Knowledge (XXG)

Alteromonas macleodii

Source đź“ť

285: 37: 662: 967:, a major polysaccharide found in the cell walls of red seaweeds. The Îş-carrageenase containing vesicles can be exploited for bioethanol production since they convert carbohydrate-rich biomass to sugars. Biomolecules present in the red seaweeds, such as vitamins and carotenoids, are also extracted for commercial use in tandem with the bioethanol production process. 730:
Content of genomic islands differs greatly between strains, especially those coding for polysaccharides that present on the flagellum and the outer surface of the cell, with possible roles in phage avoidance. Some strains have acquired heavy-metal tolerance and other important functional genes from
930:
contained in the Earth's crust with desirable optic and electronic properties. However, current industrial production of tellurium requires the usage of substances harmful to both humans and the environment. As a result, extraction of metalloids by biotechnological applications involving bacterial
255:
is able to grow on glucose-only solid medium, forming colonies up to 0.9 cm in diameter with irregular edges. As a result of phenotypic variability and differences in genomic content among strains, competitiveness in culture varies both between cultures of the same strain and between strains
705:
is globally distributed in the surface ocean at 0-50m depth, these strains are highly variable functionally despite sharing 97-99% nucleotide identity. Functional differences between surface strains are conferred by horizontally transferred genes, and are reflective of the variable conditions of
299:
are ubiquitous in the global oceans, typically adhering to small organic particles in the upper 50 metres of the water column. They constitute a significant proportion of the bacterial abundance in the North Atlantic and Mediterranean at up to 9 and 23 percent of total particle-attached bacteria
888:
strains are likely involved in phage interactions. Some genomic islands encode specific surface receptors recognised by phages, increasing the susceptibility to phage infections. Some components of GIs are lysogenic or defective phages; one of these widespread GIs encodes virus-derived
818:. Specific subsets of the DGC genes are highly expressed in some strains, enhancing biofilm development by amplifying the transduction of signals that promote biofilm formation. This process changes the structure of the microbial community, affecting both the microenvironment and 986:, making it an alternative to other viscous polymers currently used in food and cosmetics. As of 2012, "deepsane" is also commercially available in the cosmetics industry and is referred to as Abyssine®, used in skincare products to reduce skin irritation from sunburns. 766:
generally has genomic features which confer very high tolerance to copper and other heavy metals. Strains with high copper tolerance all had at least one genomic island with metal tolerance genes, including several copies of the key cytoplasmic detoxifying factor
860:
for degrading recalcitrant DOM such as urea, molecular chaperones for protein folding at lower temperatures and hydrogenases associated with heavy-metal tolerance, located with other tolerance genes on a single GI. These sets of genes are not exclusive to
568:
in seawater and are then consumed by higher trophic levels, acting as a gateway for carbon into ecosystems. While natural ecosystems consist of a variety of heterotrophs contributing to the carbon cycle, it has been found in laboratory settings that
685:
strains have distinct genomic content associated with different lifestyles and geographical locations. Small differences in overall nucleotide identity between strains can be functionally substantial; many important functional genes are found on
275:
is able to use glucose as its sole carbon and energy source and blooms under high nutrient and sodium concentrations where it is able to outcompete other organisms. Low temperatures and low carbon availability generally impede growth.
1751:
Ivars-Martínez E, D'Auria G, Rodríguez-Valera F, Sânchez-Porro C, Ventosa A, Joint I, Mühling M (September 2008). "Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis".
539:
Increased exposure of bacteria to copper may occur in several ways, such as nutrient leaching, metals from ship hulls, or natural mineral deposits. Under conditions of increased copper concentrations, biofilm production of
544:
significantly increases as a defensive response to copper induced stress. These bacteria are able to colonise areas of very high copper concentration, giving them an advantage over other bacteria under these conditions.
2660:
Mitulla M, Dinasquet J, Guillemette R, Simon M, Azam F, Wietz M (December 2016). "Response of bacterial communities from California coastal waters to alginate particles and an alginolytic Alteromonas macleodii strain".
624:
at different times to degrade the respective substrates. Laminarin is the first polysaccharide that is degraded, followed by alginate and pectin. This temporal variation in carbon utilisation is a result of a shift in
652:
plays a particularly relevant role in ecological carbon cycling. The degradation of algal polysaccharides and proteins is crucial for nutrient acquisition, and has the effect of preventing overgrowth of red algae.
942:
into elemental tellurium. The nanoparticles of the reduced tellurium are diffused into the cytoplasm, or into the extracellular space in the form of both electron-dense globules and metalloid crystals. This makes
698:
is vast, there is significant variation in functional genetic content between strains from different geographical regions. Additionally, closely related strains vary in functional genes found on genomic islands.
2160:
Neumann AM, Balmonte JP, Berger M, Giebel HA, Arnosti C, Voget S, et al. (October 2015). "Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes".
378:
during growth. An ATPase-independent mechanism is involved in the transport of the siderophores which scavenge iron for the bacterium, iron which is then used by enzymes to facilitate carbon metabolism.
1910:
Ivanova, Elena P.; LĂłpez-PĂ©rez, Mario; Zabalos, Mila; Nguyen, Song Ha; Webb, Hayden K.; Ryan, Jason; Lagutin, Kiril; Vyssotski, Mikhail; Crawford, Russell J.; Rodriguez-Valera, Francisco (2015-01-01).
1409:
Raguénès G, Cambon-Bonavita MA, Lohier JF, Boisset C, Guezennec J (June 2003). "A novel, highly viscous polysaccharide excreted by an alteromonas isolated from a deep-sea hydrothermal vent shrimp".
1852:
Ivanova, Elena P.; LĂłpez-PĂ©rez, Mario; Zabalos, Mila; Nguyen, Song Ha; Webb, Hayden K.; Ryan, Jason; Lagutin, Kiril; Vyssotski, Mikhail; Crawford, Russell J.; Rodriguez-Valera, Francisco (2015).
2276:"Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter" 3829: 1577:
GarcĂ­a-MartĂ­nez J, Acinas SG, Massana R, RodrĂ­guez-Valera F (January 2002). "Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions".
2122:
Rattanaphan P, Mittraparp-Arthorn P, Srinoun K, Vuddhakul V, Tansila N (July 2020). "Indole signaling decreases biofilm formation and related virulence of Listeria monocytogenes".
315:
environments and it sinks rapidly into the deeper pelagic zones, relying on a different spectrum of carbon sources. Recently, the deep ecotype strains have been reclassified as
997:, when grown in glucose-supplemented media, secreted an unexpectedly high-molecular-weight polymer that changed carbohydrate composition. The polymer was found to be rich in 1627:"Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer" 1151:"Captured diversity in a culture collection: case study of the geographic and habitat distributions of environmental isolates held at the american type culture collection" 897:
of the bacteria may associate with the receptor binding proteins present on the Alterophage R8W, allowing attachment and entry. Just over a dozen Alterophages infecting
366:(DOM) production in the oceans. These bacteria utilise unique Ton-B dependent transporters to acquire iron as well as carbon substrates. As a result, some strains of 3803: 531:
is therefore reduced when iron is limited, although the growth rate of strains from coastal populations is reduced more so than those from mid-oceanic populations.
978:
secretes "deepsane", an exopolysaccharide now used in cosmetics. Studied properties of "deepsane" include high viscosity possibly due to the interaction between
3842: 604:
exhibits two distinct strategies for carbon uptake, depending on the type of polysaccharide present in their habitat. When degrading the common polysaccharides
690:(GIs) exchanged between populations. Strains associated with surface waters such as ATCC 21726 have a single circular genome of about 4.6 million base pairs. 2508:
Cusick KD, Dale JR, Fitzgerald LA, Little BJ, Biffinger JC (July 2017). "Adaptation to copper stress influences biofilm formation in Alteromonas macleodii".
452:. These bacteria are generally attached to small particles, but can also be free-living and are able to utilise a number of different substrates for growth. 355:
are also strain-specific, with different nutrient acquisition and cellular communication strategies between strains under different ecological conditions.
636:
Alginate is a gel textured polysaccharide that is a common component of macroalgal cell walls, and is a nutrient and carbon source for many organisms.
3790: 3816: 3694:"Alteromonas macleodii 107 - Type strain - DSM 6062, ATCC 27126, CCUG 16128, CIP 103198, JCM 20772, LMG 2843, NBRC 102226, IAM 12920, NCIMB 1963" 2945:
Manck, Lauren E.; Park, Jiwoon; Tully, Benjamin J.; Poire, Alfonso M.; Bundy, Randelle M.; Dupont, Christopher L.; Barbeau, Katherine A. (2022).
