1365: 1702:{\displaystyle {\begin{aligned}C_{id}&=\left\{{\begin{pmatrix}1&0\\0&1\end{pmatrix}}\right\}\,,\\C_{1}&=\left\{{\begin{pmatrix}1&b\\0&1\end{pmatrix}}{\Bigg |}b\in \mathbf {F} _{p}^{*}\right\}\,,\\{\Bigg \{}C_{a}&=\left\{{\begin{pmatrix}a&b\\0&1\end{pmatrix}}{\Bigg |}b\in \mathbf {F} _{p}\right\}{\Bigg |}a\in \mathbf {F} _{p}\setminus \{0,1\}{\Bigg \}}\,.\end{aligned}}} 1337: 963: 1140: 1089: 1939: 433: 1810: 3053: 664: 271: 3972:
The subgroup of the special affine group consisting of those transformations whose linear part has determinant 1 is the group of orientation- and volume-preserving maps. Algebraically, this group is a semidirect product
859: 1332:{\displaystyle {\begin{pmatrix}c&d\\0&1\end{pmatrix}}{\begin{pmatrix}a&b\\0&1\end{pmatrix}}{\begin{pmatrix}c&d\\0&1\end{pmatrix}}^{-1}={\begin{pmatrix}a&(1-a)d+bc\\0&1\end{pmatrix}}\,,} 171: 4435: 1370: 3844: 4241: 3016: 351:(which is uniquely defined), however, no particular subgroup is a natural choice, since no point is special – this corresponds to the multiple choices of transverse subgroup, or splitting of the 3760: 591: 2062: 974: 2105: 1832: 3042:
are real numbers (the given conditions insure that transformations are invertible, but not for making the classes distinct; for example, the identity belongs to all the classes).
54:
Over any field, the affine group may be viewed as a matrix group in a natural way. If the associated field of scalars is the real or complex field, then the affine group is a
4201: 4177: 4143: 4077: 4279: 4009: 4324: 3959: 3924: 360: 4348: 4029: 2081:
is the dimension of the last irreducible representation. Finally using the orthogonality of irreducible representations, we can complete the character table of
1746: 616: 958:{\displaystyle A=\left({\begin{array}{cc}1&0\\0&0\end{array}}\right),\qquad B=\left({\begin{array}{cc}0&1\\0&0\end{array}}\right)\,,} 201: 3649:
The proof may be done by first remarking that if an affine transformation has no fixed point, then the matrix of the associated linear map has an
3792: 120: 4381: 4659: 4623: 4598: 4573: 752:, namely the stabilizer of this affine plane; the above matrix formulation is the (transpose of) the realization of this, with the 4212: 3632:
belong to cases 1, 3, and 5. The transformations that do not preserve the orientation of the plane belong to cases 2 (with
4534: 2981: 4350:
with the translations. Geometrically, it is the subgroup of the affine group generated by the orthogonal reflections.
3721: 625: 51:), the affine group consists of those functions from the space to itself such that the image of every line is a line. 4651: 3929: 1084:{\displaystyle e^{aA+bB}=\left({\begin{array}{cc}e^{a}&{\tfrac {b}{a}}(e^{a}-1)\\0&1\end{array}}\right)\,.} 512: 305: 3629: 1998: 1934:{\displaystyle \rho _{k}{\begin{pmatrix}a&b\\0&1\end{pmatrix}}=\exp \left({\frac {2ikj\pi }{p-1}}\right)} 4679: 3019: 4505:(the addition and origin), but not necessarily scalar multiplication, and these groups differ if working over 4466: 4115: 3579: 4684: 3622: 40: 4453: 4441: 4182: 4158: 4124: 4058: 3866: 3716: 3682: 352: 107: 4260: 3976: 4689: 4294: 4048: 442:
with a vector space, the subgroup that stabilizes the origin (of the vector space) is the original
36: 3884: 3654: 3586: 471: 312:
is isomorphic to the general linear group of the same dimension (so the stabilizer of a point in
189: 91: 4655: 4619: 4594: 4569: 4365: 4359: 832: 796: 780: 4543: 4327: 428:{\displaystyle 1\to V\to V\rtimes \operatorname {GL} (V)\to \operatorname {GL} (V)\to 1\,.} 4461: 4457: 3786: 3598: 3590: 44: 4333: 4014: 3869:. In terms of the semi-direct product, the special affine group consists of all pairs 3030:, an affine coordinate system exists on which it has one of the following forms, where 4497:. Note that this containment is in general proper, since by "automorphisms" one means 4291:
is a subgroup of the affine group. Algebraically, this group is a semidirect product
4673: 4644: 4561: 4369: 4032: 3615: 3608: 3594: 1805:{\displaystyle \rho _{k}:\operatorname {Aff} (\mathbf {F} _{p})\to \mathbb {C} ^{*}} 4639: 4547: 4044: 3604:
Case 3 corresponds to a scaling in one direction and a translation in another one.
3023: 659:{\displaystyle \left({\begin{array}{c|c}M&v\\\hline 0&1\end{array}}\right)} 608: 76: 32: 1008: 920: 874: 343:
All these subgroups are conjugate, where conjugation is given by translation from
188:
is the natural one (linear transformations are automorphisms), so this defines a
3854: 3027: 48: 20: 831:
matrices representing the affine group in one dimension. It is a two-parameter
266:{\displaystyle \operatorname {Aff} (n,K)=K^{n}\rtimes \operatorname {GL} (n,K)} 4108: 3650: 4051:, the affine group can be easily specified. For example, Günter Ewald wrote: 3789:
by a vector representation", and, as above, one has the short exact sequence
817:
Each of these two classes of matrices is closed under matrix multiplication.
835: 340:: recall that if one fixes a point, an affine space becomes a vector space. 55: 3853:
The subset of all invertible affine transformations that preserve a fixed
4283: 4152: 3965:
is a linear transformation of whose determinant has absolute value 1 and
166:{\displaystyle \operatorname {Aff} (V)=V\rtimes \operatorname {GL} (V)} 814:
identity matrix with the bottom row replaced by a row of all ones.
4568:. Vol. 1. Berlin Heidelberg: Springer-Verlag. Section 2.7.6. 4430:{\displaystyle \mathbf {R} ^{1,3}\rtimes \operatorname {O} (1,3)} 4257:
is a Euclidean space (over the field of real numbers), the group
3589:
that may differ in two different directions. When working with a
328:); formally, it is the general linear group of the vector space 1740:
one-dimensional representations, decided by the homomorphism
4266: 4501:
automorphisms, i.e., they preserve the group structure on
4532:
Poole, David G. (November 1995). "The Stochastic Group".
