Knowledge (XXG)

Fluvial terrace

Source đź“ť

167:
short period, such as, after glaciation, or for a very long time if the conditions do not change. The fill terrace is created when the conditions change again and either a stream or river starts to incise into the material that it deposited in the valley. Once this occurs benches composed completely of alluvium form on the sides of the valley. The upper most benches are the fill terraces. As it continues to cut down through the alluvium the fill terraces are left above the river channel (sometimes 100 m or more). The fill terrace is only the very highest terrace resulting from the depositional episode; if there are multiple terraces below the fill terrace, these are called "cut terraces".
132: 213: 171: 255:
Fluvial terraces can be used to measure the rate at which either a stream or river is downcutting its valley. Using various dating methods, an age can be determined for the deposition of the terrace. Using the resulting date and the elevation above its current level, an approximate average rate of
186:
in origin. Once the alluvium deposited in the valley has begun to erode and fill terraces form along the valley walls, cut terraces may also form below the fill terraces. As either a stream or river continues to incise into the material, multiple levels of terraces may form. The uppermost being the
166:
which causes the valley, that was down cut by either a stream or river, to be filled in with material (Easterbrook). The stream or river will continue to deposit material until an equilibrium is reached and it can transport the material rather than deposit it. This equilibrium may last for a very
208:
through bedrock. As the flow continues to downcut, a period of valley widening may occur and expand the valley width. This may occur due to an equilibrium reached in the fluvial system resulting from: slowed or paused uplift, climate change, or a change in the bedrock type. Once downcutting
193:
Nested fill terraces are the result of the valley filling with alluvium, the alluvium being incised, and the valley filling again with material but to a lower level than before. The terrace that results for the second filling is a nested terrace because it has been “nested” into the original
58:
all over the world. They consist of a relatively level strip of land, called a "tread", separated from either an adjacent floodplain, other fluvial terraces, or uplands by distinctly steeper strips of land called "risers". These terraces lie parallel to and above the
174:
Hypothetical valley cross-section illustrating a complex sequence of aggradational (fill) and degradational (cut and strath) terraces. Note ct = cut terrace, ft = fill terrace, ft(b) = buried fill terrace, fp = active floodplain, and st = strath
71:
or river was flowing at a higher elevation before its channel downcut to create a new floodplain at a lower elevation. Changes in elevation can be due to changes in the base level (elevation of the lowest point in the fluvial system, usually the
209:
continues the flattened valley bottom composed of bedrock (overlain with a possible thin layer of alluvium) is left above either a stream or river channel. These bedrock terraces are the strath terraces and are erosional in nature.
358: 446: 31: 239:. They occur when it downcuts evenly on both sides and terraces on one side of the river correspond in height with those on the other side. Paired terraces are caused by 247:
occur when either a stream or river encounters material on one side that resists erosion, leaving a single terrace with no corresponding terrace on the resistant side.
84:
of a tributary, causing that tributary to erode toward its headwaters. Terraces can also be left behind when the volume of the fluvial flow declines due to changes in
