Knowledge (XXG)

Algebraically compact module

Source 📝

475:
is algebraically compact. This, together with the fact that all finite modules are algebraically compact, gives rise to the intuition that algebraically compact modules are those (possibly "large") modules which share the nice properties of "small" modules.
285:
if, for all such systems, if every subsystem formed by a finite number of the equations has a solution, then the whole system has a solution. (The solutions to the various subsystems may be different.)
35:
that have a certain "nice" property which allows the solution of infinite systems of equations in the module by finitary means. The solutions to these systems allow the extension of certain kinds of
149: 43:, where one can extend all module homomorphisms. All injective modules are algebraically compact, and the analogy between the two is made quite precise by a category embedding. 421: 239: 196: 694:
Algebraically compact modules share many other properties with injective objects because of the following: there exists an embedding of
762: 608:. One can often simplify a problem by first applying the *-functor, since algebraically compact modules are easier to deal with. 79: 472: 265:
such that all the equations of the system are simultaneously satisfied. (It is not required that only finitely many
367: 665: 793: 721: 601: 798: 729: 699: 681: 649: 526: 515: 32: 387: 457: 453: 290: 36: 205: 553: 165: 58: 16:
Module such that infinite systems of linear equations can be solved by solving finite subsystems
758: 688: 573: 442: 40: 757:. London Mathematical Society Lecture Note Series: Cambridge University Press, Cambridge. 507: 480: 426:
It turns out that a module is algebraically compact if and only if it is pure-injective.
307: 787: 492: 484: 438: 592:* is algebraically compact. Furthermore, there are pure injective homomorphisms 20: 685: 441:
is algebraically compact (since it is pure-injective). More generally, every
328: 522:, this is a complete list of indecomposable algebraically compact modules. 502:
is algebraically compact as both a module over itself and a module over
577: 434:
All modules with finitely many elements are algebraically compact.
73:-module. Consider a system of infinitely many linear equations 525:
Many algebraically compact modules can be produced using the
709:-modules precisely correspond to the injective objects in 39:. These algebraically compact modules are analogous to 390: 208: 168: 82: 415: 244:The goal is to decide whether such a system has a 233: 190: 143: 144:{\displaystyle \sum _{j\in J}r_{i,j}x_{j}=m_{i},} 445:is algebraically compact, for the same reason. 548:, one forms the (algebraic) character module 8: 636:can be extended to a module homomorphism 616:The following condition is equivalent to 407: 389: 213: 207: 173: 167: 132: 119: 103: 87: 81: 306:if the induced homomorphism between the 745: 248:, that is whether there exist elements 705:under which the algebraically compact 572:-module, and the *-operation yields a 7: 588:-modules. Every module of the form 684:algebraically compact module has a 353:if any pure injective homomorphism 14: 728:-module and to a direct sum of 510:are algebraically compact as a 416:{\displaystyle f\circ j=1_{M}} 1: 620:being algebraically compact: 25:algebraically compact modules 776:C.U. Jensen and H. Lenzing: 724:to an algebraically compact 234:{\displaystyle r_{i,j}\in R} 514:-module. Together with the 191:{\displaystyle m_{i}\in M,} 815: 672:, one for each element of 656:, one for each element of 483:are algebraically compact 780:, Gordon and Breach, 1989 755:Model theory and modules 778:Model Theoretic Algebra 491:-modules). The ring of 370:(that is, there exists 732:algebraically compact 568:. This is then a left 536:of abelian groups. If 417: 235: 202:the number of nonzero 192: 145: 29:pure-injective modules 722:elementary equivalent 700:Grothendieck category 544:module over the ring 527:injective cogenerator 418: 289:On the other hand, a 283:algebraically compact 236: 193: 146: 753:Prest, Mike (1988). 