795:
matrix in which the entries in each column sum to 1. The
458:
Representing the affine group as a semidirect product of
3861:. (The transformations themselves are sometimes called 838:, so with merely two generators (Lie algebra elements), 3839:{\displaystyle 1\to V\to V\rtimes _{\rho }G\to G\to 1.} 3022:. More precisely, given an affine transformation of an 766:) blocks corresponding to the direct sum decomposition 4456:– certain discrete subgroups of the affine group on a 4236:{\displaystyle {\mathfrak {A}}\subset {\mathfrak {P}}} 1851: 1580: 1472: 1402: 1270: 1222: 1185: 1149: 1024: 16:
Group of all affine transformations of an affine space
4384: 4336: 4297: 4263: 4215: 4185: 4161: 4127: 4061: 4017: 3979: 3932: 3887: 3795: 3724: 3685:, one can produce an affine group, sometimes denoted 3051: 2984: 2103: 2001: 1835: 1749: 1368: 1143: 977: 862: 619: 515: 438:
In the case that the affine group was constructed by
363: 204: 123: 3011:{\displaystyle \operatorname {Aff} (2,\mathbb {R} )} 802:
for passing from the above kind to this kind is the
3785:: one can say that the affine group obtained is "a 4643: 4429: 4342: 4318: 4273: 4235: 4195: 4171: 4137: 4071: 4023: 4003: 3953: 3918: 3838: 3754: 3567: 3010: 2962: 2056: 1933: 1804: 1701: 1331: 1083: 957: 658: 585: 427: 265: 165: 3755:{\displaystyle \rho :G\to \operatorname {GL} (V)} 1729:irreducible representations. By above paragraph ( 1686: 1643: 1613: 1548: 1505: 3893: 86:acting by translations, and the affine group of 4031:with the translations. It is generated by the 3711:More generally and abstractly, given any group 47:(where the associated field of scalars is the 43:from the space into itself. In the case of a 3865:.) This group is the affine analogue of the 586:{\displaystyle (v,M)\cdot (w,N)=(v+Mw,MN)\,.} 8: 3655:Jordan normal form theorem for real matrices 3625:when the coordinate axes are perpendicular. 1681: 1669: 2057:{\displaystyle p(p-1)=p-1+\chi _{p}^{2}\,,} 820:The simplest paradigm may well be the case 1730: 300:Given the affine group of an affine space 82:obtained by "forgetting" the origin, with 4391: 4386: 4383: 4335: 4296: 4265: 4264: 4262: 4227: 4226: 4217: 4216: 4214: 4187: 4186: 4184: 4163: 4162: 4160: 4129: 4128: 4126: 4063: 4062: 4060: 4016: 3978: 3931: 3905: 3888: 3886: 3815: 3794: 3723: 3547: 3427: 3366: 3345: 3282: 3261: 3201: 3177: 3120: 3056: 3052: 3050: 3001: 3000: 2983: 2949: 2940: 2931: 2922: 2910: 2895: 2885: 2879: 2868: 2859: 2850: 2841: 2832: 2823: 2807: 2801: 2790: 2781: 2772: 2763: 2754: 2745: 2736: 2688: 2682: 2673: 2642: 2636: 2605: 2599: 2590: 2581: 2571: 2565: 2517: 2511: 2502: 2471: 2465: 2434: 2428: 2419: 2410: 2400: 2394: 2346: 2340: 2331: 2300: 2294: 2263: 2257: 2248: 2239: 2229: 2223: 2203: 2198: 2192: 2183: 2171: 2166: 2160: 2150: 2144: 2134: 2128: 2115: 2109: 2104: 2102: 2050: 2044: 2039: 2000: 1895: 1846: 1840: 1834: 1796: 1792: 1791: 1778: 1773: 1754: 1748: 1691: 1685: 1684: 1660: 1655: 1642: 1641: 1630: 1625: 1612: 1611: 1575: 1557: 1547: 1546: 1538: 1527: 1522: 1517: 1504: 1503: 1467: 1449: 1437: 1397: 1377: 1369: 1367: 1325: 1265: 1253: 1217: 1180: 1144: 1142: 1077: 1042: 1023: 1015: 1007: 982: 976: 951: 919: 873: 861: 720:is naturally isomorphic to a subgroup of 624: 618: 579: 514: 472:by construction of the semidirect product 421: 362: 233: 203: 122: 3018:can take a simple form on a well-chosen 4524: 4478: 3628:The affine transformations without any 1666: 3926:, that is, the affine transformations 3770:, one gets an associated affine group 292:is matrix multiplication of a vector. 67:Construction from general linear group 2950: 2941: 2932: 2923: 2911: 2896: 2880: 2869: 2860: 2851: 2842: 2833: 2824: 2802: 2791: 2782: 2773: 2764: 2755: 2746: 2737: 2683: 2674: 2637: 2600: 2591: 2582: 2566: 2512: 2503: 2466: 2429: 2420: 2411: 2395: 2341: 2332: 2295: 2258: 2249: 2240: 2224: 2193: 2184: 2161: 2145: 2129: 2110: 7: 4593:. Belmont: Wadsworth. Section 4.12. 4618:. Belmont: Wadsworth. p. 241. 4228: 4218: 4188: 4164: 4130: 4079:of all projective collineations of 4064: 90:can be described concretely as the 4440:This example is very important in 4406: 2974:Planar affine group over the reals 195:In terms of matrices, one writes: 14: 4085:is a group which we may call the 3969:is any fixed translation vector. 