439: 677: 1045: 432: 80:
along the length of either a stream or river, gradually lowering its elevation. For example, downcutting by a river can lead to increased
353: 1702: 416: 393: 341: 1671: 1202: 140: 35: 1666: 67:
of highly variable thickness. River terraces are the remnants of earlier floodplains that existed at a time when either a
1368: 1318: 1212: 1646: 1692: 872: 198:
in origin and may be able to be identified by a sudden change in alluvium characteristics such as finer material.
1656: 1608: 1491: 182:
Cut terraces, also called "cut-in-fill" terraces, are similar to the fill terraces mentioned above, but they are
63:
channel and its floodplain. Because of the manner in which they form, fluvial terraces are underlain by fluvial
1641: 1358: 1323: 1165: 1651: 1343: 1108: 1697: 1593: 1451: 1002: 887: 1431: 1278: 1240: 689: 628: 195: 1661: 1383: 1207: 967: 774: 568: 240: 221: 1557: 1552: 1353: 1197: 819: 672: 593: 500: 1583: 1496: 1461: 1313: 829: 734: 638: 530: 463: 1303: 131: 1562: 1401: 1393: 1333: 1293: 1182: 997: 759: 749: 535: 412: 389: 337: 277: 136: 44: 1476: 1378: 1283: 882: 877: 794: 623: 495: 228:, causing it to downcut more rapidly on the right, leaving terraces of different elevations. 1481: 1441: 1436: 1227: 1040: 922: 706: 643: 613: 578: 573: 540: 505: 476: 362: 265: 235:: Terraces of the same elevation on opposite sides of either a stream or river are called 212: 268: â€“ Long, relatively narrow land bounded by distinctly steeper slopes above and below 30:"River terrace" redirects here. For river terraces in tectonic–climatic interaction, see 154:. The valley may fill with alluvium for many different reasons including: an influx in 1542: 1426: 1406: 1288: 1273: 1160: 1145: 1140: 1100: 1080: 992: 834: 824: 814: 779: 711: 696: 603: 525: 485: 217: 73: 1686: 1623: 1618: 1603: 1588: 1537: 1532: 1298: 1263: 1217: 1177: 1172: 932: 804: 764: 510: 490: 224:, 1923. The river at left has encountered a formation of erosion-resistant volcanic 1613: 1363: 1348: 1338: 1187: 1118: 987: 952: 867: 809: 684: 583: 545: 520: 163: 1522: 1446: 1150: 1113: 1060: 784: 769: 744: 618: 205: 17: 170: 1628: 1308: 1192: 1132: 1090: 962: 799: 667: 608: 598: 515: 424: 159: 128:
terraces based upon the relative elevations of the surface of these terraces.
93: 48: 318:
Fluvial responses to climate and sea-level change, a review and look forward.
1598: 1547: 1517: 1486: 1416: 1328: 1085: 972: 957: 897: 844: 839: 739: 662: 652: 550: 366: 1268: 1235: 912: 754: 721: 271: 155: 151: 81: 64: 27:
Elongated terraces that flank the sides of floodplains and river valleys
1578: 1527: 1055: 1050: 1032: 1012: 917: 854: 789: 726: 225: 183: 120:
Both fill and strath terraces are, at times, described as being either
85: 77: 52: 1373: 1245: 1070: 1065: 1017: 1007: 977: 902: 657: 588: 560: 459: 150:
Fill terraces are the result of an existing valley being filled with
68: 55: 1471: 1456: 1411: 1155: 1128: 1075: 942: 937: 907: 892: 701: 471: 455: 211: 169: 130: 60: 367:
Wohl, E., ed., Treatise of Geomorphology. New York, NY: Elsevier.
187:
fill terraces and the remaining lower terraces are cut terraces.
1501: 1466: 1022: 982: 947: 428: 1421: 862: 139:. In 1884 the stream ran at top of the terrace. 1939 photo by 89: 204:
Strath terraces are the result of either a stream or river
135:
Eroded alluvial fill 60 feet (18 m) thick at Kanab Creek,
274: â€“ Feature of the solid surface of a planetary body 282:
Pages displaying short descriptions of redirect targets
403: 401: 388:
2nd Edition. Upper Saddle River, NJ: Prentice Hall.
336:, 6th Edition. Englewood Cliffs, NJ: Prentice-Hall. 112:
Fill terraces sometimes are further subdivided into