624:For every index set 552:* consisting of all 518:finite modules over 467:-module with finite 388: 206: 166: 80: 37:module homomorphisms 628:, the addition map 554:group homomorphisms 454:associative algebra 291:module homomorphism 413: 231: 188: 141: 98: 689:endomorphism ring 584:-modules to left 456:with 1 over some 162:may be infinite, 83: 41:injective modules 806: 769: 768: 750: 508:rational numbers 443:injective module 422: 420: 419: 414: 412: 411: 383: 366: 348: 342: 336: 331:for every right 326: 301: 273: 264: 258: 240: 238: 237: 232: 224: 223: 201: 197: 195: 194: 189: 178: 177: 161: 157: 154:where both sets 150: 148: 147: 142: 137: 136: 124: 123: 114: 113: 97: 72: 66: 56: 814: 813: 809: 808: 807: 805: 804: 803: 784: 783: 773: 772: 765: 752: 751: 747: 742: 614: 498:for each prime 432: 403: 386: 385: 371: 354: 344: 338: 332: 310: 308:tensor products 293: 274:are non-zero.) 271: 266: 260: 257: 249: 209: 204: 203: 199: 169: 164: 163: 159: 155: 128: 115: 99: 78: 77: 68: 62: 52: 49: 17: 12: 11: 5: 812: 810: 802: 801: 796: 786: 785: 782: 781: 771: 770: 763: 744: 743: 741: 738: 730:indecomposable 682:indecomposable 678: 677: 613: 610: 576:contravariant 516:indecomposable 496:-adic integers 485:abelian groups 431: 428: 410: 406: 402: 399: 396: 393: 351:pure-injective 304:pure embedding 269: 253: 230: 227: 222: 219: 216: 212: 187: 184: 181: 176: 172: 152: 151: 140: 135: 131: 127: 122: 118: 112: 109: 106: 102: 96: 93: 90: 86: 48: 45: 27:, also called 15: 13: 10: 9: 6: 4: 3: 2: 811: 800: 797: 795: 794:Module theory 792: 791: 789: 779: 775: 774: 766: 764:0-521-34833-1 760: 756: 749: 746: 739: 737: 735: 731: 727: 723: 719: 714: 712: 708: 704: 701: 697: 692: 690: 687: 683: 675: 671: 668:of copies of 667: 663: 659: 655: 652:of copies of 651: 647: 643: 639: 635: 631: 627: 623: 622: 621: 619: 611: 609: 607: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 543: 539: 535: 531: 528: 523: 521: 517: 513: 509: 505: 501: 497: 495: 490: 486: 482: 481:Prüfer groups 477: 474: 470: 466: 463:, then every 462: 459: 455: 451: 446: 444: 440: 435: 429: 427: 424: 408: 404: 400: 397: 394: 391: 382: 378: 374: 369: 365: 361: 357: 352: 347: 343:. The module 341: 335: 330: 325: 321: 317: 313: 309: 305: 300: 296: 292: 287: 284: 280: 275: 272: 263: 256: 252: 247: 242: 228: 225: 220: 217: 214: 210: 198:and for each 185: 182: 179: 174: 170: 138: 133: 129: 125: 120: 116: 110: 107: 104: 100: 94: 91: 88: 84: 76: 75: 74: 71: 65: 60: 55: 46: 44: 42: 38: 34: 30: 26: 22: 799:Model theory 777: 754: 748: 733: 725: 717: 715: 710: 706: 702: 698:-Mod into a 695: 693: 679: 673: 669: 664:denotes the 661: 657: 653: 648:denotes the 645: 641: 637: 633: 629: 625: 617: 615: 605: 597: 593: 589: 585: 581: 569: 565: 561: 557: 549: 545: 541: 537: 533: 529: 524: 519: 511: 503: 499: 493: 488: 478: 468: 464: 460: 449: 447: 439:vector space 436: 433: 425: 380: 376: 372: 363: 359: 355: 350: 345: 339: 333: 323: 319: 315: 311: 303: 298: 294: 288: 282: 278: 276: 267: 261: 254: 250: 245: 243: 153: 69: 63: 53: 50: 28: 24: 18: 720:-module is 580:from right 277:The module 241:is finite. 47:Definitions 21:mathematics 788:Categories 740:References 736:-modules. 650:direct sum 473:dimension 395:∘ 329:injective 226:∈ 180:∈ 92:∈ 85:∑ 574:faithful 430:Examples 375: : 358: : 337:-module 246:solution 666:product 602:natural 578:functor 67:a left 33:modules 761:  716:Every 680:Every 644:(here 506:. The 487:(i.e. 452:is an 437:Every 368:splits 61:, and 31:, are 686:local 612:Facts 556:from 542:right 540:is a 458:field 384:with 302:is a 57:be a 759:ISBN 600:**, 479:The 158:and 59:ring 51:Let 604:in 560:to 448:If 423:). 349:is 327:is 281:is 259:of 19:In 790:: 713:. 691:. 676:). 660:; 640:→ 632:→ 596:→ 379:→ 362:→ 322:⊗ 318:→ 314:⊗ 297:→ 23:, 767:. 734:R 726:R 718:R 711:G 707:R 703:G 696:R 674:I 670:M 662:M 658:I 654:M 646:M 642:M 638:M 634:M 630:M 626:I 618:M 606:H 598:H 594:H 590:H 586:R 582:R 570:R 566:Z 564:/ 562:Q 558:H 550:H 546:R 538:H 534:Z 532:/ 530:Q 520:Z 512:Z 504:Z 500:p 494:p 489:Z 471:- 469:k 465:R 461:k 450:R 409:M 405:1 401:= 398:j 392:f 381:M 377:K 373:f 364:K 360:M 356:j 346:M 340:C 334:R 324:K 320:C 316:M 312:C 299:K 295:M 279:M 270:j 268:x 262:M 255:j 251:x 229:R 221:j 218:, 215:i 211:r 200:i 186:, 183:M 175:i 171:m 160:J 156:I 139:, 134:i 130:m 126:= 121:j 117:x 111:j 108:, 105:i 101:r 95:J 89:j 70:R 64:M 54:R

Index

mathematics
modules
module homomorphisms
injective modules
ring
module homomorphism
tensor products
injective
splits
vector space
injective module
associative algebra
field
dimension
Prüfer groups
abelian groups
p-adic integers
rational numbers
indecomposable
injective cogenerator
group homomorphisms
faithful
functor
natural
direct sum
product
indecomposable
local
endomorphism ring
Grothendieck category

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.