2709:"Draft Genome Sequence of Alteromonas macleodii Strain MIT1002, Isolated from an Enrichment Culture of the Marine Cyanobacterium Prochlorococcus" 2079:
Zhang Z, Li Z, Jiao N (June 2014). "Effects of D-amino acids on the EPS production and cell aggregation of Alteromonas macleodii strain JL2069".
2769:"Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island" 2882:"Differing Growth Responses of Major Phylogenetic Groups of Marine Bacteria to Natural Phytoplankton Blooms in the Western North Pacific Ocean" 1457:
Naval P, Chandra TS (June 2019). "Characterization of membrane vesicles secreted by seaweed associated bacterium Alteromonas macleodii KS62".
3855: 869:
species along with other sets of functional genes such as enzymes for sugar and amino acid degradation, allowing for niche specialisation.
3012:"Draft Genome Sequences of Four Alteromonas macleodii Strains Isolated from Copper Coupons and Grown Long-Term at Elevated Copper Levels" 3914: 1349:"Genomic, metabolic and phenotypic variability shapes ecological differentiation and intraspecies interactions of Alteromonas macleodii" 762:
is an early coloniser of copper-based antifouling paint on ships, where it forms biofilms. While there is variability between strains,
284: 3517:"Genetic diversity of the causative agent of ice-ice disease of the seaweed Kappaphycus alvarezii from Karimunjawa island, Indonesia" 810:
strains are still able to induce growth of biofilms under elevated copper concentrations. These strains possess an alteration in the
213:
strains are currently being explored for their industrial uses, including in cosmetics, bioethanol production and rare earth mining.
1974:"Transcriptomic Study of Substrate-Specific Transport Mechanisms for Iron and Carbon in the Marine Copiotroph Alteromonas macleodii" 629:
activity of CAZymes and polysaccharide utilisation gene fragments. The biphasic nature of these cellular adaptations indicates that
391: 573:
is capable of drawing down the complete pool of labile DOC present in coastal waters. This indicates that the relationship between
3881: 2605:"Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides" 582: 481:
is unable to use its essential photosynthetic pigments, but is able to survive for an extended period of time in the presence of
267:; large cells with high nucleic-acid content are commonly seen, with high dividing frequencies and carbon production rates. As a 311:
had caused two distinct strains of the bacterium to occupy different water depth profiles. The “deep ecotype” is more suited to
3067:
Cusick, Kathleen; Iturbide, Ane; Gautam, Pratima; Price, Amelia; Polson, Shawn; MacDonald, Madolyn; Erill, Ivan (2021-09-28).
3919: 3821: 1912:"Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov" 1854:"Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov" 402:
impedes the production of EPS, but encourages the formation of biofilms by promoting other independent aggregation factors.
3069:"Enhanced copper-resistance gene repertoire in Alteromonas macleodii strains isolated from copper-treated marine coatings" 2831:"RNA sequencing provides evidence for functional variability between naturally co-existing Alteromonas macleodii lineages" 2880:
Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji (2011-06-15).
1210: 2204:
Mitulla, Maximilian; Dinasquet, Julie; Guillemette, Ryan; Simon, Meinhard; Azam, Farooq; Wietz, Matthias (2016-05-30).
633:’s role in the drawdown of polysaccharide DOC is adaptable to changing community structures of macroalgal communities. 2396:"The Trichodesmium consortium: conserved heterotrophic co-occurrence and genomic signatures of potential interactions" 2337:
Cells Rely on Microbial Interactions Rather than on Chlorotic Resting Stages To Survive Long-Term Nutrient Starvation"
3309:
Gonzaga A, Martin-Cuadrado AB, LĂłpez-PĂ©rez M, Megumi Mizuno C, GarcĂ­a-Heredia I, Kimes NE, et al. (2012-12-01).
2767:
Fadeev, Eduard; De Pascale, Fabio; Vezzi, Alessandro; HĂĽbner, Sariel; Aharonovich, Dikla; Sher, Daniel (2016-03-08).
409:
play a crucial role in algae degradation and habitat colonisation. These vesicles contain hydrolytic enzymes such as
343:
degradation, while others have a unique capacity to metabolise sugars from specific algae species. The production of
36: 515:
is significantly reduced. Iron metal is associated with several key processes for bacterial metabolism, such as the
711: 209:
confer functional diversity to closely related strains and facilitate different lifestyles and strategies. Certain
3847: 710:
also have a higher number of genes associated with utilising different sugar and amino acid substrates as well as
3755: 3468:"Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3" 1269:
Gonzaga, Aitor; LĂłpez-PĂ©rez, Mario; Martin-Cuadrado, Ana-Belen; Ghai, Rohit; Rodriguez-Valera, Francisco (2012).
524: 3243:
Cusick, Kathleen D.; Dale, Jason R.; Fitzgerald, Lisa A.; Little, Brenda J.; Biffinger, Justin C. (2017-07-03).
2331:
Roth-Rosenberg D, Aharonovich D, Luzzatto-Knaan T, Vogts A, Zoccarato L, Eigemann F, et al. (August 2020).
1045:"Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph" 1001:
and therefore expected to have a heavy-metal-binding ability that could be used and applied in the treatment of
3909: 2205: 938:
contains a plasmid that houses genes allowing for resistance to multiple metals, and has the ability to reduce
565: 456:
is a copiotroph flexible in its use of substrates, growing rapidly at high carbon and nutrient concentrations.
363: 3621:
Le Costaouëc T, Cérantola S, Ropartz D, Ratiskol J, Sinquin C, Colliec-Jouault S, Boisset C (September 2012).
2947:"Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean" 2274:
Ivars-Martinez E, Martin-Cuadrado AB, D'Auria G, Mira A, Ferriera S, Johnson J, et al. (December 2008).
390:
such as D-alanine, D-serine and D-glutamic acid reduce metabolic activity, also inhibiting the production of
1043:
LĂłpez-PĂ©rez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, Rodriguez-Valera F (2012).
626: 421:. These enzymes are responsible for the degradation of cell walls and inner components of red algae such as 335:, cellular communication, and nutrient acquisition. Some strains are specialised in their associations with 2603:
Koch H, DĂĽrwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, et al. (January 2019).
3717: 2453:"Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria" 2206:"Response of bacterial communities from California coastal waters to alginate particles and an alginolytic 783:
found in particularly metal-tolerant strains contain multiple copies of metal detoxification systems with
226: 1211:"Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions" 308: 121: 3566:"A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid" 1271:"Complete Genome Sequence of the Copiotrophic Marine Bacterium Alteromonas macleodii Strain ATCC 27126" 718:
to grow rapidly and take advantage of increases in available organic matter. Key genes associated with
648:
has been found to outcompete other species of bacteria in the degradation of alginate, indicating that
3623:"Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain" 2565: 503:
metabolism, allowing for the catabolism of methanol and the detoxification of radical oxygen species.
3886: 3528: 3256: 3147: 3080: 2958: 2893: 2670: 2616: 2517: 2464: 2407: 2348: 2287: 2221: 2170: 1816: 1761: 1698: 1638: 1586: 1526: 1360: 1222: 1162: 1056: 819: 527:, all of which are functionally limited when iron availability is not sufficient. The growth rate of 264: 2023:"Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain, 1687:"Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean" 1347:
Koch H, Germscheid N, Freese HM, Noriega-Ortega B, LĂĽcking D, Berger M, et al. (January 2020).
931:
biosynthesis of nanoparticles from various uncommon and rare metals are increasingly being studied.
947:
a candidate for facilitating the extraction of tellurium with reduced reliance on toxic chemicals.
939: 890: 811: 232: 68: 3603: 3497: 3288: 2541: 2490: 2451:
Fourquez M, Devez A, Schaumann A, Gueneugues A, Jouenne T, Obernosterer I, Blain S (2014-01-27).
2313: 2104: 1947: 1889: 1785: 1482: 1434: 956: 894: 248: 147: 31: 747:
strains that enhance heavy-metal tolerance are found in genomic islands in other members of the
3808: 1625:
Raguenes G, Pignet P, Gauthier G, Peres A, Christen R, Rougeaux H, et al. (January 1996).
1209:
Garcia-Martinez, Jesus; Acinas, Silvia G.; Massana, Ramon; Rodriguez-Valera, Francisco (2002).