3661:Other affine groups and subgroups 3653:equal to one, and then using the 1981:. Then compare with the order of 506:, and multiplication is given by 276:where here the natural action of 71:Concretely, given a vector space 4387: 1774: 1656: 1626: 1518: 827:, that is, the upper triangular 62:Relation to general linear group 4196:{\displaystyle {\mathfrak {P}}} 4172:{\displaystyle {\mathfrak {P}}} 4138:{\displaystyle {\mathfrak {A}}} 4072:{\displaystyle {\mathfrak {P}}} 4011:of the special linear group of 3546: 3344: 3260: 3176: 908: 596:This can be represented as the 4548:10.1080/00029890.1995.12004664 4424: 4412: 4307: 4301: 4274:{\displaystyle {\mathcal {E}}} 4179:consisting of all elements of 4004:{\displaystyle SL(V)\ltimes V} 3992: 3986: 3936: 3906: 3902: 3896: 3889: 3830: 3824: 3805: 3799: 3749: 3743: 3734: 3538: 3535: 3502: 3493: 3463: 3457: 3454: 3447: 3435: 3420: 3396: 3393: 3386: 3374: 3336: 3312: 3309: 3302: 3290: 3252: 3231: 3228: 3221: 3209: 3168: 3150: 3147: 3140: 3128: 3110: 3086: 3083: 3076: 3064: 3005: 2991: 2709: 2697: 2538: 2526: 2367: 2355: 2017: 2005: 1787: 1784: 1769: 1290: 1278: 1054: 1035: 576: 552: 546: 534: 528: 516: 415: 412: 406: 397: 394: 388: 373: 367: 260: 248: 223: 211: 160: 154: 136: 130: 1: 4535:American Mathematical Monthly 4319:{\displaystyle O(V)\ltimes V} 4281:of distance-preserving maps ( 4249:Isometries of Euclidean space 3954:{\displaystyle x\mapsto Mx+v} 3593:these directions need not be 736:embedded as the affine plane 4047:and the projective group of 1965:is a generator of the group 1731:§ Matrix representation 4368:is the affine group of the 3919:{\displaystyle |\det(M)|=1} 3601:need not be perpendicular. 705:row of zeros, and 1 is the 4706: 4652:Cambridge University Press 4357: 3618:combined with a dilation. 3611:combined with a dilation. 1359:conjugacy classes, namely 4616:Geometry: An Introduction 4591:Geometry: An Introduction 3857:up to sign is called the 498:is a linear transform in 474:, the elements are pairs 4642:(1985). "Section VI.1". 3614:Case 5 corresponds to a 3607:Case 4 corresponds to a 3020:affine coordinate system 4043:Presuming knowledge of 709:identity block matrix. 75:, it has an underlying 4614:Ewald, Günter (1971). 4589:Ewald, Günter (1971). 4431: 4344: 4320: 4275: 4253:When the affine space 4237: 4197: 4173: 4139: 4116:hyperplane at infinity 4073: 4025: 4005: 3955: 3920: 3840: 3756: 3621:Case 6 corresponds to 3585:Case 2 corresponds to 3578:Case 1 corresponds to 3569: 3012: 2964: 2058: 1935: 1806: 1703: 1333: 1085: 959: 783:representation is any 698:column vector, 0 is a 660: 587: 429: 267: 167: 41:affine transformations 4432: 4345: 4321: 4276: 4238: 4198: 4174: 4140: 4095:. If we proceed from 4074: 4026: 4006: 3956: 3921: 3841: 3757: 3570: 3013: 2965: 2059: 1936: 1807: 1704: 1334: 1086: 960: 661: 588: 454:Matrix representation 430: 296:Stabilizer of a point 268: 168: 4454:Affine Coxeter group 4382: 4334: 4295: 4261: 4213: 4183: 4159: 4125: 4101:to the affine space 4059: 4015: 3977: 3930: 3885: 3867:special linear group 3859:special affine group 3849:Special affine group 3793: 3722: 3683:general linear group 3049: 2982: 2101: 1999: 1833: 1747: 1366: 1141: 975: 860: 617: 513: 361: 353:short exact sequence 202: 121: 108:general linear group 29:general affine group 4646:Groups and Geometry 4049:projective geometry 4039:Projective subgroup 3670:Given any subgroup 2049: 1532: 1095:Character table of 4427: 4340: 4316: 4271: 4233: 4193: 4169: 4135: 4069: 4021: 4001: 3951: 3916: 3836: 3766:on a vector space 3752: 3565: 3563: 3008: 2960: 2958: 2954: 2945: 2936: 2927: 2918: 2906: 2891: 2873: 2864: 2855: 2846: 2837: 2828: 2819: 2795: 2786: 2777: 2768: 2759: 2750: 2741: 2730: 2678: 2669: 2632: 2595: 2586: 2577: 2559: 2507: 2498: 2461: 2424: 2415: 2406: 2388: 2336: 2327: 2290: 2253: 2244: 2235: 2217: 2188: 2179: 2156: 2140: 2124: 2054: 2035: 1931: 1876: 1802: 1712:Then we know that 1699: 1697: 1605: 1516: 1497: 1427: 1329: 1319: 1247: 1210: 1174: 1081: 1071: 1033: 955: 945: 899: 656: 650: 583: 425: 263: 190:semidirect product 163: 92:semidirect product 39:of all invertible 4343:{\displaystyle V} 4024:{\displaystyle V} 3693:, analogously as 3550: 3430: 3369: 3348: 3285: 3264: 3204: 3180: 3123: 3059: 2727: 2666: 2629: 2556: 2495: 2458: 2385: 2324: 2287: 1925: 1032: 320:is isomorphic to 4697: 4665: 4649: 4630: 4629: 4611: 4605: 4604: 4586: 4580: 4579: 4558: 4552: 4551: 4529: 4512: 4510: 4504: 4496: 4483: 4460:that preserve a 4436: 4434: 4433: 4428: 4402: 4401: 4390: 4374: 4349: 4347: 4346: 4341: 4328:orthogonal group 4325: 4323: 4322: 4317: 4290: 4280: 4278: 4277: 4272: 4270: 4269: 4256: 4242: 4240: 4239: 4234: 4232: 4231: 4222: 4221: 4206: 4202: 4200: 4199: 4194: 4192: 4191: 4178: 4176: 4175: 4170: 4168: 4167: 4150: 4144: 4142: 4141: 4136: 4134: 4133: 4118:, we obtain the 4113: 4106: 4100: 4094: 4087:projective group 4084: 4078: 4076: 4075: 4070: 4068: 4067: 4030: 4028: 4027: 4022: 4010: 4008: 4007: 4002: 3968: 3964: 3960: 3958: 3957: 3952: 3925: 3923: 3922: 3917: 3909: 3892: 3880: 3845: 3843: 3842: 3837: 3820: 3819: 3784: 3769: 3765: 3761: 3759: 3758: 3753: 3714: 3707: 3692: 3680: 