Knowledge (XXG)

Algebraic space

Source 📝

1275:
scheme, is not complete, and is not even quasi-separated. This shows that although the quotient of an algebraic space by an infinite discrete group is an algebraic space, it can have strange properties and might not be the algebraic space one was "expecting". Similar examples are given by the quotient of the complex affine line by the integers, or the quotient of the complex affine line minus the origin by the powers of some number: again the corresponding analytic space is a variety, but the algebraic space is not.
1274:
by a lattice is an algebraic space, but is not an elliptic curve, even though the corresponding analytic space is an elliptic curve (or more precisely is the image of an elliptic curve under the functor from complex algebraic spaces to analytic spaces). In fact this algebraic space quotient is not a
1295:
Roughly speaking, the difference between complex algebraic spaces and analytic spaces is that complex algebraic spaces are formed by gluing affine pieces together using the étale topology, while analytic spaces are formed by gluing with the classical topology. In particular there is a functor from
1259:
can be used to give a non-singular 3-dimensional proper algebraic space that is not a scheme, given by the quotient of a scheme by a group of order 2 acting freely. This illustrates one difference between schemes and algebraic spaces: the quotient of an algebraic space by a discrete group acting
1300:
give examples of analytic surfaces that do not come from a proper algebraic space (though one can construct non-proper and non-separated algebraic spaces whose analytic space is the Hopf surface). It is also possible for different algebraic spaces to correspond to the same analytic space: for
1233:
Algebraic spaces are similar to schemes, and much of the theory of schemes extends to algebraic spaces. For example, most properties of morphisms of schemes also apply to algebraic spaces, one can define cohomology of quasicoherent sheaves, this has the usual finiteness properties for proper
403: 1064: 949: 288: 52:. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology. 1250:
Commutative-group objects in the category of algebraic spaces over an arbitrary scheme which are proper, locally finite presentation, flat, and cohomologically flat in dimension 0 are schemes.
1196: 1144: 518: 993: 877: 182:. Doing so means that the theory of algebraic spaces is not dependent on the full theory of schemes, and can indeed be used as a (more general) replacement of that theory. 1000: 1094: 1219: 83:
There are two common ways to define algebraic spaces: they can be defined as either quotients of schemes by étale equivalence relations, or as sheaves on a
1320:. In the category of stacks we can form even more quotients by group actions than in the category of algebraic spaces (the resulting quotient is called a 885: 1247:
group objects in the category of algebraic spaces over a field are schemes, though there are non quasi-separated group objects that are not schemes.
398:{\displaystyle \mathrm {Hom} (Y,X)\rightarrow \mathrm {Hom} (V,X){{{} \atop \longrightarrow } \atop {\longrightarrow \atop {}}}\mathrm {Hom} (S,X)} 59:
of algebraic spaces extends the category of schemes and allows one to carry out several natural constructions that are used in the construction of
1260:
freely is an algebraic space, but the quotient of a scheme by a discrete group acting freely need not be a scheme (even if the group is finite).
1438: 1400: 1263:
Every quasi-separated algebraic space contains a dense open affine subscheme, and the complement of such a subscheme always has
1305:
by the corresponding lattice are not isomorphic as algebraic spaces, but the corresponding analytic spaces are isomorphic.
1476: 1152: 1498: 1471: 1099: 1308:
Artin showed that proper algebraic spaces over the complex numbers are more or less the same as Moishezon spaces.
280: 465: 700: 961: 1390: 1371: 413: 56: 72: 1256: 1466: 1364:(1969), "The implicit function theorem in algebraic geometry", in Abhyankar, Shreeram Shankar (ed.), 858: 127: 25: 1221:. Note that some authors, such as Knutson, add an extra condition that an algebraic space has to be 1059:{\displaystyle \Delta _{{\mathfrak {X}}/S}:{\mathfrak {X}}\to {\mathfrak {X}}\times {\mathfrak {X}}} 1317: 412:
for surjective étale maps of affine schemes). With these definitions, the algebraic spaces form a
1289: 1241:
Non-singular proper algebraic spaces of dimension two over a field (smooth surfaces) are schemes.
528: 524: 217:), then the algebraic space will be a scheme in the usual sense. Since a general algebraic space 63:
but are not always possible in the smaller category of schemes, such as taking the quotient of a
37: 29: 1434: 1396: 245: 156: 84: 49: 1426: 45: 1448: 1410: 1379: 1444: 1422: 1406: 1375: 1244: 1222: 164: 87:
that are locally isomorphic to schemes. These two definitions are essentially equivalent.