181:
found in surface waters across temperate and tropical regions. First discovered in a survey of
3868: 3777: 3642: 3595: 3587: 3546: 3489: 3448: 3393: 3340: 3280: 3272: 3222: 3181: 3163: 3136:"Multiple Megaplasmids Confer Extremely High Levels of Metal Tolerance in Alteromonas Strains" 3116: 3098: 3049: 3031: 2992: 2974: 2927: 2909: 2862: 2808: 2790: 2746: 2728: 2686: 2642: 2585: 2533: 2482: 2433: 2376: 2305: 2245: 2237: 2186: 2139: 2096: 2058: 2003: 1969: 1939: 1931: 1881: 1873: 1834: 1777: 1726: 1664: 1602: 1554: 1474: 1426: 1386: 1308: 1290: 1246: 1238: 1188: 1131: 1082: 784: 516: 492: 1805:"Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences" 3873: 3634: 3577: 3536: 3532: 3479: 3438: 3428: 3383: 3375: 3330: 3322: 3264: 3212: 3171: 3155: 3106: 3088: 3039: 3023: 2982: 2966: 2917: 2901: 2852: 2842: 2798: 2780: 2736: 2720: 2678: 2632: 2624: 2577: 2525: 2472: 2423: 2415: 2366: 2358: 2295: 2229: 2178: 2131: 2088: 2048: 2038: 1993: 1985: 1923: 1865: 1824: 1769: 1716: 1706: 1654: 1646: 1594: 1544: 1534: 1466: 1418: 1376: 1368: 1298: 1282: 1230: 1178: 1170: 1121: 1113: 1072: 1064: 182: 178: 88: 3010:
Cusick, Kathleen D.; Dale, Jason R.; Little, Brenda J.; Biffinger, Justin C. (2016-12-29).
2394:
Lee MD, Walworth NG, McParland EL, Fu FX, Mincer TJ, Levine NM, et al. (August 2017).
661: 748: 644:, in that they degrade alginate, increasing DOC drawdown in marine environments. Further, 469: 336: 244: 78: 3199:
Colin, M.; Carré, G.; Klingelschmitt, F.; Reffuveille, F.; Gangloff, S. C. (2021-12-15).
2707:
Biller, Steven J.; Coe, Allison; Martin-Cuadrado, Ana-Belen; Chisholm, Sallie W. (2015).
735:
GIs containing important functional genes are exchanged between different populations of
714:
for plasticity in changing conditions. This plasticity is associated with the ability of
394:(EPS). Exopolysaccharide production contributes to cell aggregation and the formation of 3541: 3516: 3260: 3151: 3084: 2962: 2897: 2674: 2620: 2521: 2468: 2411: 2291: 2225: 2174: 1820: 1765: 1702: 1642: 1590: 1530: 1364: 1226: 1166: 1060: 3443: 3412: 3388: 3359: 3335: 3310: 3176: 3135: 3111: 3068: 3044: 3011: 2987: 2946: 2922: 2881: 2857: 2830: 2803: 2768: 2741: 2708: 2637: 2604: 2428: 2395: 2371: 2332: 2053: 2022: 1998: 1973: 1804: 1721: 1686: 1549: 1506: 1381: 1348: 1303: 1270: 1183: 1150: 1077: 1044: 687: 593: 578: 312: 190: 58: 1659: 1626: 1126: 1101: 300:
respectively, and are also present in the Northeast Pacific and subtropical Atlantic.
193:
and is recognised as a prominent component of surface waters between 0 and 50 metres.
3903: 3834: 3665: 3582: 3565: 1853: 1773: 1598: 1486: 1234: 803: 487: 3607: 3501: 3292: 2564:
Chen, Chia-Lung; Maki, James S.; Rittschof, Dan; Teo, Serena Lay-Ming (2013-09-01).
2545: 2494: 2108: 1951: 1893: 1789: 1438: 1174: 3782: 3672:. Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH 3564:
Cambon-Bonavita, M.-A.; Raguenes, G.; Jean, J.; Vincent, P.; Guezennec, J. (2002).
3245:"Adaptation to copper stress influences biofilm formation in Alteromonas macleodii" 983: 641: 609: 430: 387: 3638: 3268: 2529: 2317: 1539: 1505:
Beleneva IA, Efimova KV, Eliseikina MG, Svetashev VI, Orlova TY (September 2019).
1117: 722:
production and degradation of algal substrates are also transferred horizontally.
429:
is also very efficient at degrading alginate, expressing as many as five separate
3217: 3200: 3093: 589:
is capable of carbon cycling to the same extent as entire microbial communities.
3749: 3244: 3134:
Cusick, Kathleen D.; Polson, Shawn W.; Duran, Gabriel; Hill, Russell T. (2020).
2581: 1650: 998: 964: 857: 795: 789: 719: 554: 422: 352: 229: 98: 3740: 3622: 2970: 1691:
Proceedings of the National Academy of Sciences of the United States of America
1470: 1372: 2628: 2477: 2452: 2092: 1989: 1927: 1869: 1422: 1002: 695: 621: 520: 449: 371: 344: 332: 268: 198: 3591: 3550: 3276: 3226: 3167: 3102: 3035: 3027: 2978: 2913: 2847: 2794: 2785: 2732: 2724: 2589: 2486: 2241: 2135: 2043: 1935: 1877: 1838: 1294: 1242: 2829:
Kimes NE, LĂłpez-PĂ©rez M, AusĂł E, Ghai R, Rodriguez-Valera F (October 2014).
2682: 2233: 2182: 1911: 1711: 927: 923: 605: 474: 236: 3646: 3599: 3493: 3452: 3397: 3344: 3284: 3185: 3120: 3053: 2996: 2931: 2866: 2812: 2750: 2690: 2646: 2537: 2437: 2380: 2309: 2249: 2190: 2143: 2100: 2062: 2007: 1943: 1885: 1781: 1730: 1606: 1558: 1478: 1430: 1390: 1312: 1250: 1192: 1086: 398:
in marine bacterial species. Paradoxically, the uptake of D-amino acids by
3311:"Polyclonality of concurrent natural populations of Alteromonas macleodii" 2419: 2362: 2300: 2275: 1668: 1135: 243:
are between 0.6 to 0.8 ÎĽm width and 1.4 to 2.0 ÎĽm length, and are neither
3734: 3326: 3159: 2905: 833:
A closely related set of strains previously considered "deep-ecotype" of
779:
the ability to grow at metal levels lethal to most other marine species.
418: 414: 375: 48: 3201:"Copper alloys to prevent bacterial biofilm formation on touch surfaces" 1286: 3795: 3764: 3379: 3358:
Garcia-Heredia I, Rodriguez-Valera F, Martin-Cuadrado AB (April 2013).
1829: 979: 780: 740: 395: 348: 3484: 3467: 3433: 1068: 934:
Tellurium has toxic effects on bacteria through an unknown mechanism.
436:
and outcompeting other bacterial groups when grown on this substrate.
3769: 3693: 3411:
Feng X, Yan W, Wang A, Ma R, Chen X, Lin TH, et al. (May 2021).
881: 677:
in black. The grey colour indicates genes not of functional interest.
613: 410: 340: 202: 3711: 2566:"Early marine bacterial biofilm on a copper-based antifouling paint" 2353: 660: 433: 331:
leads to specific adaptive strategies in terms of carbon and iron
694:
has an estimated 4400 total genes with about 47% GC content. Its
673:
genes in blue, distinct A. macleodii genes in red, core genes of
3860: 806:
properties, minimising the formation of biofilms. However, some
3715: 3515:
Syafitri, E; Prayitno, S B; Ma’ruf, W F; Radjasa, O K (2017).
485:. The marine heterotroph has also been found associated with 370:
are able to more efficiently regulate the uptake of glucose,
235:. It is aerobic and motile, with a singular unsheathed polar 3670:
List of Prokaryotic names with Standing in Nomenclature LPSN
802:
Copper prevents bacterial growth due to its intrinsic
600:, and are a major source of carbon into marine ecosystems. 3360:"Novel group of podovirus infecting the marine bacterium ' 901:
have been characterised to date, including members of the
511:
Under iron replete conditions, the rate of respiration in
448:
is well-suited to the degradation of a variety sugars and
292:
strains MIT1002, 83-1 and 27126 in TARA Ocean metagenomes.