3645: 3638: 3574: 3572: 3571: 3566: 3564: 3551: 3548: 3433: 3431: 3428: 3372: 3370: 3367: 3349: 3346: 3288: 3286: 3283: 3265: 3262: 3207: 3205: 3202: 3181: 3178: 3126: 3124: 3121: 3062: 3060: 3057: 3041: 3037: 3033: 3017: 3015: 3014: 3009: 3004: 2978:The elements of 2969: 2967: 2966: 2961: 2959: 2955: 2946: 2937: 2928: 2919: 2907: 2892: 2890: 2889: 2874: 2865: 2856: 2847: 2838: 2829: 2820: 2818: 2817: 2796: 2787: 2778: 2769: 2760: 2751: 2742: 2731: 2729: 2728: 2726: 2715: 2689: 2679: 2670: 2668: 2667: 2665: 2654: 2643: 2633: 2631: 2630: 2628: 2617: 2606: 2596: 2587: 2578: 2576: 2575: 2560: 2558: 2557: 2555: 2544: 2518: 2508: 2499: 2497: 2496: 2494: 2483: 2472: 2462: 2460: 2459: 2457: 2446: 2435: 2425: 2416: 2407: 2405: 2404: 2389: 2387: 2386: 2384: 2373: 2347: 2337: 2328: 2326: 2325: 2323: 2312: 2301: 2291: 2289: 2288: 2286: 2275: 2264: 2254: 2245: 2236: 2234: 2233: 2218: 2216: 2215: 2214: 2213: 2189: 2180: 2178: 2177: 2176: 2175: 2157: 2155: 2154: 2141: 2139: 2138: 2125: 2123: 2122: 2107: 2093: 2080: 2063: 2061: 2060: 2055: 2048: 2043: 1991: 1980: 1979: 1978: 1964: 1960: 1950: 1940: 1938: 1937: 1932: 1930: 1926: 1924: 1913: 1896: 1881: 1880: 1845: 1844: 1825: 1811: 1809: 1808: 1803: 1801: 1800: 1795: 1783: 1782: 1777: 1759: 1758: 1739: 1733:), there exist 1728: 1724: 1708: 1706: 1705: 1700: 1698: 1690: 1689: 1665: 1664: 1659: 1647: 1646: 1640: 1636: 1635: 1634: 1629: 1617: 1616: 1610: 1609: 1562: 1561: 1552: 1551: 1537: 1533: 1531: 1526: 1521: 1509: 1508: 1502: 1501: 1454: 1453: 1436: 1432: 1431: 1385: 1384: 1358: 1354: 1338: 1336: 1335: 1330: 1324: 1323: 1261: 1260: 1252: 1251: 1215: 1214: 1179: 1178: 1133: 1122: 1107: 1090: 1088: 1087: 1082: 1076: 1072: 1047: 1046: 1034: 1025: 1020: 1019: 999: 998: 964: 962: 961: 956: 950: 946: 904: 900: 852: 845: 841: 830: 826: 813: 801: 794: 775: 765: 761: 751: 735: 731: 719: 708: 704: 697: 690: 686: 682: 672: 665: 663: 662: 657: 655: 651: 607: 592: 590: 589: 584: 505: 497: 493: 489: 485: 469: 461: 449: 434: 432: 431: 426: 350: 346: 339: 327: 319: 311: 303: 291: 287: 272: 270: 269: 264: 238: 237: 187: 183: 172: 170: 169: 164: 113: 105: 97: 89: 85: 81: 74: 4705: 4704: 4700: 4699: 4698: 4696: 4695: 4694: 4680:Affine geometry 4670: 4669: 4668: 4662: 4638: 4634: 4633: 4626: 4613: 4612: 4608: 4601: 4588: 4587: 4583: 4576: 4560: 4559: 4555: 4531: 4530: 4526: 4521: 4516: 4515: 4506: 4502: 4486: 4484: 4480: 4475: 4458:Euclidean space 4450: 4385: 4380: 4379: 4372: 4362: 4356: 4332: 4331: 4293: 4292: 4288: 4259: 4258: 4254: 4251: 4211: 4210: 4204: 4181: 4180: 4157: 4156: 4146: 4123: 4122: 4111: 4107:by declaring a 4102: 4096: 4090: 4080: 4057: 4056: 4041: 4013: 4012: 3975: 3974: 3966: 3962: 3928: 3927: 3883: 3882: 3870: 3851: 3811: 3791: 3790: 3787:group extension 3780: 3771: 3767: 3763: 3720: 3719: 3712: 3694: 3686: 3671: 3668: 3663: 3640: 3633: 3599:coordinate axes 3591:Euclidean plane 3562: 3561: 3544: 3450: 3432: 3424: 3423: 3389: 3371: 3363: 3362: 3342: 3305: 3287: 3279: 3278: 3258: 3224: 3206: 3198: 3197: 3174: 3143: 3125: 3117: 3116: 3079: 3061: 3047: 3046: 3039: 3035: 3031: 2980: 2979: 2976: 2957: 2956: 2947: 2938: 2929: 2920: 2908: 2893: 2881: 2876: 2875: 2866: 2857: 2848: 2839: 2830: 2821: 2803: 2798: 2797: 2788: 2779: 2770: 2761: 2752: 2743: 2733: 2732: 2716: 2690: 2684: 2680: 2671: 2655: 2644: 2638: 2634: 2618: 2607: 2601: 2597: 2588: 2579: 2567: 2562: 2561: 2545: 2519: 2513: 2509: 2500: 2484: 2473: 2467: 2463: 2447: 2436: 2430: 2426: 2417: 2408: 2396: 2391: 2390: 2374: 2348: 2342: 2338: 2329: 2313: 2302: 2296: 2292: 2276: 2265: 2259: 2255: 2246: 2237: 2225: 2220: 2219: 2199: 2194: 2190: 2181: 2167: 2162: 2158: 2146: 2142: 2130: 2126: 2111: 2099: 2098: 2091: 2082: 2073: 2068: 1997: 1996: 1990: 1982: 1977: 1972: 1971: 1970: 1966: 1962: 1952: 1945: 1914: 1897: 1891: 1875: 1874: 1869: 1863: 1862: 1857: 1847: 1836: 1831: 1830: 1816: 1790: 1772: 1750: 1745: 1744: 1734: 1726: 1722: 1713: 1696: 1695: 1654: 1624: 1604: 1603: 1598: 1592: 1591: 1586: 1576: 1574: 1570: 1563: 1553: 1543: 1542: 1496: 1495: 1490: 1484: 1483: 1478: 1468: 1466: 1462: 1455: 1445: 1442: 1441: 1426: 1425: 1420: 1414: 1413: 1408: 1398: 1393: 1386: 1373: 1364: 1363: 1356: 1352: 1343: 1318: 1317: 1312: 1306: 1305: 1276: 1266: 1246: 1245: 1240: 1234: 1233: 1228: 1218: 1216: 1209: 1208: 1203: 1197: 1196: 1191: 1181: 1173: 1172: 1167: 1161: 1160: 1155: 1145: 1139: 1138: 1124: 1120: 1111: 1109: 1105: 1096: 1070: 1069: 1064: 1058: 1057: 1038: 1021: 1011: 1003: 978: 973: 972: 944: 943: 938: 932: 931: 926: 915: 898: 897: 892: 886: 885: 880: 869: 858: 857: 847: 843: 839: 828: 821: 803: 799: 784: 767: 763: 753: 737: 733: 721: 713: 706: 699: 692: 688: 684: 674: 670: 649: 648: 643: 637: 636: 631: 620: 615: 614: 597: 511: 510: 499: 495: 491: 490:is a vector in 487: 475: 463: 459: 456: 443: 359: 358: 348: 344: 329: 321: 313: 309: 301: 298: 289: 277: 229: 200: 199: 185: 177: 119: 118: 111: 99: 95: 87: 83: 79: 72: 69: 64: 45:Euclidean space 17: 12: 11: 5: 4703: 4701: 4693: 4692: 4687: 4682: 4672: 4671: 4667: 4666: 4660: 4635: 4632: 4631: 4624: 4606: 4599: 4581: 4574: 4553: 4542:(9): 798–801. 