1571: 1510: 1392: 1254: 1226: 1127: 1099: 1031: 853: 720: 637: 559: 470: 216:Unpaired fluvial terraces on the South Fork of the 194:alluvium and created a terrace. These terraces are 380: 378: 376: 374: 76:) of the fluvial system, which leads to headward 407:Burbank, D.W., and R.S. Anderson, Robert, 2001, 332:Leet, L.D., S. Judson, and M.E. Kauffman, 1982, 312: 310: 34:. For the neighborhood in Washington, D.C., see 104:There are two basic types of fluvial terraces, 280: â€“ Large tableland in KantĹŤ region, Japan 32:River terraces (tectonic–climatic interaction) 440: 8: 447: 433: 425: 328: 326: 88:, typical of areas which were covered by 320:Sedimentology. v. 47 suppl. 1, pp. 2-48. 1046:International scale of river difficulty 293: 96:, and their adjacent drainage basins. 7: 316:Blum, M., and T.E. Tonqvist, 2000, 25: 411:Malden, MA: Blackwell Publishing 386:Surface Processes and Landforms, 304:Reinhold Book Company, New York. 1203:Flooded grasslands and savannas 352:Pazzaglia, Frank J., in press, 256:downcutting can be determined. 141:United States Geological Survey 36:River Terrace, Washington, D.C. 302:Encyclopedia of Geomorphology. 1: 1369:Universal Soil Loss Equation 1319:Hydrological transport model 1213:Storm Water Management Model 233:Paired and unpaired terraces 384:Easterbrook, Don J., 1999, 1719: 873:Antecedent drainage stream 29: 1703:Water and the environment 1637: 1609:River valley civilization 1492:Riparian-zone restoration 300:Fairbridge, R. W., 1968, 1672:Countries without rivers 1647:Rivers by discharge rate 1359:Runoff model (reservoir) 1324:Infiltration (hydrology) 47:that flank the sides of 1344:River Continuum Concept 1109:Agricultural wastewater 409:Tectonic Geomorphology, 355:9.2.3 Fluvial Terraces, 1667:River name etymologies 1594:Hydraulic civilization 1452:Floodplain restoration 1228:Point source pollution 1003:Sedimentary structures 229: 176: 144: 1279:Discharge (hydrology) 1241:Industrial wastewater 722:Sedimentary processes 215: 191:Nested fill terraces: 173: 134: 1384:Volumetric flow rate 968:Riffle-pool sequence 222:Park County, Wyoming 114:nested fill terraces 1558:Whitewater kayaking 1553:Whitewater canoeing 1354:Runoff curve number 1198:Flood pulse concept 1584:Aquatic toxicology 1497:Stream restoration 1462:Infiltration basin 1314:Hydrological model 830:Sediment transport 653:Estavelle/Inversac 531:Subterranean river 361:2010-08-01 at the 241:river rejuvenation 230: 177: 145: 92:during periods of 1693:Fluvial landforms 1680: 1679: 1657:Whitewater rivers 1563:Whitewater slalom 1394:River engineering 1294:Groundwater model 1255:River measurement 1183:Flood forecasting 998:Sedimentary basin 855:Fluvial landforms 760:Bed material load 536:River bifurcation 278:Musashino Terrace 245:Unpaired terraces 137:Kane County, Utah 16:(Redirected from 1710: 1642:Rivers by length 1477:River morphology 1379:Wetted perimeter 1284:Drainage density 795:Headward erosion 624:Perennial stream 496:Blackwater river 449: 442: 435: 426: 419: 405: 396: 382: 369: 350: 344: 334:Physical Geology 330: 321: 314: 305: 298: 283: 202:Strath terraces: 110:strath terraces. 41:Fluvial terraces 21: 18:Alluvial terrace 1718: 1717: 1713: 1712: 1711: 1709: 1708: 1707: 1683: 1682: 1681: 1676: 1652:Drainage basins 1633: 1567: 1506: 1482:Retention basin 1442:Erosion control 1437:Detention basin 1388: 1304:Hjulström curve 1256: 1250: 1222: 1166:Non-water flood 1123: 1095: 1041:Helicoidal flow 1027: 928:Fluvial terrace 923:Floating island 849: 724: 716: 707:Rhythmic spring 641: 633: 614:Stream gradient 555: 541:River ecosystem 506:Channel pattern 474: 466: 453: 423: 422: 406: 399: 383: 372: 363:Wayback Machine 351: 347: 331: 324: 315: 308: 299: 295: 290: 281: 266:Bench (geology) 262: 253: 237:paired terraces 102: 38: 28: 23: 22: 15: 12: 11: 5: 1716: 1714: 1706: 1705: 1700: 1695: 1685: 1684: 1678: 1677: 