814:(DGC) genes, which control the expression of biofilms in 1572: 1570: 1568: 1100:
Baumann L, Baumann P, Mandel M, Allen RD (April 1972).
918:
Reduction of potassium tellurite to elemental tellurium
865:
as they are exchanged between different populations of
596:
secreted by macroalga are degraded by microbes such as
3521:
IOP Conference Series: Earth and Environmental Science
2269: 2267: 2265: 2263: 2261: 2259: 3724: 2570:
International Biodeterioration & Biodegradation
1459:
Biochemical and Biophysical Research Communications
1038: 362:can influence iron concentrations and recalcitrant 201:of 4.6 million base pairs. Variable regions in the 1036: 1034: 1032: 1030: 1028: 1026: 1024: 1022: 1020: 1018: 893:and RNA chaperone genes. For example, the O-chain 1149:Floyd MM, Tang J, Kane M, Emerson D (June 2005). 1746: 1744: 1742: 1740: 1620: 1618: 1616: 841:as they share only 81% overall sequence identity 3304: 3302: 2155: 2153: 1500: 1498: 1496: 1404: 1402: 1400: 990:Additional future prospects in water treatments 669:strain HOT1A3 and its plasmid pAM1A3. Distinct 2021:Goto S, Tada Y, Suzuki K, Yamashita Y (2017). 1680: 1678: 256:from different geographical areas and depths. 2824: 2822: 2074: 2072: 1963: 1961: 8: 1685:Pedler BE, Aluwihare LI, Azam F (May 2014). 1452: 1450: 1448: 1342: 951:Extraction of biomolecules from red seaweeds 386:depend on the type of amino acids taken up. 1511:from a culture of the toxic dinoflagellate 1340: 1338: 1336: 1334: 1332: 1330: 1328: 1326: 1324: 1322: 3712: 3413:"A Novel Broad Host Range Phage Infecting 477:due to nutrient stress. During chlorosis, 20: 3581: 3540: 3483: 3466:Bonificio WD, Clarke DR (November 2014). 3442: 3432: 3387: 3334: 3216: 3175: 3110: 3092: 3043: 2986: 2921: 2856: 2846: 2802: 2784: 2740: 2636: 2476: 2427: 2370: 2352: 2299: 2052: 2042: 1997: 1828: 1720: 1710: 1658: 1548: 1538: 1380: 1302: 1182: 1125: 1076: 283: 189:has since been placed within the phylum 1102:"Taxonomy of aerobic marine eubacteria" 1014: 880:Genes such as phase integrases and the 405:The extracellular membrane vesicles in 3140:Applied and Environmental Microbiology 2886:Applied and Environmental Microbiology 1631:Applied and Environmental Microbiology 1155:Applied and Environmental Microbiology 3238: 3236: 2762: 2760: 2702: 2700: 2559: 2557: 2555: 1905: 1903: 739:, increasing functional flexibility. 7: 1264: 1262: 1260: 1204: 1202: 845:There are 3200 genes shared between 837:have since been reclassified under 706:surface waters. Surface strains of 491:, a filamentous cyanobacteria that 1968:Manck LE, Espinoza JL, Dupont CL, 1507:"The tellurite-reducing bacterium 771:and its transcriptional regulator 14: 847:A. macleodii and A. mediterranea, 3666:"Species: Alteromonas macleodii" 3583:10.1046/j.1365-2672.2002.01689.x 1774:10.1111/j.1365-294X.2008.03883.x 1599:10.1046/j.1462-2920.2002.00255.x 1235:10.1046/j.1462-2920.2002.00255.x 35: 3570:Journal of Applied Microbiology 3472:Journal of Applied Microbiology 1175:10.1128/aem.71.6.2813-2823.2005 971:EPS deepsane usage in cosmetics 382:The physiological responses of 3692:Podstawka, Adam (2021-12-21). 1809:Marine Ecology Progress Series 849:with 1200-1600 unique to each. 1: 3639:10.1016/j.carbpol.2012.04.059 3542:10.1088/1755-1315/55/1/012044 3269:10.1080/08927014.2017.1329423 2530:10.1080/08927014.2017.1329423 1540:10.1016/j.heliyon.2019.e02435 1118:10.1128/jb.110.1.402-429.1972 963:, which allows it to degrade 955:Membrane vesicles containing 288:Location and distribution of 3315:Genome Biology and Evolution 3218:10.1016/j.matlet.2021.130712 3094:10.1371/journal.pone.0257800 640:are a key components of the 581:of coastal waters is one of 2582:10.1016/j.ibiod.2013.04.012 1803:Fuhrman J, Davis A (1997). 1651:10.1128/aem.62.1.67-73.1996 327:Physiological variation in 303:Initially, two ecotypes of 177:is a species of widespread 3936: 3915:Bacteria described in 1972 2971:10.1038/s41396-021-01065-y 2663:Environmental Microbiology 2457:Limnology and Oceanography 2214:Environmental Microbiology 2163:Environmental Microbiology 1579:Environmental Microbiology 1471:10.1016/j.bbrc.2019.04.148 1373:10.1038/s41598-020-57526-5 1215:Environmental Microbiology 712:transcriptional regulators 577:and other bacteria in the 225:refers to an encapsulated 2773:Frontiers in Microbiology 2629:10.1038/s41396-018-0252-4 2478:10.4319/lo.2014.59.2.0349 2124:FEMS Microbiology Letters 2093:10.1007/s00284-014-0520-0 2031:Frontiers in Microbiology 1990:10.1128/msystems.00070-20 1928:10.1007/s10482-014-0309-y 1870:10.1007/s10482-014-0309-y 1423:10.1007/s00284-002-3922-3 828:Alteromonas medditerranea 525:oxidative phosphorylation 460:Interspecies interactions 339:species through enhanced 153: 146: 127: 120: 32:Scientific classification 30: 23: 3028:10.1128/genomea.01311-16 2848:10.1186/1471-2164-15-938 2786:10.3389/fmicb.2016.00248 2725:10.1128/genomea.00967-15 2044:10.3389/fmicb.2017.00507 1513:Prorocentrum foraminosum 566:dissolved organic carbon 364:dissolved organic matter 317:Alteromonas mediterranea 3533:2017E&ES...55a2044S 3362:Alteromonas macleodii.' 2683:10.1111/1462-2920.13314 2234:10.1111/1462-2920.13314 2183:10.1111/1462-2920.12862 1916:Antonie van Leeuwenhoek 1858:Antonie van Leeuwenhoek 1712:10.1073/pnas.1401887111 1275:Journal of Bacteriology 1106:Journal of Bacteriology 259:Bacteria classified as 2136:10.1093/femsle/fnaa116 884:cluster found in some 820:biogeochemical cycling 678: 293: 197:has a single circular 3920:Marine microorganisms 3835:alteromonas-macleodii 3756:Alteromonas macleodii 3726:Alteromonas macleodii 3627:Carbohydrate Polymers 2420:10.1038/ismej.2017.49 2363:10.1128/mbio.01846-20 2301:10.1038/ismej.2008.74 2208:Alteromonas macleodii 2025:Alteromonas macleodii 1509:Alteromonas macleodii 995:Alteromonas macleodii 976:Alteromonas macleodii 936:Alteromonas macleodii 926:is an extremely rare 856:strains contain more 760:Alteromonas macleodii 755:Heavy metal tolerance 703:Alteromonas macleodii 692:Alteromonas