Knowledge (XXG)

Alexander horned sphere

Source đź“ť

83: 125: 31: 235:(which is the 3-manifold obtained by gluing two copies of the horned sphere together along the corresponding points of their boundaries) is in fact the 3-sphere. One can consider other gluings of the solid horned sphere to a copy of itself, arising from different homeomorphisms of the boundary sphere to itself. This has also been shown to be the 3-sphere. The solid Alexander horned sphere is an example of a 136:
removed results. This embedding extends to a continuous map from the whole sphere, which is injective (hence a topological embedding since the sphere is compact) since points in the sphere approaching two different points of the Cantor set will end up in different 'horns' at some stage and therefore
1156: 247:
One can generalize Alexander's construction to generate other horned spheres by increasing the number of horns at each stage of Alexander's construction or considering the analogous construction in higher dimensions.
161:
simply connected, unlike the exterior of the usual round sphere; a loop linking a torus in the above construction cannot be shrunk to a point without touching the horned sphere. This shows that the
383: 1174: 58:). It is a particular topological embedding of a two-dimensional sphere in three-dimensional space. Together with its inside, it is a topological 471: 620: 251:
Other substantially different constructions exist for constructing such "wild" spheres. Another example, also found by Alexander, is
653: 535: 513: 162: 82: 573: 124: 86:
Diagram of the first few iterative steps in the construction of Alexander's horned sphere, from Alexander's original 1924 paper
1180: 1036: 993: 1239: 1114: 1244: 1229: 1196: 680: 378: 252: 205: 51: 43: 846: 190: 170: 132:
By considering only the points of the tori that are not removed at some stage, an embedding of the sphere with a
702: 165:
does not hold in three dimensions, as Alexander had originally thought. Alexander also proved that the theorem
1139: 186: 174: 1188: 747: 613: 178: 113:
Connect a standard punctured torus to each side of the cut, interlinked with the torus on the other side.
973: 665: 324: 256: 1134: 1129: 919: 851: 392: 182: 91: 381:(1924), "An Example of a Simply Connected Surface Bounding a Region which is not Simply Connected", 322:
Bing, R. H. (1952), "A homeomorphism between the 3-sphere and the sum of two solid horned spheres",
892: 869: 804: 752: 737: 670: 272: 1119: 1099: 1063: 1058: 821: 451: 418: 349: 216: 146: 59: 588: 1234: 1162: 1124: 1048: 956: 861: 767: 742: 732: 675: 658: 648: 643: 606: 553: 531: 509: 467: 436: 410: 341: 232: 17: 1079: 946: 929: 757: 556: 459: 426: 400: 333: 177:
embeddings. This is one of the earliest examples where the need for distinction between the
154: 67: 481: 361: 70:; i.e., every loop can be shrunk to a point while staying inside. However, the exterior is 1094: 1031: 692: 577: 477: 357: 209: 99: 789: 396: 239:; i.e., a closed complementary domain of the embedding of a 2-sphere into the 3-sphere. 30: 1109: 1053: 1041: 1012: 968: 951: 934: 887: 831: 816: 784: 722: 523: 431: 103: 1223: 963: 939: 809: 779: 762: 727: 712: 494: 487: 236: 571: 1208: 1203: 1104: 1084: 841: 774: 447: 157:; i.e., every loop can be shrunk to a point while staying inside. The exterior is 1169: 1089: 799: 794: 502: 384:
Proceedings of the National Academy of Sciences of the United States of America
1022: 1007: 1002: 983: 717: 583: 260: 228: 133: 414: 345: 978: 924: 836: 687: 561: 277: 197: 440: 879: 282: 224: 201: 47: 593: 405: 909: 826: 629: 353: 463: 897: 422: 95: 337: 123: 81: 29: 74:
simply connected, unlike the exterior of the usual round sphere.
528:
A comprehensive introduction to differential geometry (Volume 1)
602: 145:
The horned sphere, together with its inside, is a topological
90:
The Alexander horned sphere is the particular (topological)
598: 570:
Zbigniew Fiedorowicz. Math 655 – Introduction to Topology.
456:
Mathematical Omnibus. 30 Lectures on Classical Mathematics
102:
obtained by the following construction, starting with a
500:
Hocking, John Gilbert; Young, Gail Sellers (1988) .
1148: 1072: 1021: 992: 908: 878: 860: 701: 636: 501: 495:http://pi.math.cornell.edu/~hatcher/AT/ATpage.html 458:, Providence, RI: American Mathematical Society, 219:of the non-simply connected domain is called the 594:PC OpenGL demo rendering and expanding the cusp 614: 196:Now consider Alexander's horned sphere as an 8: 305: 223:. Although the solid horned sphere is not a 128:Animated construction of Alexander's sphere. 116:Repeat steps 1–2 on the two tori just added 621: 607: 599: 430: 404: 391:(1), National Academy of Sciences: 8–10, 55: 1175:List of fractals by Hausdorff dimension 298: 309: 7: 584:Construction of the Alexander sphere 110:Remove a radial slice of the torus. 259:, a pathological embedding of the 25: 1157:How Long Is the Coast of Britain? 1181:The Fractal Geometry of Nature 18:Alexander's horned sphere 1: 221:solid Alexander horned sphere 169:hold in three dimensions for 1197:Chaos: Making a New Science 557:"Alexander's Horned Sphere" 1261: 206:one-point compactification 191:piecewise linear manifolds 163:Jordan–Schönflies theorem 306:Hocking & Young 1988 187:differentiable manifolds 253:Antoine's horned sphere 137:have different images. 40:Alexander horned sphere 34:Alexander horned sphere 1189:The Beauty of Fractals 129: 87: 35: 530:. Publish or Perish. 325:Annals of Mathematics 208:of the 3-dimensional 183:topological manifolds 151:Alexander horned ball 127: 85: 64:Alexander horned ball 33: 27:Topological embedding 1135:Lewis Fry Richardson 1130:Hamid Naderi Yeganeh 920:Burning Ship fractal 852:Weierstrass function 308:, pp. 175–176. 255:, which is based on 204:, considered as the 1240:Eponyms in geometry 893:Space-filling curve 870:Multifractal system 753:Space-filling curve 738:Sierpinski triangle 492:Algebraic Topology, 406:10.1073/pnas.10.1.8 397:1924PNAS...10....8A 285:, specifically the 273:Cantor tree surface 263:into the 3-sphere. 52:J. W. Alexander 1245:1924 introductions 1230:Geometric topology 1120:Aleksandr Lyapunov 1100:Desmond Paul Henry 1064:Self-avoiding walk 1059:Percolation theory 703:Iterated function 644:Fractal dimensions 589:rotating animation 576:2005-08-25 at the 554:Weisstein, Eric W. 452:Tabachnikov, Serge 257:Antoine's necklace 130: 88: 36: 1217: 1216: 1163:Coastline paradox 1140:WacĹ‚aw SierpiĹ„ski 1125:Benoit Mandelbrot 1049:Fractal landscape 957:Misiurewicz point 862:Strange attractor 743:Apollonian gasket 733:Sierpinski carpet 473:978-0-8218-4316-1 328:, Second Series, 193:became apparent. 