1073: 163:
Some authors, such as Knutson, add an extra condition that an algebraic space has to be
1321: 1285: 1271: 1204: 226: 1492: 1386: 1361: 1297: 179: 48:, while algebraic spaces are given by gluing together affine schemes using the finer 41: 33: 409: 68: 60: 1365: 944:{\displaystyle {\mathfrak {X}}:({\text{Sch}}/S)_{\text{et}}^{op}\to {\text{Sets}}} 1370:, of Tata Institute of Fundamental Research studies in mathematics, vol. 4, 1264: 64: 17: 581: 221:
does not satisfy this requirement, it allows a single connected component of
1482: 1238:
Proper algebraic spaces over a field of dimension one (curves) are schemes.
1070:
The second condition is equivalent to the property that given any schemes
1430: 189:
is the trivial equivalence relation over each connected component of
1395:, Yale Mathematical Monographs, vol. 3, Yale University Press, 1267:≥ 1. Thus algebraic spaces are in a sense "close" to affine schemes. 1367:
Algebraic geometry: papers presented at the Bombay Colloquium, 1968
1421:, Lecture Notes in Mathematics, vol. 203, Berlin, New York: 1284:
Algebraic spaces over the complex numbers are closely related to
232:
with many "sheets". The point set underlying the algebraic space
1316:
A far-reaching generalization of algebraic spaces is given by
1296:
complex algebraic spaces of finite type to analytic spaces.
408:
exact (this definition is motivated by a descent theorem of
255:
be an algebraic space defined by an equivalence relation
1207: 1155: 1102: 1076: 1003: 964: 888: 861: 468: 291: 40:. Intuitively, schemes are given by gluing together 279:is then defined by the condition that it makes the 1225:, meaning that the diagonal map is quasi-compact. 1213: 1190: 1138: 1088: 1058: 987: 943: 871: 836:in the sense just defined) to any algebraic space 512: 397: 167:, meaning that the diagonal map is quasi-compact. 1253:Not every singular algebraic surface is a scheme. 1191:{\displaystyle h_{Y}\times _{\mathfrak {X}}h_{Z}} 816:is defined by associating the ring of functions 1301:example, an elliptic curve and the quotient of 1139:{\displaystyle h_{Y},h_{Z}\to {\mathfrak {X}}} 201:belonging to the same connected component of 8: 664:A point on an algebraic space is said to be 504: 472: 513:{\displaystyle k\{x_{1},\ldots ,x_{n}\}\ } 1206: 1182: 1171: 1170: 1160: 1154: 1130: 1129: 1120: 1107: 1101: 1075: 1050: 1049: 1040: 1039: 1030: 1029: 1016: 1010: 1009: 1008: 1002: 979: 978: 969: 963: 936: 924: 919: 907: 902: 890: 889: 887: 863: 862: 860: 498: 479: 467: 369: 363: 358: 351: 349: 347: 321: 292: 290: 118:satisfying the following two conditions: 988:{\displaystyle h_{X}\to {\mathfrak {X}}} 91:Algebraic spaces as quotients of schemes 1333: 1344: 1340: 958:There is a surjective étale morphism 7: 1280:Algebraic spaces and analytic spaces 1172: 1131: 1051: 1041: 1031: 1011: 980: 891: 864: 622:is the local ring corresponding to 427:defined by a system of polynomials 1201:is representable by a scheme over 1005: 879:can be defined as a sheaf of sets 743:of algebraic spaces is said to be 584:of algebraic functions defined by 376: 373: 370: 359: 350: 348: 328: 325: 322: 299: 296: 293: 14: 1146:, their fiber-product