4523: 4522: 4520: 4517: 4514: 4513: 4477: 4476: 4474: 4471: 4470: 4469: 4464: 4449: 4446: 4438: 4437: 4426: 4423: 4420: 4417: 4414: 4411: 4408: 4405: 4400: 4397: 4394: 4389: 4366:Poincaré group 4360:Poincaré group 4358:Main article: 4355: 4354:Poincaré group 4352: 4339: 4315: 4312: 4309: 4306: 4303: 4300: 4268: 4250: 4247: 4246: 4245: 4244: 4243: 4230: 4225: 4220: 4190: 4166: 4132: 4066: 4040: 4037: 4033:shear mappings 4020: 4000: 3997: 3994: 3991: 3988: 3985: 3982: 3950: 3947: 3944: 3941: 3938: 3935: 3915: 3912: 3908: 3904: 3901: 3898: 3895: 3891: 3863:equiaffinities 3850: 3847: 3835: 3832: 3829: 3826: 3823: 3818: 3814: 3810: 3807: 3804: 3801: 3798: 3776: 3751: 3748: 3745: 3742: 3739: 3736: 3733: 3730: 3727: 3717:representation 3667: 3664: 3662: 3659: 3576: 3575: 3560: 3557: 3554: 3545: 3543: 3540: 3537: 3534: 3531: 3528: 3525: 3522: 3519: 3516: 3513: 3510: 3507: 3504: 3501: 3498: 3495: 3492: 3489: 3486: 3483: 3480: 3477: 3474: 3471: 3468: 3465: 3462: 3459: 3456: 3453: 3451: 3449: 3446: 3443: 3440: 3437: 3434: 3426: 3425: 3422: 3419: 3416: 3413: 3410: 3407: 3404: 3401: 3398: 3395: 3392: 3390: 3388: 3385: 3382: 3379: 3376: 3373: 3365: 3364: 3361: 3358: 3355: 3352: 3343: 3341: 3338: 3335: 3332: 3329: 3326: 3323: 3320: 3317: 3314: 3311: 3308: 3306: 3304: 3301: 3298: 3295: 3292: 3289: 3281: 3280: 3277: 3274: 3271: 3268: 3259: 3257: 3254: 3251: 3248: 3245: 3242: 3239: 3236: 3233: 3230: 3227: 3225: 3223: 3220: 3217: 3214: 3211: 3208: 3200: 3199: 3196: 3193: 3190: 3187: 3184: 3175: 3173: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3149: 3146: 3144: 3142: 3139: 3136: 3133: 3130: 3127: 3119: 3118: 3115: 3112: 3109: 3106: 3103: 3100: 3097: 3094: 3091: 3088: 3085: 3082: 3080: 3078: 3075: 3072: 3069: 3066: 3063: 3055: 3054: 3007: 3003: 2999: 2996: 2993: 2990: 2987: 2975: 2972: 2971: 2970: 2953: 2948: 2944: 2939: 2935: 2930: 2926: 2921: 2917: 2914: 2909: 2905: 2902: 2899: 2894: 2888: 2884: 2878: 2877: 2872: 2867: 2863: 2858: 2854: 2849: 2845: 2840: 2836: 2831: 2827: 2822: 2816: 2813: 2810: 2806: 2800: 2799: 2794: 2789: 2785: 2780: 2776: 2771: 2767: 2762: 2758: 2753: 2749: 2744: 2740: 2735: 2734: 2725: 2722: 2719: 2714: 2711: 2708: 2705: 2702: 2699: 2696: 2693: 2687: 2681: 2677: 2672: 2664: 2661: 2658: 2653: 2650: 2647: 2641: 2635: 2627: 2624: 2621: 2616: 2613: 2610: 2604: 2598: 2594: 2589: 2585: 2580: 2574: 2570: 2564: 2563: 2554: 2551: 2548: 2543: 2540: 2537: 2534: 2531: 2528: 2525: 2522: 2516: 2510: 2506: 2501: 2493: 2490: 2487: 2482: 2479: 2476: 2470: 2464: 2456: 2453: 2450: 2445: 2442: 2439: 2433: 2427: 2423: 2418: 2414: 2409: 2403: 2399: 2393: 2392: 2383: 2380: 2377: 2372: 2369: 2366: 2363: 2360: 2357: 2354: 2351: 2345: 2339: 2335: 2330: 2322: 2319: 2316: 2311: 2308: 2305: 2299: 2293: 2285: 2282: 2279: 2274: 2271: 2268: 2262: 2256: 2252: 2247: 2243: 2238: 2232: 2228: 2222: 2221: 2212: 2209: 2206: 2202: 2197: 2191: 2187: 2182: 2174: 2170: 2165: 2159: 2153: 2149: 2143: 2137: 2133: 2127: 2121: 2118: 2114: 2108: 2106: 2087: 2071: 2065: 2064: 2053: 2047: 2042: 2038: 2034: 2031: 2028: 2025: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 1986: 1973: 1942: 1941: 1929: 1923: 1920: 1917: 1912: 1909: 1906: 1903: 1900: 1894: 1890: 1887: 1884: 1879: 1873: 1870: 1868: 1865: 1864: 1861: 1858: 1856: 1853: 1852: 1850: 1843: 1839: 1813: 1812: 1799: 1794: 1789: 1786: 1781: 1776: 1771: 1768: 1765: 1762: 1757: 1753: 1718: 1710: 1709: 1694: 1688: 1683: 1680: 1677: 1674: 1671: 1668: 1663: 1658: 1653: 1650: 1645: 1639: 1633: 1628: 1623: 1620: 1615: 1608: 1602: 1599: 1597: 1594: 1593: 1590: 1587: 1585: 1582: 1581: 1579: 1573: 1569: 1566: 1564: 1560: 1556: 1550: 1545: 1544: 1541: 1536: 1530: 1525: 1520: 1515: 1512: 1507: 1500: 1494: 1491: 1489: 1486: 1485: 1482: 1479: 1477: 1474: 1473: 1471: 1465: 1461: 1458: 1456: 1452: 1448: 1444: 1443: 1440: 1435: 1430: 1424: 1421: 1419: 1416: 1415: 1412: 1409: 1407: 1404: 1403: 1401: 1396: 1392: 1389: 1387: 1383: 1380: 1376: 1372: 1371: 1348: 1340: 1339: 1328: 1322: 1316: 1313: 1311: 1308: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1275: 1272: 1271: 1269: 1264: 1259: 1256: 1250: 1244: 1241: 1239: 1236: 1235: 1232: 1229: 1227: 1224: 1223: 1221: 1213: 1207: 1204: 1202: 1199: 1198: 1195: 1192: 1190: 1187: 1186: 1184: 1177: 1171: 1168: 1166: 1163: 1162: 1159: 1156: 1154: 1151: 1150: 1148: 1116: 1108: 1101: 1093: 1092: 1091: 1080: 