macleodii 664: 602:Alteromonas macleodii 583:functional redundancy 497:Alteromonas macleodii 465:Alteromonas macleodii 454:Alteromonas macleodii 444:The surface-dwelling 427:Alteromonas macleodii 360:Alteromonas macleodii 329:Alteromonas macleodii 309:niche differentiation 305:Alteromonas macleodii 297:Alteromonas macleodii 290:Alteromonas macleodii 287: 253:Alteromonas macleodii 223:Alteromonas macleodii 195:Alteromonas macleodii 174:Alteromonas macleodii 156:Alteromonas macleodii 131:Alteromonas macleodii 25:Alteromonas macleodii 3160:10.1128/aem.01831-19 3016:Genome Announcements 2906:10.1128/aem.02952-10 2713:Genome Announcements 2081:Current Microbiology 1411:Current Microbiology 549:Role in carbon cycle 16:Species of bacterium 3261:2017Biofo..33..505C 3152:2020ApEnM..86E1831C 3085:2021PLoSO..1657800C 2963:2022ISMEJ..16..358M 2898:2011ApEnM..77.4055T 2675:2016EnvMi..18.4369M 2621:2019ISMEJ..13...92K 2522:2017Biofo..33..505C 2469:2014LimOc..59..349F 2412:2017ISMEJ..11.1813L 2292:2008ISMEJ...2.1194I 2226:2016EnvMi..18.4369M 2175:2015EnvMi..17.3857N 1821:1997MEPS..150..275F 1766:2008MolEc..17.4092I 1703:2014PNAS..111.7202P 1643:1996ApEnM..62...67R 1591:2002EnvMi...4...42G 1531:2019Heliy...502435B 1365:2020NatSR..10..809K 1287:10.1128/jb.01565-12 1227:2002EnvMi...4...42G 1167:2005ApEnM..71.2813F 1061:2012NatSR...2E.696L 940:potassium tellurite 895:lipopolysaccharides 852:The "deep-ecotype" 812:diguanylate cyclase 775:These factors give 620:releases different 467:is able to sustain 307:were described, as 69:Gammaproteobacteria 3380:10.4161/bact.24766 3327:10.1093/gbe/evs112 1830:10.3354/meps150275 1353:Scientific Reports 1049:Scientific Reports 679: 358:The physiology of 294: 185:bacteria in 1972, 3897: 3896: 3869:Open Tree of Life 3718:Taxon identifiers 3485:10.1111/jam.12629 3434:10.3390/v13060987 3321:(12): 1360–1374. 3205:Materials Letters 2892:(12): 4055–4065. 2669:(12): 4369–4377. 2286:(12): 1194–1212. 2220:(12): 4369–4377. 2169:(10): 3857–3868. 1760:(18): 4092–4106. 1754:Molecular Ecology 1697:(20): 7202–7207. 1069:10.1038/srep00696 907:Autographiviridae 517:citric acid cycle 473:cells undergoing 392:exopolysaccharide 233:Îł-proteobacterium 170: 169: 165: 113:A. macleodii 3927: 3890: 3889: 3877: 3876: 3864: 3863: 3851: 3850: 3838: 3837: 3825: 3824: 3812: 3811: 3799: 3798: 3786: 3785: 3773: 3772: 3760: 3759: 3758: 3745: 3744: 3743: 3713: 3708: 3706: 3705: 3680: 3678: 3677: 3651: 3650: 3618: 3612: 3611: 3585: 3561: 3555: 3554: 3544: 3512: 3506: 3505: 3487: 3478:(5): 1293–1304. 3463: 3457: 3456: 3446: 3436: 3408: 3402: 3401: 3391: 3355: 3349: 3348: 3338: 3306: 3297: 3296: 3240: 3231: 3230: 3220: 3196: 3190: 3189: 3179: 3131: 3125: 3124: 3114: 3096: 3064: 3058: 3057: 3047: 3007: 3001: 3000: 2990: 2951:The ISME Journal 2942: 2936: 2935: 2925: 2877: 2871: 2870: 2860: 2850: 2826: 2817: 2816: 2806: 2788: 2764: 2755: 2754: 2744: 2704: 2695: 2694: 2657: 2651: 2650: 2640: 2609:The ISME Journal 2600: 2594: 2593: 2561: 2550: 2549: 2505: 2499: 2498: 2480: 2448: 2442: 2441: 2431: 2406:(8): 1813–1824. 2400:The ISME Journal 2391: 2385: 2384: 2374: 2356: 2328: 2322: 2321: 2303: 2280:The ISME Journal 2271: 2254: 2253: 2201: 2195: 2194: 2157: 2148: 2147: 2119: 2113: 2112: 2076: 2067: 2066: 2056: 2046: 2018: 2012: 2011: 2001: 1965: 1956: 1955: 1907: 1898: 1897: 1849: 1843: 1842: 1832: 1800: 1794: 1793: 1748: 1735: 1734: 1724: 1714: 1682: 1673: 1672: 1662: 1622: 1611: 1610: 1574: 1563: 1562: 1552: 1542: 1502: 1491: 1490: 1454: 1443: 1442: 1406: 1395: 1394: 1384: 1344: 1317: 1316: 1306: 1266: 1255: 1254: 1206: 1197: 1196: 1186: 1161:(6): 2813–2823. 1146: 1140: 1139: 1129: 1097: 1091: 1090: 1080: 1040: 959:are produced by 873:Phage infecting 863:A. mediterranea, 826:Relationship to 743:carried by some 733:A. mediterranea, 499:might influence 179:marine bacterium 159: 133: 89:Alteromonadaceae 40: 39: 21: 3935: 3934: 3930: 3929: 3928: 3926: 3925: 3924: 3910:Alteromonadales 3900: 3899: 3898: 3893: 3885: 3880: 3872: 3867: 3859: 3854: 3846: 3841: 3833: 3828: 3820: 3815: 3807: 3802: 3794: 3789: 3781: 3776: 3768: 3763: 3754: 3753: 3748: 3739: 3738: 3733: 3720: 3703: 3701: 3700:. BacDiveID:444 3691: 3688: 3683: 3675: 3673: 3664: 3660: 3658:Further reading 3655: 3654: 3620: 3619: 3615: 3563: 3562: 3558: 3514: 3513: 3509: 3465: 3464: 3460: 3410: 3409: 3405: 3357: 3356: 3352: 3308: 3307: 3300: 3242: 3241: 3234: 3198: 3197: 3193: 3133: 3132: 3128: 3079:(9): e0257800. 3066: 3065: 3061: 3009: 3008: 3004: 2944: 2943: 2939: 2879: 2878: 2874: 2828: 2827: 2820: 2766: 2765: 2758: 2706: 2705: 2698: 2659: 2658: 2654: 2602: 2601: 2597: 2563: 2562: 2553: 2507: 2506: 2502: 2450: 2449: 2445: 2393: 2392: 2388: 2335:Prochlorococcus 2330: 2329: 2325: 2273: 2272: 2257: 2203: 2202: 2198: 2159: 2158: 2151: 2130:(14): fnaa116. 2121: 2120: 2116: 2078: 2077: 2070: 2020: 2019: 2015: 1967: 1966: 1959: 1909: 1908: 1901: 1851: 1850: 1846: 1802: 1801: 1797: 1750: 1749: 1738: 1684: 1683: 1676: 1624: 1623: 1614: 1576: 1575: 1566: 1504: 1503: 1494: 1456: 1455: 1446: 1408: 1407: 1398: 1346: 1345: 1320: 1268: 1267: 1258: 1208: 1207: 1200: 1148: 1147: 1143: 1099: 1098: 1094: 1042: 1041: 1016: 1011: 992: 973: 953: 920: 915: 913:Industrial uses 891:mismatch repair 878: 854:A. mediterranea 839:A. mediterranea 831: 757: 749:Alteromonadales 728: 726:Genomic Islands 688:genomic islands 681:The genomes of 671:A. mediterranea 659: 627:transcriptional 594:polysaccharides 551: 537: 509: 507:Iron limitation 495:in the oceans. 479:Prochlorococcus 470:Prochlorococcus 462: 442: 337:prochlorococcus 325: 313:microaerophilic 282: 219: 158: 142: 135: 129: 116: 79:Alteromonadales 34: 17: 12: 11: 5: 3933: 3931: 3923: 3922: 3917: 3912: 3902: 3901: 3895: 3894: 3892: 3891: 3878: 3865: 3852: 3839: 3826: 3813: 3800: 3787: 3774: 3761: 3746: 3730: 3728: 3722: 3721: 3716: 3710: 3709: 3687: 3686:External links 3684: 3682: 3681: 3661: 3659: 3656: 3653: 3652: 3613: 3576:(2): 310–315. 3556: 3507: 3458: 3403: 3350: 3298: 3255:(6): 505–519. 