of sheaves 423:be an affine scheme over a field 767:)) if the induced map on stalks 872:{\displaystyle {\mathfrak {X}}} 1126: 1036: 975: 933: 916: 899: 392: 380: 360: 353: 344: 332: 318: 315: 303: 1: 277:morphisms of algebraic spaces 24:form a generalization of the 1229:Algebraic spaces and schemes 828:(defined by étale maps from 1472:Encyclopedia of Mathematics 848:Algebraic spaces as sheaves 724:is then just defined to be 580:are then defined to be the 170:One can always assume that 1515: 657:of algebraic functions on 557:} be an algebraic space. 1417:Knutson, Donald (1971), 1465:Danilov, V.I. (2001) , 1372:Oxford University Press 812:on the algebraic space 106:and a closed subscheme 1234:morphisms, and so on. 1215: 1192: 1140: 1090: 1060: 997:the diagonal morphism 989: 945: 873: 605:is a point lying over 514: 399: 1485:in the stacks project 1216: 1193: 1141: 1091: 1061: 990: 946: 874: 515: 400: 155:onto each factor are 1270:The quotient of the 1205: 1153: 1100: 1074: 1001: 962: 886: 859: 840:which is étale over 466: 289: 128:equivalence relation 1290:Moishezon manifolds 1089:{\displaystyle Y,Z} 932: 832:to the affine line 799:is an isomorphism. 716:. The dimension of 529:algebraic functions 246:equivalence classes 140:2. The projections 102:comprises a scheme 1499:Algebraic geometry 1431:10.1007/BFb0059750 1374:, pp. 13–34, 1257:Hironaka's example 1211: 1188: 1136: 1086: 1056: 985: 941: 915: 869: 510: 395: 236:is then given by | 38:deformation theory 30:algebraic geometry 1467:"Algebraic space" 1440:978-3-540-05496-2 1402:978-0-300-01396-2 1214:{\displaystyle S} 1066:is representable. 939: 922: 905: 640:, ...,  509: 367: 365: 356: 73:Keel–Mori theorem 1506: 1479: 1451: 1419:Algebraic spaces 1413: 1392:Algebraic spaces 1382: 1348: 1338: 1318:algebraic stacks 1220: 1218: 1217: 1212: 1197: 1195: 1194: 1189: 1187: 1186: 1177: 1176: 1175: 1165: 1164: 1145: 1143: 1142: 1137: 1135: 1134: 1125: 1124: 1112: 1111: 1095: 1093: 1092: 1087: 1065: 1063: 1062: 1057: 1055: 1054: 1045: 1044: 1035: 1034: 1025: 1024: 1020: 1015: 1014: 994: 992: 991: 986: 984: 983: 974: 973: 950: 948: 947: 942: 940: 937: 931: 923: 920: 911: 906: 903: 895: 894: 878: 876: 875: 870: 868: 867: 560:The appropriate 519: 517: 516: 511: 507: 503: 502: 484: 483: 404: 402: 401: 396: 379: 368: 366: 364: 357: 352: 331: 302: 281:descent sequence 46:Zariski topology 32:, introduced by 22:algebraic spaces 1514: 1513: 1509: 1508: 1507: 1505: 1504: 1503: 1489: 1488: 1483:Algebraic space 1464: 1461: 1455: 1441: 1423:Springer-Verlag 1416: 1403: 1385: 1360: 1357: 1352: 1351: 1339: 1335: 1330: 1314: 1286:analytic spaces 1282: 1272:complex numbers 1245:Quasi-separated 1231: 1223:quasi-separated 1203: 1202: 1178: 1166: 1156: 1151: 1150: 1116: 1103: 1098: 1097: 1072: 1071: 1004: 999: 998: 965: 960: 959: 884: 883: 857: 856: 854:algebraic space 850: 810: 804:structure sheaf 795: 788: 782: 775: 714: 708: 697: 691: 680: 673: 647:} / ( 645: 639: 621: 614: 596: 589: 575: 568: 494: 475: 464: 463: 457: 451: 287: 286: 267:. The set Hom( 209:if and only if 165:quasi-separated 145: 130:as a subset of 97:algebraic space 93: 81: 12: 11: 5: 1512: 1510: 1502: 1501: 1491: 