1075: 1068: 1065: 1063: 1060: 1059: 1056: 1053: 1050: 1045: 1041: 1037: 1031: 1028: 1022: 1018: 1014: 1010: 1009: 1006: 1002: 997: 994: 991: 988: 985: 981: 966: 965: 954: 949: 942: 939: 937: 934: 933: 930: 927: 925: 922: 921: 918: 914: 911: 907: 903: 896: 893: 891: 888: 887: 884: 881: 879: 876: 875: 872: 868: 865: 667: 666: 654: 647: 644: 642: 639: 638: 635: 632: 630: 627: 626: 623: 594: 593: 582: 578: 575: 572: 569: 566: 563: 560: 557: 554: 551: 548: 545: 542: 539: 536: 533: 530: 527: 524: 521: 518: 455: 452: 436: 435: 424: 420: 417: 414: 411: 408: 405: 402: 399: 396: 393: 390: 387: 384: 381: 378: 375: 372: 369: 366: 297: 294: 274: 273: 262: 259: 256: 253: 250: 247: 244: 241: 236: 232: 228: 225: 222: 219: 216: 213: 210: 207: 176:The action of 174: 173: 162: 159: 156: 153: 150: 147: 144: 141: 138: 135: 132: 129: 126: 68: 65: 63: 60: 15: 13: 10: 9: 6: 4: 3: 2: 4702: 4691: 4688: 4686: 4683: 4681: 4678: 4677: 4675: 4663: 4661:0-521-31694-4 4657: 4653: 4648: 4647: 4641: 4640:Lyndon, Roger 4637: 4636: 4627: 4625:9780534000349 4621: 4617: 4610: 4607: 4602: 4600:9780534000349 4596: 4592: 4585: 4582: 4577: 4575:9780534000349 4571: 4567: 4563: 4557: 4554: 4549: 4545: 4541: 4537: 4536: 4528: 4525: 4518: 4509: 4500: 4494: 4490: 4482: 4479: 4472: 4468: 4465: 4463: 4459: 4455: 4452: 4451: 4447: 4445: 4443: 4421: 4418: 4415: 4409: 4403: 4398: 4395: 4392: 4378: 4377: 4376: 4371: 4370:Lorentz group 4367: 4361: 4353: 4351: 4337: 4329: 4313: 4310: 4304: 4298: 4286: 4285: 4248: 4223: 4209: 4208: 4154: 4149: 4121: 4117: 4110: 4105: 4099: 4093: 4088: 4083: 4054: 4053: 4052: 4050: 4046: 4038: 4036: 4034: 4018: 3998: 3995: 3989: 3983: 3980: 3970: 3948: 3945: 3942: 3939: 3933: 3913: 3910: 3899: 3878: 3874: 3868: 3864: 3860: 3856: 3848: 3846: 3833: 3827: 3821: 3816: 3812: 3808: 3802: 3796: 3788: 3783: 3779: 3774: 3746: 3740: 3737: 3731: 3728: 3725: 3718: 3709: 3706: 3702: 3698: 3690: 3684: 3678: 3674: 3665: 3660: 3658: 3656: 3652: 3647: 3643: 3639:) or 3 (with 3636: 3631: 3626: 3624: 3619: 3617: 3616:shear mapping 3612: 3610: 3609:shear mapping 3605: 3602: 3600: 3596: 3595:perpendicular 3592: 3588: 3583: 3581: 3558: 3555: 3552: 3541: 3532: 3529: 3526: 3523: 3520: 3517: 3514: 3511: 3508: 3505: 3499: 3496: 3490: 3487: 3484: 3481: 3478: 3475: 3472: 3469: 3466: 3460: 3452: 3444: 3441: 3438: 3417: 3414: 3411: 3408: 3405: 3402: 3399: 3391: 3383: 3380: 3377: 3359: 3356: 3353: 3350: 3339: 3333: 3330: 3327: 3324: 3321: 3318: 3315: 3307: 3299: 3296: 3293: 3275: 3272: 3269: 3266: 3255: 3249: 3246: 3243: 3240: 3237: 3234: 3226: 3218: 3215: 3212: 3194: 3191: 3188: 3185: 3182: 3171: 3165: 3162: 3159: 3156: 3153: 3145: 3137: 3134: 3131: 3113: 3107: 3104: 3101: 3098: 3095: 3092: 3089: 3081: 3073: 3070: 3067: 3045: 3044: 3043: 3029: 3025: 3021: 2997: 2994: 2988: 2985: 2973: 2951: 2942: 2933: 2924: 2915: 2912: 2903: 2900: 2897: 2886: 2882: 2870: 2861: 2852: 2843: 2834: 2825: 2814: 2811: 2808: 2804: 2792: 2783: 2774: 2765: 2756: 2747: 2738: 2723: 2720: 2717: 2712: 2706: 2703: 2700: 2694: 2691: 2685: 2675: 2662: 2659: 2656: 2651: 2648: 2645: 2639: 2625: 2622: 2619: 2614: 2611: 2608: 2602: 2592: 2583: 2572: 2568: 2552: 2549: 2546: 2541: 2535: 2532: 2529: 2523: 2520: 2514: 2504: 2491: 2488: 2485: 2480: 2477: 2474: 2468: 2454: 2451: 2448: 2443: 2440: 2437: 2431: 2421: 2412: 2401: 2397: 2381: 2378: 2375: 2370: 2364: 2361: 2358: 2352: 2349: 2343: 2333: 2320: 2317: 2314: 2309: 2306: 2303: 2297: 2283: 2280: 2277: 2272: 2269: 2266: 2260: 2250: 2241: 2230: 2226: 2210: 2207: 2204: 2200: 2195: 2185: 2172: 2168: 2163: 2151: 2147: 2135: 2131: 2119: 2116: 2112: 2097: 2096: 2095: 2090: 2086: 2078: 2074: 2051: 2045: 2040: 2036: 2032: 2029: 2026: 2023: 2020: 2014: 2011: 2008: 2002: 1995: 1994: 1993: 1989: 1985: 1976: 1969: 1959: 1955: 1948: 1927: 1921: 1918: 1915: 1910: 1907: 1904: 1901: 1898: 1892: 1888: 1885: 1882: 1877: 1871: 1866: 1859: 1854: 1848: 1841: 1837: 1829: 1828: 1827: 1823: 1819: 1797: 1779: 1766: 1763: 1760: 1755: 1751: 1743: 1742: 1741: 1737: 1732: 1721: 1717: 1692: 1678: 1675: 1672: 1661: 1651: 1648: 1637: 1631: 1621: 1618: 1606: 1600: 1595: 1588: 1583: 1577: 1571: 1567: 1565: 1558: 1554: 1539: 1534: 1528: 1523: 1513: 1510: 1498: 1492: 1487: 1480: 1475: 1469: 1463: 1459: 1457: 1450: 1446: 1438: 1433: 1428: 1422: 1417: 1410: 1405: 1399: 1394: 1390: 1388: 1381: 1378: 1374: 1362: 1361: 1360: 1351: 1347: 1326: 1320: 1314: 1309: 1302: 1299: 1296: 1293: 1287: 1284: 1281: 1273: 1267: 1262: 1257: 1254: 1248: 1242: 1237: 1230: 1225: 1219: 1211: 1205: 1200: 1193: 1188: 1182: 1175: 1169: 1164: 1157: 1152: 1146: 1137: 1136: 1135: 1131: 1127: 1119: 1115: 1104: 1100: 1094: 1078: 1073: 1066: 1061: 1051: 1048: 1043: 1039: 1029: 1026: 1016: 1012: 1004: 1000: 995: 992: 989: 986: 983: 