Knowledge

Afterhyperpolarization

Source 📝

119: 22: 172:
than are open in the resting state, many of which do not close immediately when the membrane returns to its normal resting voltage. This can lead to an "undershoot" of the membrane potential to values that are more polarized ("hyperpolarized") than was the original resting membrane potential.
283:
R. Andrade, R.C. Foehring, and A.V. Tzingounis, Essential role for phosphatidylinositol 4,5-bisphosphate in the expression, regulation, and gating of the slow afterhyperpolarization current in the cerebral cortex, Frontiers in Cellular Neuroscience 6:47
273:
N. Gu, K. Vervaeke, H. Hu, and J.F. Storm, Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium afterhyperpolarization and excitability control in CA1 hippocampal pyramidal cells, Journal of Physiology 566:689-715
177:
that open in response to the influx of Ca during the action potential carry much of the K current as the membrane potential becomes more negative. The K permeability of the membrane is transiently unusually high, driving the membrane voltage
227:. This mechanism is proposed to be functionally important to maintain the spiking of these neurons at a defined phase of the theta cycle, that, in turn, is thought to contribute to encoding of new memories by the 161:. AHPs have been segregated into "fast", "medium", and "slow" components that appear to have distinct ionic mechanisms and durations. While fast and medium AHPs can be generated by single action potentials, 264:
M. Shah, and D. G. Haylett. Ca2+ Channels Involved in the Generation of the Slow Afterhyperpolarization in Cultured Rat Hippocampal Pyramidal Neurons. J Neurophysiol 83: 2554-2561, 2000.
294:
Kim JH, Sizov I, Dobretsov M, von Gersdorff H (2007). "Presynaptic Ca buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na/K-ATPase".
386:
Klink R, Alonso A (July 1993). "Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons".
200:
Medium and slow AHP currents also occur in neurons. The ionic mechanisms underlying medium and slow AHPs are not yet well understood, but may also involve
39: 209: 86: 105: 58: 223:) and can thus set the phase of the subthreshold oscillation of the membrane potential, as reported for the stellate cells of the 219:
The afterhyperpolarized (sAHP) state can be followed by an afterdepolarized state (which is not to be confused with the cardiac
169: 65: 498: 43: 72: 488: 162: 142: 126:
recording of an action potential, showing the various phases that occur as the voltage wave passes a point on a cell
478: 54: 493: 483: 252: 32: 423:"Episodic Memories: How do the Hippocampus and the Entorhinal Ring Attractors Cooperate to Create Them?" 228: 79: 220: 127: 197:. Hence, hyperpolarization persists until the membrane K permeability returns to its usual value. 319: 188: 150: 454: 403: 368: 311: 224: 154: 130:. The afterhyperpolarisation is one of the processes that contribute to the refractory period. 123: 444: 434: 395: 358: 350: 303: 146: 213: 449: 422: 363: 338: 472: 168:
During single action potentials, transient depolarization of the membrane opens more
323: 354: 205: 21: 118: 439: 174: 399: 201: 458: 372: 315: 407: 337:
Gulledge AT, Dasari S, Onoue K, Stephens EK, Hasse JM, Avesar D (2013).
339:"A sodium-pump-mediated afterhyperpolarization in pyramidal neurons" 165:
generally develop only during trains of multiple action potentials.