98:in 3-dimensional 16:(Redirected from 1252: 1080:Michael Barnsley 947:Lyapunov fractal 805:SierpiĹ„ski curve 758:Blancmange curve 623: 616: 609: 600: 567: 566: 541: 519: 507: 484: 443: 434: 408: 379:Alexander, J. W. 365: 364: 319: 313: 303: 231:showed that its 171:piecewise linear 155:simply connected 141:Impact on theory 68:simply connected 21: 1260: 1259: 1255: 1254: 1253: 1251: 1250: 1249: 1220: 1219: 1218: 1213: 1144: 1095:Felix Hausdorff 1068: 1032:Brownian motion 1017: 988: 911: 904: 874: 856: 847:Pythagoras tree 704: 697: 693:Self-similarity 637:Characteristics 632: 627: 580:– Lecture notes 578:Wayback Machine 552: 551: 548: 538: 524:Spivak, Michael 522: 516: 499: 474: 464:10.1090/mbk/046 446: 377: 374: 369: 368: 338:10.2307/1969804 321: 320: 316: 304: 300: 295: 269: 245: 243:Generalizations 210:Euclidean space 143: 100:Euclidean space 80: 28: 23: 22: 15: 12: 11: 5: 1258: 1256: 1248: 1247: 1242: 1237: 1232: 1222: 1221: 1215: 1214: 1212: 1211: 1206: 1201: 1193: 1185: 1177: 1172: 1167: 1166: 1165: 1152: 1150: 1146: 1145: 1143: 1142: 1137: 1132: 1127: 1122: 1117: 1112: 1110:Helge von Koch 1107: 1102: 1097: 1092: 1087: 1082: 1076: 1074: 1070: 1069: 1067: 1066: 1061: 1056: 1051: 1046: 1045: 1044: 1042:Brownian motor 1039: 1028: 1026: 1019: 1018: 1016: 1015: 1013:Pickover stalk 1010: 1005: 999: 997: 990: 989: 987: 986: 981: 976: 971: 969:Newton fractal 966: 961: 960: 959: 952:Mandelbrot set 949: 944: 943: 942: 937: 935:Newton fractal 932: 922: 916: 914: 906: 905: 903: 902: 901: 900: 890: 888:Fractal canopy 884: 882: 876: 875: 873: 872: 866: 864: 858: 857: 855: 854: 849: 844: 839: 834: 832:Vicsek fractal 829: 824: 819: 814: 813: 812: 807: 802: 797: 792: 787: 782: 777: 772: 771: 770: 760: 750: 748:Fibonacci word 745: 740: 735: 730: 725: 723:Koch snowflake 720: 715: 709: 707: 699: 698: 696: 695: 690: 685: 684: 683: 678: 673: 668: 663: 662: 661: 651: 640: 638: 634: 633: 628: 626: 625: 618: 611: 603: 597: 596: 591: 586: 581: 568: 547: 546:External links 544: 543: 542: 536: 520: 514: 497: 488:Hatcher, Allen 485: 472: 444: 373: 370: 367: 366: 332:(2): 354–362, 314: 297: 296: 294: 291: 290: 289: 280: 275: 268: 265: 244: 241: 142: 139: 122: 121: 114: 111: 104:standard torus 79: 76: 50:discovered by 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1257: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1225: 1210: 1207: 1205: 1202: 1199: 1198: 1194: 1191: 1190: 1186: 1183: 1182: 1178: 1176: 1173: 1171: 1168: 1164: 1161: 1160: 1158: 1154: 1153: 1151: 1147: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1077: 1075: 1071: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1043: 1040: 1038: 1037:Brownian tree 1035: 1034: 1033: 1030: 1029: 1027: 1024: 1020: 1014: 1011: 1009: 1006: 1004: 1001: 1000: 998: 995: 991: 985: 982: 980: 977: 975: 972: 970: 967: 965: 964:Multibrot set 962: 958: 955: 954: 953: 950: 948: 945: 941: 940:Douady rabbit 938: 936: 933: 931: 928: 927: 926: 923: 921: 918: 917: 915: 913: 907: 899: 896: 895: 894: 891: 889: 886: 885: 883: 881: 877: 871: 868: 867: 865: 863: 859: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 811: 810:Z-order curve 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 780:Hilbert curve 778: 776: 773: 769: 766: 765: 764: 763:De Rham curve 761: 759: 756: 755: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 728:Menger sponge 726: 724: 721: 719: 716: 714: 713:Barnsley fern 711: 710: 708: 706: 700: 694: 691: 689: 686: 682: 679: 677: 674: 672: 669: 667: 664: 660: 657: 656: 655: 