1490: 1487: 1486: 1480: 1460: 1459:External links 1457: 1453: 1452: 1439: 1414: 1401: 1387:Artin, Michael 1383: 1362:Artin, Michael 1356: 1353: 1350: 1349: 1332: 1331: 1329: 1326: 1322:quotient stack 1313: 1312:Generalization 1310: 1298:Hopf manifolds 1281: 1278: 1277: 1276: 1268: 1261: 1254: 1251: 1248: 1242: 1239: 1230: 1227: 1210: 1199: 1198: 1185: 1181: 1174: 1169: 1163: 1159: 1133: 1128: 1123: 1119: 1115: 1110: 1106: 1096:and morphisms 1085: 1082: 1079: 1068: 1067: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1019: 1013: 1007: 995: 982: 977: 972: 968: 952: 951: 935: 930: 927: 918: 914: 910: 901: 898: 893: 866: 849: 846: 808: 797: 796: 790: 786: 777: 773: 712: 706: 701:indeterminates 695: 689: 675: 671: 655: 654: 643: 637: 616: 612: 591: 587: 570: 566: 521: 520: 506: 501: 497: 493: 490: 487: 482: 478: 474: 471: 455: 449: 406: 405: 394: 391: 388: 385: 382: 378: 375: 372: 362: 355: 346: 343: 340: 337: 334: 330: 327: 324: 320: 317: 314: 311: 308: 305: 301: 298: 295: 244:| as a set of 193:(i.e. for all 180:affine schemes 161: 160: 143: 138: 92: 89: 85:big étale site 80: 77: 55:The resulting 50:étale topology 42:affine schemes 13: 10: 9: 6: 4: 3: 2: 1511: 1500: 1497: 1496: 1494: 1484: 1481: 1478: 1474: 1473: 1468: 1463: 1462: 1458: 1456: 1450: 1446: 1442: 1436: 1432: 1428: 1424: 1420: 1415: 1412: 1408: 1404: 1398: 1394: 1393: 1388: 1384: 1381: 1377: 1373: 1369: 1368: 1363: 1359: 1358: 1354: 1346: 1342: 1337: 1334: 1327: 1325: 1323: 1319: 1311: 1309: 1306: 1304: 1299: 1293: 1291: 1287: 1279: 1273: 1269: 1266: 1262: 1258: 1255: 1252: 1249: 1246: 1243: 1240: 1237: 1236: 1235: 1228: 1226: 1224: 1208: 1183: 1179: 1167: 1161: 1157: 1149: 1148: 1147: 1121: 1117: 1113: 1108: 1104: 1083: 1080: 1077: 1046: 1026: 1021: 1017: 996: 970: 966: 957: 956: 955: 928: 925: 912: 908: 896: 882: 881: 880: 855: 847: 845: 843: 839: 835: 831: 827: 823: 819: 815: 811: 805: 800: 794: 789: 781: 776: 770: 769: 768: 766: 762: 758: 754: 750: 746: 742: 738: 734: 729: 727: 723: 719: 715: 705: 702: 698: 688: 684: 679: 674: 667: 662: 660: 652: 651: 646: 636: 632: 629: 628: 627: 625: 620: 615: 608: 604: 600: 595: 590: 583: 579: 574: 569: 563: 558: 556: 552: 548: 544: 540: 536: 535: 530: 526: 499: 495: 491: 488: 485: 480: 476: 469: 462: 461: 460: 458: 448: 444: 443: 438: 437: 432: 431: 426: 422: 417: 415: 411: 389: 386: 383: 341: 338: 335: 312: 309: 306: 285: 284: 283: 282: 278: 274: 270: 266: 262: 258: 254: 249: 247: 243: 239: 235: 231: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 188: 183: 181: 177: 173: 168: 166: 158: 154: 150: 146: 139: 137: 133: 129: 125: 121: 120: 119: 117: 113: 109: 105: 101: 98: 90: 88: 86: 78: 76: 74: 70: 66: 62: 61:moduli spaces 58: 53: 51: 47: 43: 39: 35: 34:Michael Artin 31: 27: 23: 19: 1470: 1454: 1418: 1391: 1366: 1336: 1315: 1307: 1302: 1294: 1283: 1232: 1200: 1069: 953: 853: 851: 841: 837: 833: 829: 825: 821: 817: 813: 806: 803: 801: 798: 792: 784: 779: 771: 764: 760: 756: 752: 748: 744: 740: 736: 732: 730: 725: 721: 717: 710: 703: 693: 686: 682: 677: 669: 665: 663: 658: 656: 649: 648: 641: 634: 630: 626:of the ring 623: 618: 610: 606: 602: 598: 593: 585: 577: 572: 564: 561: 559: 554: 550: 546: 