1675: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1638: 1635: 1634: 1632: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1575: 1573: 1569: 1568: 1566: 1565: 1560: 1555: 1550: 1545: 1543:Stone skipping 1540: 1535: 1530: 1525: 1520: 1514: 1512: 1508: 1507: 1505: 1504: 1499: 1494: 1489: 1484: 1479: 1474: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1427:Drop structure 1424: 1419: 1414: 1409: 1407:Balancing lake 1404: 1398: 1396: 1390: 1389: 1387: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1341: 1336: 1334:Playfair's law 1331: 1326: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1289:Exner equation 1286: 1281: 1276: 1274:Bradshaw model 1271: 1266: 1260: 1258: 1252: 1251: 1249: 1248: 1243: 1238: 1232: 1230: 1224: 1223: 1221: 1220: 1215: 1210: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1170: 1169: 1168: 1163: 1161:Urban flooding 1153: 1148: 1146:Crevasse splay 1143: 1141:100-year flood 1137: 1135: 1125: 1124: 1122: 1121: 1116: 1111: 1105: 1103: 1101:Surface runoff 1097: 1096: 1094: 1093: 1088: 1083: 1081:Stream capture 1078: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1037: 1035: 1029: 1028: 1026: 1025: 1020: 1015: 1010: 1005: 1000: 995: 993:Rock-cut basin 990: 985: 980: 975: 970: 965: 960: 955: 950: 945: 940: 935: 930: 925: 920: 915: 910: 905: 900: 895: 890: 885: 880: 875: 870: 865: 859: 857: 851: 850: 848: 847: 842: 837: 835:Suspended load 832: 827: 825:Secondary flow 822: 817: 815:Retrogradation 812: 807: 802: 797: 792: 787: 782: 780:Dissolved load 777: 772: 767: 762: 757: 752: 747: 742: 737: 731: 729: 718: 717: 715: 714: 712:Spring horizon 709: 704: 699: 697:Mineral spring 694: 693: 692: 682: 681: 680: 678:list in the US 675: 665: 660: 655: 649: 647: 635: 634: 632: 631: 626: 621: 616: 611: 606: 604:Stream channel 601: 596: 591: 586: 581: 576: 571: 565: 563: 557: 556: 554: 553: 548: 543: 538: 533: 528: 526:Drainage basin 523: 518: 513: 508: 503: 498: 493: 488: 486:Alluvial river 482: 480: 468: 467: 454: 452: 451: 444: 437: 429: 421: 420: 397: 370: 345: 322: 306: 292: 291: 289: 286: 285: 284: 275: 269: 261: 258: 252: 249: 218:Shoshone River 148:Fill terraces: 101: 98: 74:drainage basin 43:are elongated 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1715: 1704: 1701: 1699: 1698:Riparian zone 1696: 1694: 1691: 1690: 1688: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1639: 1636: 1630: 1627: 1625: 1624:Surface water 1622: 1620: 1619:Sacred waters 1617: 1615: 1612: 1610: 1607: 1605: 1604:Riparian zone 1602: 1600: 1597: 1595: 1592: 1590: 1589:Body of water 1587: 1585: 1582: 1580: 1577: 1576: 1574: 1570: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1538:Riverboarding 1536: 1534: 1533:River surfing 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1515: 1513: 1509: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1399: 1397: 1395: 1391: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1261: 1259: 1257:and modelling 1253: 1247: 1244: 1242: 1239: 1237: 1234: 1233: 1231: 1229: 1225: 1219: 1218:Return period 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1178:Flood control 1176: 1174: 1173:Flood barrier 1171: 1167: 1164: 1162: 1159: 1158: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1138: 1136: 1134: 1130: 1126: 1120: 1117: 1115: 1112: 1110: 1107: 1106: 1104: 1102: 1098: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1038: 1036: 1034: 1030: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 864: 861: 860: 858: 856: 852: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 805:Palaeochannel 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 765:Granular flow 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 732: 730: 728: 723: 719: 713: 710: 708: 705: 703: 700: 698: 695: 691: 688: 687: 686: 683: 679: 676: 674: 671: 670: 669: 666: 664: 661: 659: 656: 