979: 971: 970: 969: 952: 947: 940: 935: 928: 923: 916: 912: 909: 905: 901: 894: 889: 882: 877: 870: 866: 863: 856: 855: 854: 851: 837: 834: 824: 818: 815: 811: 807: 798: 792: 788: 782: 777: 774: 770: 760: 756: 749: 745: 741: 729: 725: 717: 710: 703: 695: 681: 677: 652: 645: 640: 633: 628: 621: 613: 612: 611: 610: 605: 601: 580: 573: 570: 567: 564: 561: 558: 555: 549: 543: 540: 537: 531: 525: 522: 519: 509: 508: 507: 503: 483: 479: 473: 467: 453: 451: 447: 441: 422: 418: 409: 403: 400: 391: 385: 382: 379: 376: 370: 364: 357: 356: 355: 354: 341: 337: 333: 325: 317: 307: 295: 293: 285: 281: 257: 254: 251: 245: 242: 239: 234: 230: 226: 220: 217: 214: 208: 205: 198: 197: 196: 193: 191: 181: 157: 151: 148: 145: 142: 139: 133: 127: 124: 117: 116: 115: 109: 103: 93: 78: 66: 61: 59: 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 4685:Group theory 4645: 4615: 4609: 4590: 4584: 4565: 4556: 4539: 4533: 4527: 4507: 4498: 4492: 4488: 4481: 4439: 4363: 4282: 4252: 4147: 4120:affine group 4119: 4103: 4097: 4091: 4086: 4081: 4045:projectivity 4042: 3971: 3876: 3872: 3862: 3858: 3852: 3781: 3777: 3772: 3710: 3704: 3700: 3696: 3688: 3676: 3672: 3669: 3666:General case 3648: 3641: 3634: 3627: 3623:similarities 3620: 3613: 3606: 3603: 3597:, since the 3584: 3580:translations 3577: 3024:affine plane 2977: 2088: 2084: 2076: 2069: 2066: 1987: 1983: 1974: 1967: 1957: 1953: 1946: 1943: 1821: 1817: 1814: 1735: 1719: 1715: 1711: 1349: 1345: 1341: 1129: 1125: 1117: 1113: 1110: 1102: 1098: 967: 849: 846:, such that 822: 819: 816: 809: 805: 790: 786: 778: 772: 768: 758: 754: 747: 743: 739: 727: 723: 715: 711: 701: 693: 683:matrix over 679: 675: 668: 609:block matrix 603: 599: 595: 501: 481: 477: 465: 457: 445: 439: 437: 342: 335: 331: 323: 315: 299: 283: 279: 275: 194: 179: 175: 101: 77:affine space 70: 53: 49:real numbers 33:affine space 28: 25:affine group 24: 18: 4491:) < Aut( 4203:that leave 3855:volume form 3630:fixed point 3549:where  3347:where  3263:where  3179:where  833:non-Abelian 308:of a point 21:mathematics 4690:Lie groups 4674:Categories 4562:Berger, M. 4519:References 4442:relativity 4284:isometries 4109:hyperplane 3699:) := 3651:eigenvalue 1992:, we have 1123:has order 797:similarity 712:Formally, 306:stabilizer 4467:Holomorph 4410:⁡ 4404:⋊ 4311:⋉ 4224:⊂ 3996:⋉ 3937:↦ 3831:→ 3825:→ 3817:ρ 3813:⋊ 3806:→ 3800:→ 3741:⁡ 3735:→ 3726:ρ 3556:≠ 3530:⁡ 3515:⁡ 3506:− 3488:⁡ 3473:⁡ 3455:↦ 3394:↦ 3354:≠ 3310:↦ 3270:≠ 3229:↦ 3189:≠ 3148:↦ 3084:↦ 3026:over the 2989:⁡ 2943:… 2913:− 2901:− 2883:χ 2862:… 2812:− 2805:χ 2793:… 2784:… 2775:… 2766:… 2757:… 2748:… 2739:… 2721:− 2704:− 2695:π 2676:… 2660:− 2649:π 2623:− 2612:π 2569:χ 2550:− 2533:− 2524:π 2505:… 2489:− 2478:π 2452:− 2441:π 2398:χ 2379:− 2362:− 2353:π 2334:… 2318:− 2307:π 2281:− 2270:π 2227:χ 2208:− 2186:… 2037:χ 2027:− 2012:− 1919:− 1911:π 1889:⁡ 1838:ρ 1820:= 1, 2,… 1798:∗ 1788:→ 1767:⁡ 1752:ρ 1667:∖ 1652:∈ 1622:∈ 1529:∗ 1514:∈ 1285:− 1255:− 1049:− 853:, where 836:Lie group 532:⋅ 416:→ 404:⁡ 398:→ 386:⁡ 380:⋊ 374:→ 368:→ 246:⁡ 240:⋊ 209:⁡ 152:⁡ 146:⋊ 128:⁡ 56:Lie group 4566:Geometry 4564:(1987). 4448:See also 4153:subgroup 4114:to be a 4055:The set 3675:< GL( 3587:scalings 1826:, where 1342:we know 1134:. Since 968:so that 808:+ 1) × ( 789:+ 1) × ( 602:+ 1) × ( 486:, where 440:starting 4462:lattice 4326:of the 4207:fixed. 4151:as the 3681:of the 781:similar 742:, 1) | 732:, with 470:, then 314:Aff(2, 35:is the 31:of any 4658:  4622:  4597:  4572:  4485:Since 4373:O(1,3) 3961:where 3715:and a 3644:< 0 3637:< 0 3038:, and 2067:hence 673:is an 669:where 322:GL(2, 304:, the 106:, the 23:, the 4499:group 4473:Notes 4287:) of 3881:with 3028:reals 829:2 × 2 764:1 × 1 707:1 × 1 37:group 4656:ISBN 4620:ISBN 4595:ISBN 4570:ISBN 4364:The 3695:Aff( 3687:Aff( 2083:Aff( 1949:= −1 1944:and 1815:for 1725:has 1714:Aff( 1355:has 1344:Aff( 1132:− 1) 1112:Aff( 1097:Aff( 842:and 812:+ 1) 793:+ 1) 762:and 714:Aff( 700:1 × 606:+ 1) 494:and 4544:doi 4540:102 4487:GL( 4330:of 4155:of 4145:of 4089:of 3894:det 3762:of 3646:). 3527:cos 3512:sin 3485:sin 3470:cos 2986:Aff 2079:− 1 1886:exp 1824:− 1 1764:Aff 1738:− 1 825:= 1 722:GL( 696:× 1 691:an 500:GL( 464:GL( 462:by 444:GL( 347:to 288:on 278:GL( 206:Aff 184:on 178:GL( 125:Aff 110:of 100:GL( 98:by 94:of 27:or 19:In 4676:: 4654:. 4650:. 4538:. 4444:. 4375:: 4035:. 3875:, 3834:1. 3738:GL 3708:. 3703:⋊ 3657:. 3635:ab 3582:. 3559:0. 3429:6. 3368:5. 3284:4. 3203:3. 3122:2. 3058:1. 3034:, 2646:12 2094:: 2075:= 1961:, 1956:= 1951:, 848:= 779:A 776:. 771:⊕ 757:× 746:∈ 738:{( 726:⊕ 687:, 678:× 480:, 450:. 401:GL 383:GL 334:, 282:, 243:GL 192:. 149:GL 114:: 58:. 4664:. 4628:. 4603:. 4578:. 4550:. 4546:: 4511:. 