542: 538: 533: 532: 522: 453: 446: 441: 440: 435: 434: 429: 428: 424: 420: 418: 410:Grothendieck 407: 276: 272: 268: 264: 260: 256: 252: 250: 241: 237: 233: 229: 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 184: 175: 171: 169: 162: 152: 148: 141: 135: 131: 123: 115: 111: 107: 103: 99: 96: 94: 82: 69:finite group 54: 21: 15: 1265:codimension 954:such that 731:A morphism 699:} for some 582:local rings 523:denote the 65:free action 36:for use in 18:mathematics 1355:References 1345:Artin 1971 1341:Artin 1969 541:, and let 205:, we have 157:étale maps 79:Definition 44:using the 1477:EMS Press 1328:Citations 1168:× 1127:→ 1047:× 1037:→ 1006:Δ 976:→ 934:→ 489:… 361:⟶ 354:⟶ 319:→ 71:(cf. the 1493:Category 1389:(1971), 597:, where 414:category 57:category 1449:0302647 1411:0407012 1380:0262237 755:(where 709:, ..., 692:, ..., 459:), let 452:, ..., 26:schemes 1447:  1437:  1409:  1399:  1378:  666:smooth 562:stalks 508:  126:is an 824:) on 745:étale 537:over 275:) of 240:| / | 227:cover 67:by a 1435:ISBN 1397:ISBN 1288:and 938:Sets 802:The 609:and 525:ring 419:Let 251:Let 178:are 174:and 1427:doi 1324:). 904:Sch 852:An 747:at 720:at 668:if 576:on 545:= { 531:in 527:of 445:= ( 439:), 225:to 207:xRy 185:If 122:1. 95:An 75:). 28:of 16:In 1495:: 1475:, 1469:, 1445:MR 1443:, 1433:, 1425:, 1407:MR 1405:, 1376:MR 1343:; 1292:. 921:et 844:. 791:, 783:→ 778:, 759:= 751:∈ 739:→ 735:: 728:. 681:≅ 676:, 661:. 617:, 601:∈ 592:, 571:, 553:× 549:⊂ 416:. 271:, 263:× 259:⊂ 248:. 197:, 151:→ 147:: 134:× 114:× 110:⊆ 20:, 1429:: 1347:. 1303:C 1209:S 1184:Z 1180:h 1173:X 1162:Y 1158:h 1132:X 1122:Z 1118:h 1114:, 1109:Y 1105:h 1084:Z 1081:, 1078:Y 1052:X 1042:X 1032:X 1027:: 1022:S 1018:/ 1012:X 981:X 971:X 967:h 929:p 926:o 917:) 913:S 909:/ 900:( 897:: 892:X 865:X 842:X 838:V 834:A 830:V 826:V 822:V 820:( 818:O 814:X 809:X 807:O 793:y 787:Y 785:Õ 780:x 774:X 772:Õ 765:y 763:( 761:f 757:x 753:Y 749:y 741:X 737:Y 733:f 726:d 722:x 718:X 713:d 711:z 707:1 704:z 696:d 694:z 690:1 687:z 685:{ 683:k 678:x 672:X 670:Õ 659:U 653:) 650:g 644:n 642:x 638:1 635:x 633:{ 631:k 624:u 619:u 613:U 611:Õ 607:x 603:U 599:u 594:u 588:U 586:Õ 578:X 573:x 567:X 565:Õ 555:U 551:U 547:R 543:X 539:k 534:x 505:} 500:n 496:x 492:, 486:, 481:1 477:x 473:{ 470:k 456:n 454:x 450:1 447:x 442:x 436:x 433:( 430:g 425:k 421:U 393:) 390:X 387:, 384:S 381:( 377:m 374:o 371:H 345:) 342:X 339:, 336:V 333:( 329:m 326:o 323:H 316:) 313:X 310:, 307:Y 304:( 300:m 297:o 294:H 273:X 269:Y 265:V 261:V 257:S 253:Y 242:R 238:U 234:X 230:X 223:U 219:X 215:y 213:= 211:x 203:U 199:y 195:x 191:U 187:R 176:U 172:R 159:. 153:U 149:R 144:i 142:p 136:U 132:U 124:R 116:U 112:U 108:R 104:U 100:X

Index

mathematics
schemes
algebraic geometry
Michael Artin
deformation theory
affine schemes
Zariski topology
étale topology
category
moduli spaces
free action
finite group
Keel–Mori theorem
big étale site
equivalence relation
étale maps
quasi-separated
affine schemes
cover
equivalence classes
descent sequence
Grothendieck
category
ring
algebraic functions
local rings
indeterminates
quasi-separated
Quasi-separated
Hironaka's example

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.