3232: 3191: 3126: 3059: 3002: 2957:(2): 358–369. 2937: 2872: 2818: 2756: 2696: 2652: 2595: 2551: 2516:(6): 505–519. 2500: 2463:(2): 349–360. 2443: 2386: 2354:10.1101/657627 2323: 2255: 2196: 2149: 2114: 2087:(6): 751–755. 2068: 2013: 1972:(April 2020). 1957: 1922:(1): 119–132. 1899: 1864:(1): 119–132. 1844: 1795: 1736: 1674: 1612: 1564: 1492: 1465:(2): 422–427. 1444: 1417:(6): 448–452. 1396: 1318: 1256: 1198: 1141: 1112:(1): 402–429. 1092: 1013: 1012: 1010: 1007: 991: 988: 972: 969: 957:Îş-carrageenase 952: 949: 919: 916: 914: 911: 877: 871: 830: 824: 756: 753: 727: 724: 665:The genome of 658: 655: 579:microbial loop 550: 547: 536: 533: 508: 505: 493:fixes nitrogen 461: 458: 441: 438: 324: 321: 281: 278: 239:. Isolates of 218: 215: 199:DNA chromosome 191:Pseudomonadota 168: 167: 151: 150: 144: 143: 136: 125: 124: 118: 117: 110: 108: 104: 103: 96: 92: 91: 86: 82: 81: 76: 72: 71: 66: 62: 61: 59:Pseudomonadota 56: 52: 51: 46: 42: 41: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 3932: 3921: 3918: 3916: 3913: 3911: 3908: 3907: 3905: 3888: 3883: 3879: 3875: 3870: 3866: 3862: 3857: 3853: 3849: 3844: 3840: 3836: 3831: 3827: 3823: 3818: 3814: 3810: 3805: 3801: 3797: 3792: 3788: 3784: 3779: 3775: 3771: 3766: 3762: 3757: 3751: 3747: 3742: 3736: 3732: 3731: 3729: 3727: 3723: 3719: 3714: 3699: 3695: 3690: 3689: 3685: 3671: 3667: 3663: 3662: 3657: 3648: 3644: 3640: 3636: 3632: 3628: 3624: 3617: 3614: 3609: 3605: 3601: 3597: 3593: 3589: 3584: 3579: 3575: 3571: 3567: 3560: 3557: 3552: 3548: 3543: 3538: 3534: 3530: 3527:(1): 012044. 3526: 3522: 3518: 3511: 3508: 3503: 3499: 3495: 3491: 3486: 3481: 3477: 3473: 3469: 3462: 3459: 3454: 3450: 3445: 3440: 3435: 3430: 3426: 3422: 3418: 3416: 3407: 3404: 3399: 3395: 3390: 3385: 3381: 3377: 3374:(2): e24766. 3373: 3369: 3368:Bacteriophage 3365: 3363: 3354: 3351: 3346: 3342: 3337: 3332: 3328: 3324: 3320: 3316: 3312: 3305: 3303: 3299: 3294: 3290: 3286: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3239: 3237: 3233: 3228: 3224: 3219: 3214: 3210: 3206: 3202: 3195: 3192: 3187: 3183: 3178: 3173: 3169: 3165: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3130: 3127: 3122: 3118: 3113: 3108: 3104: 3100: 3095: 3090: 3086: 3082: 3078: 3074: 3070: 3063: 3060: 3055: 3051: 3046: 3041: 3037: 3033: 3029: 3025: 3021: 3017: 3013: 3006: 3003: 2998: 2994: 2989: 2984: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2948: 2941: 2938: 2933: 2929: 2924: 2919: 2915: 2911: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2876: 2873: 2868: 2864: 2859: 2854: 2849: 2844: 2840: 2836: 2832: 2825: 2823: 2819: 2814: 2810: 2805: 2800: 2796: 2792: 2787: 2782: 2778: 2774: 2770: 2763: 2761: 2757: 2752: 2748: 2743: 2738: 2734: 2730: 2726: 2722: 2718: 2714: 2710: 2703: 2701: 2697: 2692: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2656: 2653: 2648: 2644: 2639: 2634: 2630: 2626: 2622: 2618: 2615:(1): 92–103. 2614: 2610: 2606: 2599: 2596: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2560: 2558: 2556: 2552: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2504: 2501: 2496: 2492: 2488: 2484: 2479: 2474: 2470: 2466: 2462: 2458: 2454: 2447: 2444: 2439: 2435: 2430: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2390: 2387: 2382: 2378: 2373: 2368: 2364: 2360: 2355: 2350: 2347:(4): 657627. 2346: 2342: 2338: 2336: 2327: 2324: 2319: 2315: 2311: 2307: 2302: 2297: 2293: 2289: 2285: 2281: 2277: 2270: 2268: 2266: 2264: 2262: 2260: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2209: 2200: 2197: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2156: 2154: 2150: 2145: 2141: 2137: 2133: 2129: 2125: 2118: 2115: 2110: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2075: 2073: 2069: 2064: 2060: 2055: 2050: 2045: 2040: 2036: 2032: 2028: 2026: 2017: 2014: 2009: 2005: 2000: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1964: 1962: 1958: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1906: 1904: 1900: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1848: 1845: 1840: 1836: 1831: 1826: 1822: 1818: 1814: 1810: 1806: 1799: 1796: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1747: 1745: 1743: 1741: 1737: 1732: 1728: 1723: 1718: 1713: 1708: 1704: 1700: 1696: 1692: 1688: 1681: 1679: 1675: 1670: 1666: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1621: 1619: 1617: 1613: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1573: 1571: 1569: 1565: 1560: 1556: 1551: 1546: 1541: 1536: 1532: 1528: 1525:(9): e02435. 1524: 1520: 1516: 1514: 1510: 1501: 1499: 1497: 1493: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1453: 1451: 1449: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1405: 1403: 1401: 1397: 1392: 1388: 1383: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1343: 1341: 1339: 1337: 1335: 1333: 1331: 1329: 1327: 1325: 1323: 1319: 1314: 1310: 1305: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1265: 1263: 1261: 1257: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1205: 1203: 1199: 1194: 1190: 1185: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1145: 1142: 1137: 1133: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1096: 1093: 1088: 1084: 1079: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1039: 1037: 1035: 1033: 1031: 1029: 1027: 1025: 1023: 1021: 1019: 1015: 1008: 1006: 1004: 1000: 996: 989: 987: 985: 981: 977: 970: 968: 966: 962: 958: 950: 948: 946: 941: 937: 932: 929: 925: 917: 912: 910: 908: 904: 900: 896: 892: 887: 883: 876: 872: 870: 868: 864: 859: 855: 851: 848: 844: 840: 836: 829: 825: 823: 821: 817: 813: 809: 805: 804:antimicrobial 800: 799: 797: 792: 791: 786: 782: 778: 774: 770: 765: 761: 754: 752: 750: 746: 742: 738: 734: 731:GIs found in 725: 723: 721: 717: 713: 709: 704: 700: 697: 693: 689: 684: 676: 672: 668: 663: 656: 654: 651: 647: 643: 639: 634: 632: 628: 623: 619: 615: 611: 607: 603: 599: 595: 590: 588: 584: 580: 576: 572: 567: 563: 560: 556: 555:heterotrophic 548: 546: 543: 535:Copper stress 534: 532: 530: 526: 522: 518: 514: 506: 504: 502: 501:Trichodesmium 498: 494: 490: 489: 488:Trichodesmium 484: 480: 476: 472: 471: 466: 459: 457: 455: 451: 447: 439: 437: 435: 432: 428: 424: 420: 416: 412: 408: 403: 401: 397: 393: 389: 388:D-amino acids 385: 380: 377: 373: 369: 365: 361: 356: 354: 350: 346: 342: 338: 334: 330: 322: 320: 318: 314: 310: 306: 301: 298: 291: 286: 279: 277: 274: 270: 266: 265:r-strategists 262: 257: 254: 250: 246: 242: 238: 234: 231: 230:heterotrophic 228: 227:gram-negative 224: 216: 214: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 175: 166: 163: 157: 152: 149: 145: 140: 134: 132: 126: 123: 122:Binomial name 119: 115: 114: 109: 106: 105: 102: 101: 97: 94: 93: 90: 87: 84: 83: 80: 77: 74: 73: 70: 67: 64: 63: 60: 57: 54: 53: 50: 47: 44: 43: 38: 33: 29: 26: 22: 19: 3725: 3702:. Retrieved 3697: 3674:. Retrieved 3669: 3633:(1): 49–59. 