307: 157:. This is also commonly referred to as an action potential's 15: 46:. Unsourced material may be challenged and removed. 8: 448: 438: 362: 106:Learn how and when to remove this message 117: 240: 7: 44:adding citations to reliable sources 14: 427:Frontiers in Systems Neuroscience 20: 255:, Orkand, and Grinnell, p. 152. 31:needs additional citations for 355:10.1523/JNEUROSCI.0220-13.2013 1: 421:Kovács KA (September 2020). 515: 440:10.3389/fnsys.2020.559186 400:10.1152/jn.1993.70.1.144 170:voltage-gated K channels 55:"Afterhyperpolarization" 343:Journal of Neuroscience 175:Ca-activated K channels 153:falls below the normal 210:ion-dependent currents 135:Afterhyperpolarization 131: 499:Cellular neuroscience 208:for medium AHPs, and 187:even closer to the K 121: 229:medial temporal lobe 145:phase of a neuron's 124:electrophysiological 40:improve this article 349:(32): 13025–13041. 296:Nature Neuroscience 221:afterdepolarization 189:equilibrium voltage 489:Cellular processes 151:membrane potential 132: 479:Electrophysiology 225:entorhinal cortex 155:resting potential 149:where the cell's 116: 115: 108: 90: 506: 494:Membrane biology 484:Electrochemistry 463: 462: 452: 442: 418: 412: 411: 383: 377: 376: 366: 334: 328: 327: 291: 285: 281: 275: 271: 265: 262: 256: 245: 159:undershoot phase 147:action potential 122:Schematic of an 111: 104: 100: 97: 91: 89: 48: 24: 16: 514: 513: 509: 508: 507: 505: 504: 503: 469: 468: 467: 466: 420: 419: 415: 388:J. Neurophysiol 385: 384: 380: 336: 335: 331: 293: 292: 288: 282: 278: 272: 268: 263: 259: 246: 242: 237: 216:for slow AHPs. 196: 186: 143:hyperpolarizing 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 512: 510: 502: 501: 496: 491: 486: 481: 471: 470: 465: 464: 413: 394:(1): 144–157. 378: 329: 308:10.1038/nn1839 302:(2): 196–205. 286: 276: 266: 257: 239: 238: 236: 233: 231:of the brain 194: 182: 114: 113: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 511: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 476: 474: 460: 456: 451: 446: 441: 436: 432: 428: 424: 417: 414: 409: 405: 401: 397: 393: 389: 382: 379: 374: 370: 365: 360: 356: 352: 348: 344: 340: 333: 330: 325: 321: 317: 313: 309: 305: 301: 297: 290: 287: 280: 277: 270: 267: 261: 258: 254: 250: 244: 241: 234: 232: 230: 226: 222: 217: 215: 211: 207: 203: 198: 193: 190: 185: 181: 176: 171: 166: 164: 160: 156: 152: 148: 144: 140: 136: 129: 125: 120: 110: 107: 99: 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: –  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 430: 426: 416: 391: 387: 381: 346: 342: 332: 299: 295: 289: 279: 269: 260: 248: 243: 218: 206:HCN channels 199: 191: 183: 179: 167: 158: 138: 134: 133: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 214:ionic pumps 473:Categories 235:References 66:newspapers 251:, p. 37; 202:M current 163:slow AHPs 141:, is the 459:33013334 373:23926257 324:19518833 316:17220883 128:membrane 96:May 2013 450:7511719 408:7689647 364:3735883 284:(2012). 274:(2005). 253:Bullock 247:Purves 212:and/or 80:scholar 457:  447:  433:: 68. 406:  371:  361:  322:  314:  249:et al. 82:  75:  68:  61:  53:  320:S2CID 137:, or 87:JSTOR 73:books 455:PMID 404:PMID 369:PMID 312:PMID 204:and 59:news 445:PMC 435:doi 396:doi 359:PMC 351:doi 304:doi 139:AHP 42:by 475:: 453:. 443:. 431:14 429:. 425:. 402:. 392:70 390:. 367:. 357:. 347:33 345:. 341:. 318:. 310:. 300:10 298:. 461:. 437:: 410:. 398:: 375:. 353:: 326:. 306:: 195:K 192:E 184:M 180:V 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Afterhyperpolarization"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

electrophysiological
membrane
hyperpolarizing
action potential
membrane potential
resting potential
slow AHPs
voltage-gated K channels
Ca-activated K channels
equilibrium voltage
M current
HCN channels
ion-dependent currents
ionic pumps
afterdepolarization
entorhinal cortex
medial temporal lobe
Bullock

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.