652: 650: 647: 646: 645: 642: 641: 639: 635: 631: 624: 619: 617: 612: 610: 605: 604: 601: 595: 592: 590: 587: 585: 582: 579: 575: 572: 569: 564: 563: 558: 555: 550: 549: 545: 539: 537:0-914098-70-5 533: 529: 525: 521: 517: 515:0-486-65676-4 511: 506: 505: 498: 496: 493: 489: 486: 483: 479: 475: 469: 465: 461: 457: 453: 449: 448:Fuchs, Dmitry 445: 442: 438: 433: 428: 424: 420: 416: 412: 407: 402: 398: 394: 390: 386: 385: 380: 376: 375: 371: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 326: 318: 315: 311: 307: 302: 299: 292: 288: 287:Fox–Artin arc 284: 281: 279: 276: 274: 271: 270: 266: 264: 262: 258: 254: 249: 242: 240: 238: 237:crumpled cube 234: 230: 226: 222: 218: 214: 211: 207: 203: 199: 194: 192: 188: 184: 180: 176: 172: 168: 164: 160: 156: 152: 148: 140: 138: 135: 126: 119: 115: 112: 109: 108: 107: 105: 101: 97: 93: 84: 77: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 32: 19: 1209:Chaos theory 1204:Kaleidoscope 1195: 1187: 1179: 1105:Gaston Julia 1085:Georg Cantor 910:Escape-time 842:Gosper curve 790:LĂ©vy C curve 775:Dragon curve 654:Box-counting 560: 527: 503: 491: 455: 388: 382: 329: 323: 317: 312:, p. 55 301: 286: 250: 246: 220: 212: 195: 166: 158: 153:, and so is 150: 144: 131: 118:ad infinitum 117: 89: 78:Construction 71: 66:, and so is 63: 44:pathological 39: 37: 1200:(1987 book) 1192:(1986 book) 1184:(1982 book) 1170:Fractal art 1090:Bill Gosper 1054:LĂ©vy flight 800:Peano curve 795:Moore curve 681:Topological 666:Correlation 310:Spivak 1999 1224:Categories 1008:Orbit trap 1003:Buddhabrot 996:techniques 984:Mandelbulb 785:Koch curve 718:Cantor set 293:References 261:Cantor set 229:R. H. Bing 179:categories 134:Cantor set 46:object in 1115:Paul LĂ©vy 994:Rendering 979:Mandelbox 925:Julia set 837:Hexaflake 768:Minkowski 688:Recursion 671:Hausdorff 562:MathWorld 508:. Dover. 415:0027-8424 372:Citations 346:0003-486X 278:Wild knot 200:into the 198:embedding 92:embedding 1235:Fractals 1025:fractals 912:fractals 880:L-system 822:T-square 630:Fractals 574:Archived 526:(1999). 504:Topology 454:(2007), 441:16576780 283:Wild arc 267:See also 225:manifold 202:3-sphere 48:topology 974:Tricorn 827:n-flake 676:Packing 659:Higuchi 649:Assouad 482:2350979 432:1085500 393:Bibcode 362:0049549 354:1969804 217:closure 54: ( 1073:People 1023:Random 930:Filled 898:H tree 817:String 705:system 534:  512:  480:  470:  439:  429:  421:  413:  360:  352:  344:  233:double 215:. The 189:, and 175:smooth 149:, the 147:3-ball 96:sphere 62:, the 60:3-ball 1149:Other 423:84202 419:JSTOR 350:JSTOR 94:of a 42:is a 532:ISBN 510:ISBN 468:ISBN 437:PMID 411:ISSN 342:ISSN 167:does 56:1924 38:The 490:, 460:doi 427:PMC 401:doi 334:doi 181:of 159:not 72:not 1226:: 1159:" 559:. 478:MR 476:, 466:, 450:; 435:, 425:, 417:, 409:, 399:, 389:10 387:, 358:MR 356:, 348:, 340:, 330:56 227:, 185:, 106:: 1155:" 622:e 615:t 608:v 565:. 540:. 518:. 462:: 403:: 395:: 336:: 213:R 173:/ 120:. 20:)

Index

Alexander's horned sphere

pathological
topology
J. W. Alexander
1924
3-ball
simply connected

embedding
sphere
Euclidean space
standard torus

Cantor set
3-ball
simply connected
Jordan–Schönflies theorem
piecewise linear
smooth
categories
topological manifolds
differentiable manifolds
piecewise linear manifolds
embedding
3-sphere
one-point compactification
Euclidean space
closure
manifold

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