3630: 3626: 3616: 3573: 3569: 3559: 3524: 3520: 3510: 3475: 3471: 3461: 3424: 3420: 3414: 3406: 3371: 3367: 3361: 3353: 3318: 3314: 3252: 3248: 3208: 3204: 3194: 3143: 3139: 3129: 3076: 3072: 3062: 3019: 3015: 3005: 2954: 2950: 2940: 2889: 2885: 2875: 2838: 2835:BMC Genomics 2834: 2776: 2772: 2716: 2712: 2666: 2662: 2655: 2612: 2608: 2598: 2573: 2569: 2513: 2509: 2503: 2460: 2456: 2446: 2403: 2399: 2389: 2344: 2340: 2334: 2326: 2283: 2279: 2217: 2213: 2207: 2199: 2166: 2162: 2127: 2123: 2117: 2084: 2080: 2034: 2030: 2024: 2016: 1981: 1977: 1919: 1915: 1861: 1857: 1847: 1812: 1808: 1798: 1757: 1753: 1694: 1690: 1637:(1): 67–73. 1634: 1630: 1585:(1): 42–50. 1582: 1578: 1522: 1518: 1512: 1508: 1462: 1458: 1414: 1410: 1356: 1352: 1281:(24): 6998. 1278: 1274: 1221:(1): 42–50. 1218: 1214: 1158: 1154: 1144: 1109: 1105: 1095: 1052: 1048: 999:uronic acids 994: 993: 975: 974: 961:A. macleodii 960: 954: 945:A. macleodii 944: 935: 933: 921: 906: 902: 899:A. macleodii 898: 886:A. macleodii 885: 879: 875:A. macleodii 874: 866: 862: 858:dioxygenases 853: 850: 846: 842: 838: 835:A. macleodii 834: 832: 827: 816:A. macleodii 815: 808:A. macleodii 807: 801: 794: 788: 781:Megaplasmids 777:A. macleodii 776: 772: 768: 764:A. macleodii 763: 759: 758: 745:A. macleodii 744: 737:A. macleodii 736: 732: 729: 715: 708:A. macleodii 707: 702: 701: 691: 683:A. macleodii 682: 680: 674: 670: 666: 650:A. macleodii 649: 646:A. macleodii 645: 642:carbon cycle 638:A. macleodii 637: 635: 631:A. macleodii 630: 618:A. macleodii 617: 601: 597: 591: 586: 575:A. macleodii 574: 571:A. macleodii 570: 561: 558: 552: 542:A. macleodii 541: 538: 529:A. macleodii 528: 513:A. macleodii 512: 510: 500: 496: 486: 483:A. macleodii 482: 478: 468: 464: 463: 453: 446:A. macleodii 445: 443: 426: 407:A. macleodii 406: 404: 400:A. macleodii 399: 384:A. macleodii 383: 381: 368:A. macleodii 367: 359: 357: 353:siderophores 328: 326: 316: 304: 302: 296: 295: 289: 280:Distribution 273:A. macleodii 272: 261:A. macleodii 260: 258: 252: 241:A. macleodii 240: 222: 221:The species 220: 211:A. macleodii 210: 207:A. macleodii 206: 194: 187:A. macleodii 186: 173: 172: 171: 161: 155: 154: 138: 130: 128: 112: 111: 99: 24: 18: 3750:Wikispecies 3415:Alteromonas 1815:: 275–285. 965:carrageenan 903:Podoviridae 867:Alteromonas 796:Pseudomonas 790:Escherichia 720:siderophore 716:Alteromonas 675:Alteromonas 667:Alteromonas 622:catabolites 598:Alteromonas 587:Alteromonas 450:amino acids 423:Kappaphycus 245:luminescent 100:Alteromonas 3904:Categories 3704:2022-04-04 3676:2022-04-04 3427:(6): 987. 3249:Biofouling 3211:: 130712. 2841:(1): 938. 2510:Biofouling 1970:Barbeau KA 1359:(1): 809. 1055:(1): 696. 1009:References 1003:wastewater 922:Elemental 592:Cell wall 557:bacteria, 521:glycolysis 372:tryptophan 345:homoserine 333:metabolism 323:Physiology 269:copiotroph 217:Morphology 3592:1364-5072 3551:1755-1307 3277:0892-7014 3227:0167-577X 3168:0099-2240 3103:1932-6203 3036:2169-8287 2979:1751-7370 2914:0099-2240 2795:1664-302X 2733:2169-8287 2590:0964-8305 2576:: 71–76. 2487:0024-3590 2242:1462-2912 1936:1572-9699 1878:0003-6072 1839:0171-8630 1487:145022909 1295:0021-9193 1243:1462-2912 928:metalloid 924:tellurium 785:orthologs 696:pangenome 606:laminarin 562:macleodii 475:chlorosis 419:nucleases 415:proteases 249:pigmented 237:flagellum 107:Species: 3809:10034789 3741:Q4736627 3735:Wikidata 3647:24751009 3608:23606744 3600:12147080 3502:18504786 3494:25175548 3453:34073246 3398:24228219 3345:23212172 3293:46739077 3285:28604167 3186:31757820 3121:34582496 3073:PLOS ONE 3054:27881542 2997:34341506 2932:21515719 2867:25344729 2813:27014193 2751:26316635 2691:27059936 2647:30116038 2546:46739077 2538:28604167 2495:85813253 2438:28440800 2381:32788385 2310:18670397 2250:27059936 2191:25847866 2144:32658271 2109:14922228 2101:24526245 2063:28400762 2008:32345736 1978:mSystems 1952:18595072 1944:25326795 1894:18595072 1886:25326795 1790:38830049 1782:19238708 1731:24733921 1607:11966824 1559:31687549 1479:31053303 1439:23929160 1431:12732953 1391:31964928 1313:23209244 1251:11966824 1193:15932972 1087:23019517 984:pyruvate 741:Plasmids 610:alginate 564:consume 431:alginate 396:biofilms 376:tyrosine 349:lactones 160:Baumann 148:Synonyms 137:Baumann 85:Family: 55:Phylum: 49:Bacteria 45:Domain: 3796:3222676 3765:BacDive 3698:BacDive 3529:Bibcode 3444:8228385 3421:Viruses 3389:3821669 3336:3542563 3257:Bibcode 3177:6974629 3148:Bibcode 3112:8478169 3081:Bibcode 3045:5122684 2988:8776838 2959:Bibcode 2923:3131633 2894:Bibcode 2858:4223743 2804:4781885 2779:: 248. 2742:4551879 2671:Bibcode 2638:6298977 2617:Bibcode 2518:Bibcode 2465:Bibcode 2429:5520037 2408:Bibcode 2372:7439483 2349:bioRxiv 2288:Bibcode 2222:Bibcode 2210:strain" 2171:Bibcode 2054:5368175 2037:: 507. 