4508:R 4503:V 4495:) 4493:V 4489:V 4425:) 4422:3 4419:, 4416:1 4413:( 4407:O 4399:3 4396:, 4393:1 4388:R 4338:V 4314:V 4308:) 4305:V 4302:( 4299:O 4289:A 4267:E 4255:A 4229:P 4219:A 4205:ω 4189:P 4165:P 4148:A 4131:A 4112:ω 4104:A 4098:P 4092:P 4082:P 4065:P 4019:V 3999:V 3993:) 3990:V 3987:( 3984:L 3981:S 3967:v 3963:M 3949:v 3946:+ 3943:x 3940:M 3934:x 3914:1 3911:= 3907:| 3903:) 3900:M 3897:( 3890:| 3879:) 3877:v 3873:M 3871:( 3828:G 3822:G 3809:V 3803:V 3797:1 3782:G 3778:ρ 3775:⋊ 3773:V 3768:V 3764:G 3750:) 3747:V 3744:( 3732:G 3729:: 3713:G 3705:G 3701:V 3697:G 3691:) 3689:G 3679:) 3677:V 3673:G 3642:a 3553:a 3542:, 3539:) 3536:) 3533:t 3524:y 3521:+ 3518:t 3509:x 3503:( 3500:a 3497:, 3494:) 3491:t 3482:y 3479:+ 3476:t 3467:x 3464:( 3461:a 3458:( 3448:) 3445:y 3442:, 3439:x 3436:( 3421:) 3418:a 3415:+ 3412:y 3409:, 3406:y 3403:+ 3400:x 3397:( 3387:) 3384:y 3381:, 3378:x 3375:( 3360:, 3357:0 3351:a 3340:, 3337:) 3334:y 3331:a 3328:, 3325:y 3322:+ 3319:x 3316:a 3313:( 3303:) 3300:y 3297:, 3294:x 3291:( 3276:, 3273:0 3267:a 3256:, 3253:) 3250:b 3247:+ 3244:y 3241:, 3238:x 3235:a 3232:( 3222:) 3219:y 3216:, 3213:x 3210:( 3195:, 3192:0 3186:b 3183:a 3172:, 3169:) 3166:y 3163:b 3160:, 3157:x 3154:a 3151:( 3141:) 3138:y 3135:, 3132:x 3129:( 3114:, 3111:) 3108:b 3105:+ 3102:y 3099:, 3096:a 3093:+ 3090:x 3087:( 3077:) 3074:y 3071:, 3068:x 3065:( 3040:t 3036:b 3032:a 3006:) 3002:R 2998:, 2995:2 2992:( 2952:0 2934:0 2925:0 2916:1 2904:1 2898:p 2887:p 2871:1 2853:1 2844:1 2835:1 2826:1 2815:1 2809:p 2724:1 2718:p 2713:i 2710:) 2707:2 2701:p 2698:( 2692:6 2686:e 2663:1 2657:p 2652:i 2640:e 2626:1 2620:p 2615:i 2609:6 2603:e 2593:1 2584:1 2573:3 2553:1 2547:p 2542:i 2539:) 2536:2 2530:p 2527:( 2521:4 2515:e 2492:1 2486:p 2481:i 2475:8 2469:e 2455:1 2449:p 2444:i 2438:4 2432:e 2422:1 2413:1 2402:2 2382:1 2376:p 2371:i 2368:) 2365:2 2359:p 2356:( 2350:2 2344:e 2321:1 2315:p 2310:i 2304:4 2298:e 2284:1 2278:p 2273:i 2267:2 2261:e 2251:1 2242:1 2231:1 2211:2 2205:p 2201:g 2196:C 2173:2 2169:g 2164:C 2152:g 2148:C 2136:1 2132:C 2120:d 2117:i 2113:C 2092:) 2089:p 2085:F 2077:p 2072:p 2070:χ 2052:, 2046:2 2041:p 2033:+ 2030:1 2024:p 2021:= 2018:) 2015:1 2009:p 2006:( 2003:p 1988:p 1984:F 1975:p 1968:F 1963:g 1958:g 1954:a 1947:i 1928:) 1922:1 1916:p 1908:j 1905:k 1902:i 1899:2 1893:( 1883:= 1878:) 1872:1 1867:0 1860:b 1855:a 1849:( 1842:k 1822:p 1818:k 1793:C 1785:) 1780:p 1775:F 1770:( 1761:: 1756:k 1736:p 1727:p 1723:) 1720:p 1716:F 1693:. 1687:} 1682:} 1679:1 1676:, 1673:0 1670:{ 1662:p 1657:F 1649:a 1644:| 1638:} 1632:p 1627:F 1619:b 1614:| 1607:) 1601:1 1596:0 1589:b 1584:a 1578:( 1572:{ 1568:= 1559:a 1555:C 1549:{ 1540:, 1535:} 1524:p 1519:F 1511:b 1506:| 1499:) 1493:1 1488:0 1481:b 1476:1 1470:( 1464:{ 1460:= 1451:1 1447:C 1439:, 1434:} 1429:) 1423:1 1418:0 1411:0 1406:1 1400:( 1395:{ 1391:= 1382:d 1379:i 1375:C 1357:p 1353:) 1350:p 1346:F 1327:, 1321:) 1315:1 1310:0 1303:c 1300:b 1297:+ 1294:d 1291:) 1288:a 1282:1 1279:( 1274:a 1268:( 1263:= 1258:1 1249:) 1243:1 1238:0 1231:d 1226:c 1220:( 1212:) 1206:1 1201:0 1194:b 1189:a 1183:( 1176:) 1170:1 1165:0 1158:d 1153:c 1147:( 1130:p 1128:( 1126:p 1121:) 1118:p 1114:F 1106:) 1103:p 1099:F 1079:. 1074:) 1067:1 1062:0 1055:) 1052:1 1044:a 1040:e 1036:( 1030:a 1027:b 1017:a 1013:e 1005:( 1001:= 996:B 993:b 990:+ 987:A 984:a 980:e 953:, 948:) 941:0 936:0 929:1 924:0 917:( 913:= 910:B 906:, 902:) 895:0 890:0 883:0 878:1 871:( 867:= 864:A 850:B 844:B 840:A 823:n 810:n 806:n 804:( 800:P 791:n 787:n 785:( 773:K 769:V 759:n 755:n 750:} 748:V 744:v 740:v 734:V 730:) 728:K 724:V 718:) 716:V 702:n 694:n 689:v 685:K 680:n 676:n 671:M 653:) 646:1 641:0 634:v 629:M 622:( 604:n 600:n 598:( 581:. 577:) 574:N 571:M 568:, 565:w 562:M 559:+ 556:v 553:( 550:= 547:) 544:N 541:, 538:w 535:( 529:) 526:M 523:, 520:v 517:( 504:) 502:V 496:M 492:V 488:v 484:) 482:M 478:v 476:( 468:) 466:V 460:V 448:) 446:V 423:. 419:1 413:) 410:V 407:( 395:) 392:V 389:( 377:V 371:V 365:1 349:q 345:p 338:) 336:p 332:A 330:( 326:) 324:R 318:) 316:R 310:p 302:A 290:K 286:) 284:K 280:n 261:) 258:K 255:, 252:n 249:( 235:n 231:K 227:= 224:) 221:K 218:, 215:n 212:( 186:V 182:) 180:V 161:) 158:V 155:( 143:V 140:= 137:) 134:V 131:( 112:V 104:) 102:V 96:V 88:A 84:V 80:A 73:V

Index

mathematics
affine space
group
affine transformations
Euclidean space
real numbers
Lie group
affine space
semidirect product
general linear group
semidirect product
stabilizer
short exact sequence
by construction of the semidirect product
block matrix
similar
similarity
non-Abelian
Lie group
§ Matrix representation
affine coordinate system
affine plane
reals
translations
scalings
Euclidean plane
perpendicular
coordinate axes
shear mapping
shear mapping

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.