654: 651: 650: 648: 645: 640: 636: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 566: 564: 562: 558: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 511:Channel types 509: 507: 504: 502: 499: 497: 494: 492: 491:Braided river 489: 487: 484: 483: 481: 478: 473: 469: 465: 461: 457: 450: 445: 443: 438: 436: 431: 430: 427: 418: 417:0-632-04386-5 414: 410: 404: 402: 398: 395: 394:0-13-860958-6 391: 387: 381: 379: 377: 375: 371: 368: 364: 360: 357: 356: 349: 346: 343: 342:0-13-669762-3 339: 335: 329: 327: 323: 319: 313: 311: 307: 303: 297: 294: 287: 279: 276: 273: 270: 267: 264: 263: 259: 257: 250: 248: 246: 242: 238: 234: 227: 223: 219: 214: 210: 207: 203: 199: 197: 192: 188: 185: 181: 180:Cut terraces: 172: 168: 165: 162:or change in 161: 157: 153: 149: 142: 138: 133: 129: 127: 123: 119: 118:cut terraces. 115: 111: 107: 106:fill terraces 99: 97: 95: 91: 87: 83: 79: 75: 70: 66: 62: 57: 54: 50: 46: 42: 37: 33: 19: 1662:Flash floods 1614:River cruise 1511:River sports 1364:Stream gauge 1349:Rouse number 1339:Relief ratio 1188:Flood-meadow 1119:Urban runoff 1033:Fluvial flow 1018:River valley 988:River island 953:Meander scar 927: 868:Alluvial fan 810:Progradation 685:Karst spring 629:Winterbourne 584:Chalk stream 546:River source 521:Distributary 408: 385: 354: 348: 333: 317: 301: 296: 254: 251:Applications 244: 236: 232: 231: 201: 200: 196:depositional 190: 189: 179: 178: 164:stream power 147: 146: 125: 121: 117: 113: 109: 105: 103: 40: 39: 1523:Fly fishing 1447:Fish ladder 1432:Daylighting 1151:Flash flood 1114:First flush 1061:Plunge pool 785:Downcutting 770:Debris flow 745:Aggradation 619:Stream pool 206:downcutting 49:floodplains 1687:Categories 1629:Wild river 1309:Hydrograph 1299:Hack's law 1264:Baer's law 1208:Inundation 1193:Floodplain 1133:stormwater 1091:Whitewater 963:Oxbow lake 800:Knickpoint 775:Deposition 668:Hot spring 609:Streamflow 599:Stream bed 516:Confluence 288:References 160:glaciation 94:glaciation 1599:Limnology 1548:Triathlon 1518:Canyoning 1487:Revetment 1417:Check dam 1329:Main stem 1086:Waterfall 973:Point bar 958:Mouth bar 898:Billabong 845:Water gap 840:Wash load 820:Saltation 740:Anabranch 663:Holy well 551:Tributary 184:erosional 65:sediments 1402:Aqueduct 1269:Baseflow 1236:Effluent 913:Cut bank 878:Avulsion 755:Bed load 735:Abrasion 359:Archived 272:Landform 260:See also 175:terrace. 156:bed load 152:alluvium 126:unpaired 82:velocity 45:terraces 1579:Aquifer 1572:Related 1528:Rafting 1056:Meander 1051:Log jam 1013:Thalweg 918:Estuary 790:Erosion 727:erosion 639:Springs 594:Current 561:Streams 501:Channel 464:springs 460:streams 226:breccia 158:due to 86:climate 78:erosion 56:valleys 53:fluvial 1374:WAFLEX 1246:Sewage 1129:Floods 1071:Riffle 1066:Rapids 1008:Strath 978:Ravine 903:Canyon 658:Geyser 589:Coulee 574:Bourne 569:Arroyo 472:Rivers 456:Rivers 415:  392:  340:  122:paired 69:stream 1472:Levee 1457:Flume 1412:Canal 1156:Flood 1076:Shoal 943:Gully 938:Gulch 908:Chine 893:Bayou 750:Armor 702:Ponor 477:lists 100:Types 61:river 1502:Weir 1467:Leat 1131:and 1023:Wadi 983:Rill 948:Glen 933:Gill 883:Bank 725:and 690:list 673:list 644:list 579:Burn 462:and 413:ISBN 390:ISBN 338:ISBN 116:and 108:and 51:and 1422:Dam 888:Bar 863:Ait 365:in 243:. 124:or 90:ice 1689:: 458:, 400:^ 373:^ 325:^ 309:^ 220:, 646:) 642:( 479:) 475:( 448:e 441:t 434:v 143:. 20:)

Index

Alluvial terrace
River terraces (tectonic–climatic interaction)
River Terrace, Washington, D.C.
terraces
floodplains
fluvial
valleys
river
sediments
stream
drainage basin
erosion
velocity
climate
ice
glaciation

Kane County, Utah
United States Geological Survey
alluvium
bed load
glaciation
stream power

erosional
depositional
downcutting

Shoshone River
Park County, Wyoming

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