1999:7190382 1817:Bibcode 1762:Bibcode 1722:4034236 1699:Bibcode 1669:8572714 1639:Bibcode 1587:Bibcode 1550:6819836 1527:Bibcode 1519:Heliyon 1382:6972757 1361:Bibcode 1304:3510622 1223:Bibcode 1184:1151842 1163:Bibcode 1136:4552999 1078:3458243 1057:Bibcode 980:acetate 440:Ecology 411:lipases 183:aerobic 95:Genus: 75:Order: 65:Class: 3887:742978 3874:726602 3861:742978 3822:959258 3645:  3606:  3598:  3590:  3549:  3500:  3492:  3451:  3441:  3396:  3386:  3343:  3333:  3291:  3283:  3275:  3225:  3184:  3174:  3166:  3119:  3109:  3101:  3052:  3042:  3034:  2995:  2985:  2977:  2930:  2920:  2912:  2865:  2855:  2811:  2801:  2793:  2749:  2739:  2731:  2689:  2645:  2635:  2588:  2544:  2536:  2493:  2485:  2436:  2426:  2379:  2369:  2351:  2318:520422 2316:  2308:  2248:  2240:  2189:  2142:  2107:  2099:  2061:  2051:  2006:  1996:  1950:  1942:  1934:  1892:  1884:  1876:  1837:  1788:  1780:  1729:  1719:  1667:  1660:167774 1657:  1605:  1557:  1547:  1485:  1477:  1437:  1429:  1389:  1379:  1311:  1301:  1293:  1249:  1241:  1191:  1181:  1134:  1127:247423 1124:  1085:  1075:  882:CRISPR 657:Genome 614:pectin 612:, and 523:, and 434:lyases 374:, and 341:phenol 203:genome 164:, 1972 162:et al. 141:, 1972 139:et al. 3882:WoRMS 3848:28108 3804:IRMNG 3783:65Y2Q 3604:S2CID 3498:S2CID 3289:S2CID 3146:(3). 3022:(6). 2719:(4). 2542:S2CID 2491:S2CID 2314:S2CID 2105:S2CID 1984:(2). 1948:S2CID 1890:S2CID 1786:S2CID 1483:S2CID 1435:S2CID 773:merR. 3856:OBIS 3843:NCBI 3830:LPSN 3817:ITIS 3791:GBIF 3643:PMID 3596:PMID 3588:ISSN 3547:ISSN 3490:PMID 3449:PMID 3394:PMID 3341:PMID 3281:PMID 3273:ISSN 3223:ISSN 3182:PMID 3164:ISSN 3117:PMID 3099:ISSN 3050:PMID 3032:ISSN 2993:PMID 2975:ISSN 2928:PMID 2910:ISSN 2863:PMID 2809:PMID 2791:ISSN 2747:PMID 2729:ISSN 2687:PMID 2643:PMID 2586:ISSN 2534:PMID 2483:ISSN 2434:PMID 2377:PMID 2341:mBio 2306:PMID 2246:PMID 2238:ISSN 2187:PMID 2140:PMID 2097:PMID 2059:PMID 2004:PMID 1940:PMID 1932:ISSN 1882:PMID 1874:ISSN 1835:ISSN 1778:PMID 1727:PMID 1665:PMID 1603:PMID 1555:PMID 1475:PMID 1427:PMID 1387:PMID 1309:PMID 1291:ISSN 1247:PMID 1239:ISSN 1189:PMID 1132:PMID 1083:PMID 982:and 905:and 793:and 769:copA 417:and 351:and 263:are 247:nor 3778:CoL 3770:444 3635:doi 3578:doi 3537:doi 3480:doi 3476:117 3439:PMC 3429:doi 3384:PMC 3376:doi 3331:PMC 3323:doi 3265:doi 3213:doi 3209:305 3172:PMC 3156:doi 3107:PMC 3089:doi 3040:PMC 3024:doi 2983:PMC 2967:doi 2918:PMC 2902:doi 2853:PMC 2843:doi 2799:PMC 2781:doi 2737:PMC 2721:doi 2679:doi 2633:PMC 2625:doi 2578:doi 2526:doi 2473:doi 2424:PMC 2416:doi 2367:PMC 2359:doi 2296:doi 2230:doi 2179:doi 2132:doi 2128:367 2089:doi 2049:PMC 2039:doi 1994:PMC 1986:doi 1924:doi 1920:107 1866:doi 1862:107 1825:doi 1813:150 1770:doi 1717:PMC 1707:doi 1695:111 1655:PMC 1647:doi 1595:doi 1545:PMC 1535:doi 1467:doi 1463:514 1419:doi 1377:PMC 1369:doi 1299:PMC 1283:doi 1279:194 1231:doi 1179:PMC 1171:doi 1122:PMC 1114:doi 1110:110 1073:PMC 1065:doi 787:in 553:As 205:of 3906:: 3884:: 3871:: 3858:: 3845:: 3832:: 3819:: 3806:: 3793:: 3780:: 3767:: 3752:: 3737:: 3696:. 3668:. 3641:. 3631:90 3629:. 3625:. 3602:. 3594:. 3586:. 3574:93 3572:. 3568:. 3545:. 3535:. 3525:55 3523:. 3519:. 3496:. 3488:. 3474:. 3470:. 3447:. 3437:. 3425:13 3423:. 3419:. 3392:. 3382:. 3370:. 3366:. 3339:. 3329:. 3317:. 3313:. 3301:^ 3287:. 3279:. 3271:. 3263:. 3253:33 3251:. 3247:. 3235:^ 3221:. 3207:. 3203:. 3180:. 3170:. 3162:. 3154:. 3144:86 3142:. 3138:. 3115:. 3105:. 3097:. 3087:. 3077:16 3075:. 3071:. 3048:. 3038:. 3030:. 3018:. 3014:. 2991:. 2981:. 2973:. 2965:. 2955:16 2953:. 2949:. 2926:. 2916:. 2908:. 2900:. 2890:77 2888:. 2884:. 2861:. 2851:. 2839:15 2837:. 2833:. 2821:^ 2807:. 2797:. 2789:. 2775:. 2771:. 2759:^ 2745:. 2735:. 2727:. 2715:. 2711:. 2699:^ 2685:. 2677:. 2667:18 2665:. 2641:. 2631:. 2623:. 2613:13 2611:. 2607:. 2584:. 2574:83 2572:. 2568:. 2554:^ 2540:. 2532:. 2524:. 2514:33 2512:. 2489:. 2481:. 2471:. 2461:59 2459:. 2455:. 2432:. 2422:. 2414:. 2404:11 2402:. 2398:. 2375:. 2365:. 2357:. 2345:11 2343:. 2339:. 2312:. 2304:. 2294:. 2282:. 2278:. 2258:^ 2244:. 2236:. 2228:. 2218:18 2216:. 2212:. 2185:. 2177:. 2167:17 2165:. 2152:^ 2138:. 2126:. 2103:. 2095:. 2085:68 2083:. 2071:^ 2057:. 2047:. 2033:. 2029:. 2002:. 1992:. 1980:. 1976:. 1960:^ 1946:. 1938:. 1930:. 1918:. 1914:. 1902:^ 1888:. 1880:. 1872:. 1860:. 1856:. 1833:. 1823:. 1811:. 1807:. 1784:. 1776:. 1768:. 1758:17 1756:. 1739:^ 1725:. 1715:. 1705:. 1693:. 1689:. 1677:^ 1663:. 1653:. 1645:. 1635:62 1633:. 1629:. 1615:^ 1601:. 1593:. 1581:. 1567:^ 1553:. 1543:. 1533:. 1521:. 1517:. 1495:^ 1481:. 1473:. 1461:. 1447:^ 1433:. 1425:. 1415:46 1413:. 1399:^ 1385:. 1375:. 1367:. 1357:10 1355:. 1351:. 1321:^ 1307:. 1297:. 1289:. 1277:. 1273:. 1259:^ 1245:. 1237:. 1229:. 1217:. 1213:. 1201:^ 1187:. 1177:. 1169:. 1159:71 1157:. 1153:. 1130:. 1120:. 1108:. 1104:. 1081:. 1071:. 1063:. 1051:. 1047:. 1017:^ 1005:. 909:. 822:. 751:. 616:, 608:, 585:: 559:A. 519:, 425:. 413:, 347:, 319:. 271:, 251:. 3707:. 3679:. 3649:. 3637:: 3610:. 3580:: 3553:. 3539:: 3531:: 3504:. 3482:: 3455:. 3431:: 3417:" 3400:. 3378:: 3372:3 3364:" 3347:. 3325:: 3319:4 3295:. 3267:: 3259:: 3229:. 3215:: 3188:. 3158:: 3150:: 3123:. 3091:: 3083:: 3056:. 3026:: 3020:4 2999:. 2969:: 2961:: 2934:. 2904:: 2896:: 2869:. 2845:: 2815:. 2783:: 2777:7 2753:. 2723:: 2717:3 2693:. 2681:: 2673:: 2649:. 2627:: 2619:: 2592:. 2580:: 2548:. 2528:: 2520:: 2497:. 2475:: 2467:: 2440:. 2418:: 2410:: 2383:. 2361:: 2333:" 2320:. 2298:: 2290:: 2284:2 2252:. 2232:: 2224:: 2193:. 2181:: 2173:: 2146:. 2134:: 2111:. 2091:: 2065:. 2041:: 2035:8 2027:" 2010:. 1988:: 1982:5 1954:. 1926:: 1896:. 1868:: 1841:. 1827:: 1819:: 1792:. 1772:: 1764:: 1733:. 1709:: 1701:: 1671:. 1649:: 1641:: 1609:. 1597:: 1589:: 1583:4 1561:. 1537:: 1529:: 1523:5 1515:" 1489:. 1469:: 1441:. 1421:: 1393:. 1371:: 1363:: 1315:. 1285:: 1253:. 1233:: 1225:: 1219:4 1195:. 1173:: 1165:: 1138:. 1116:: 1089:. 1067:: 1059:: 1053:2 843:. 798:.

Index

Scientific classification
Edit this classification
Bacteria
Pseudomonadota
Gammaproteobacteria
Alteromonadales
Alteromonadaceae
Alteromonas
Binomial name
Synonyms
marine bacterium
aerobic
Pseudomonadota
DNA chromosome
genome
gram-negative
heterotrophic
Îł-proteobacterium
flagellum
luminescent
pigmented
r-strategists
copiotroph

niche differentiation
microaerophilic
metabolism
prochlorococcus
phenol
homoserine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