Knowledge (XXG)

Ambrosiella roeperi

Source đź“ť

620: 496: 387: 37: 375: 450: 648:. When the beetles colonize a new tree, the fungus growing in the cuticular pouch is introduced to the walls of the new gallery, glandular activity stops, and the mycangium ceases to act as a selective organ. The larvae and adults feed exclusively upon the conidia produced along the walls of the gallery, through which the beetles meet all of their nutritional requirements. (This feature differentiates 707:, from which infestations have been reported). Perhaps in part due to its capacity for extreme polyphagy, this beetle is highly invasive and has spread beyond its native range in southeast Asia to Africa (from tropical regions to the southern tip), Australia and New Zealand, Europe, South America, and the United States, taking 370:
on malt yeast extract agar (MYEA) for approximately a week in darkness at 25 Â°C yields large colonies with translucent, filamentous edges, immediately preceded by a dark inner ring speckled with white powder, which grows increasingly dense moving towards the middle of the colony but tapers out
912:
Maharachchikumbura, Sajeewa S. N.; Hyde, Kevin D.; Jones, E. B. Gareth; McKenzie, E. H. C.; Bhat, Jayarama D.; Dayarathne, Monika C.; Huang, Shi-Ke; Norphanphoun, Chada; Senanayake, Indunil C.; Perera, Rekhani H.; Shang, Qiu-Ju; Xiao, Yuanpin; D’souza, Melvina J.; Hongsanan, Sinang; Jayawardena,
984:
van der Nest, Magriet A.; Chávez, Renato; De Vos, Lieschen; Duong, Tuan A.; Gil-Durán, Carlos; Ferreira, Maria Alves; Lane, Frances A.; Levicán, Gloria; Santana, Quentin C.; Steenkamp, Emma T.; Suzuki, Hiroyuki; Tello, Mario; Rakoma, Jostina R.; Vaca, Inmaculada; Valdés, Natalia (5 March 2021).
763:
or mycopathogenic microorganisms remain under exploration . Ecologically, though biologists may be concerned about the downstream impact of beetle attacks on native plants such as oaks, cedars, maples, elms, redbud, magnolia, etc. , healthy trees outside of intensively managed environments are
643:
consists of a spacious mesonotal pouch. According to the current understanding of this symbiosis, when beetles emerge from pupae, their mycangia are inoculated with ambrosial fungi, and special gland cells flanking the mycangium begin to secrete compounds that promote their growth over that of
1206:
Maharachchikumbura, Sajeewa S. N.; Hyde, Kevin D.; Jones, E. B. Gareth; McKenzie, Eric H. C.; Huang, Shi-Ke; Abdel-Wahab, Mohamed A.; Daranagama, Dinushani A.; Dayarathne, Monika; D’souza, Melvina J.; Goonasekara, Ishani D.; Hongsanan, Sinang; Jayawardena, Ruvishika S.; Kirk, Paul M.; Konta,
758:
The potential for damage necessitates management techniques such as ensuring the growth of vigorous, unstressed stands by allowing more space between individual trees, keeping track of soil water content, selecting plants well-adapted to the climate, pruning infested twigs, monitoring beetle
615:
common to this family. These enzymes are generally needed to help fungi metabolize certain plant chemical defenses, and the loss of these genes may reflect this genus’s association with individuals that are already weakened or dead and thus less likely to be producing effective antifungal
194:
was first described as a novel species of ambrosia fungus by Harrington and McNew in 2014 based on isolations from beetles collected and trapped in the eastern United States, where it is invasive. It has not been assigned a common name at the time of this writing. All
371:
towards the very center. There may also be droplets of orange exudate coming from the powdery region of growth; this fluid may darken as the culture ages. The bottom of the colony similarly becomes a much deeper brown as it matures, even in refrigerated cultures.
749:
is highly attracted to ethanol produced by stressed trees, in which they can kill twigs, branches, and saplings; this makes them of particular concern in settings such as nurseries and orchards, where the protrusion of noodle-like extrusions of beetle
515:
is found primarily on the walls of ambrosia beetle galleries within a wide variety of host trees, where it survives by degrading compounds within wood. Traditionally, although they facilitate beetle growth and reproduction in nutritionally poor
1654:
Ranger, Christopher M.; Biedermann, Peter H. W.; Phuntumart, Vipaporn; Beligala, Gayathri U.; Ghosh, Satyaki; Palmquist, Debra E.; Mueller, Robert; Barnett, Jenny; Schultz, Peter B.; Reding, Michael E.; Benz, J. Philipp (24 April 2018).
606:
do not act as serious plant pathogens, the exact role of these peptide products in mediating their relationship with live or decaying tissue has yet to be determined. Unlike serious disease-causing fungi within the
719:
Among bark and ambrosia beetle pests that disperse various fungi, the degree to which the beetle and its symbiont are each responsible for causing host damage varies from system to system – for example,
683:
during certain seasons (for example, in the winter, when adult beetles remain dormant until their springtime emergence). It has been suggested that during the height of a beetle attack, the presence of
166:
facilitating this insect’s capacity to accumulate on and damage a diverse array of woody plants from around the world. It is one of several important nutritional partners derived from order
1257:
Mayers, Chase G.; McNew, Douglas L.; Harrington, Thomas C.; Roeper, Richard A.; Fraedrich, Stephen W.; Biedermann, Peter H.W.; Castrillo, Louela A.; Reed, Sharon E. (November 2015).
2084:"Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science" 1969:"First Records of Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae) from South America, with Notes on Its Distribution and Spread in the New World" 480:
can be found as small, several-cell chains with crosswalls; this material is likely derived from chunks of mycelium scraped from the gallery walls and may thus constitute an
430:
may arise from these phialides as chains – i.e., new spores are successively pushed out, with the newest growth closest to the original conidiogenous cell – or singly, as an
660:
and, though they may eat and/or disperse some fungi, can generally survive on wood alone.) Structures possibly comprising lipid bodies can be seen within the cytoplasm of
434:
that ruptures the membrane of the mother cell and then remains a unique, differentiated terminal unit without any subsequent neighbors produced from the phialide.
2228: 759:
populations with ethanol-based lures, designating trap trees or logs, and applying insecticides (for example, through direct injection) . Novel methods such as
797:"Fungal diversity in the mycangium of an ambrosia beetle Xylosandrus crassiusculus (Coleoptera: Curculionidae) in Japan during their late dispersal season" 568:
than to other ambrosia fungi, further supporting the idea that making sweeping conclusions about fungal lifestyles based on data from apparently similar
1169:"First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations" 1167:
Vannini, A.; Contarini, M.; Faccoli, M.; Valle, M. Dalla; Rodriguez, C. M.; Mazzetto, T.; Guarneri, D.; Vettraino, A. M.; Speranza, S. (April 2017).
2202: 1044:
Liu, FeiFei; Marincowitz, Seonju; Chen, ShuaiFei; Mbenoun, Michael; Tsopelas, Panaghiotis; Soulioti, Nikoleta; Wingfield, Michael J. (9 June 2020).
1259:"Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia" 548:
specifically, and it is worth noting that the article often cited in support of this conclusion only examined the fungal galleries of one beetle (
1763:"The granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae, Scolytinae), and its fungal symbiont found in South Africa" 1300:"First report of a sexual state in an ambrosia fungus: Ambrosiella cleistominuta sp. nov. associated with the ambrosia beetle Anisandrus maiche" 484:-like structure. Notably, this indicates that the conidia produced in the galleries are unlikely to act as the predominant dispersive forms of 767:
Both in silvicultural and natural contexts, the beetles themselves remain the most problematic and worrisome components of the symbiosis, and
664:
spores and conidiogenous cells, which may represent a means of storage for energy-rich compounds that it then imparts to the feeding beetles.
1638: 1865:"First record of the Granulate Ambrosia Beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae, Scolytinae), in the Iberian Peninsula" 1723: 1527:"Phenolic degradation by catechol dioxygenases is associated with pathogenic fungi with a necrotrophic lifestyle in the Ceratocystidaceae" 1466:
Sayari, Mohammad; van der Nest, Magriet A.; Steenkamp, Emma T.; Soal, Nicole C.; Wilken, P. Markus; Wingfield, Brenda D. (30 April 2019).
1912:"First record of the Asian ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae, Scolytinae), in Slovenia" 703:
has been reported feeding on woody plants from over 40 families, though it seems to prefer non-coniferous species (with the exception of
1525:
Soal, Nicole C; Coetzee, Martin P A; van der Nest, Magriet A; Hammerbacher, Almuth; Wingfield, Brenda D (4 March 2022). Rokas, A (ed.).
987:"IMA genome – F14: Draft genome sequences of Penicillium roqueforti, Fusarium sororula, Chrysoporthe puriensis, and Chalaropsis populi" 2274: 460:
The conidia typically retain at least one adjacent spore-producing cell when broken away from the sporodochia, distinguishing
775:
nutrition. Disrupting the relationship between fungus and beetle may thus someday provide fruitful avenues for pest control.
2083: 639:
As in other ambrosia beetles, the fungus benefits from the opportunity for dispersal via the insect’s mycangium, which in
2014:
Anderson, D.M. (1974). "First record of Xyleborus semiopacus in the continental United States (Coleoptera, Scolytidae)".
1411:"Lipids and small metabolites provisioned by ambrosia fungi to symbiotic beetles are phylogeny-dependent, not convergent" 572:
systems can be misleading, as well as reinforcing how much remains to be learned about this and other ambrosial species.
218:
representing several plant pathogens and sap-staining fungi, often transported by insects (including scolytine beetles);
544:, mirroring similar analyses made for various saprotrophic fungi. However, no equivalent studies have been performed on 211:(sterile tissue found among – and arising from the same surface as – spore-bearing cells). This family also includes 36: 2233: 1724:"New Host Record for the Asian Ambrosia Beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae)" 859:"Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus" 1583: 1526: 161: 688:– produced by stressed trees and sometimes even by the fungus itself – helps to select for the proliferation of 468:; the original species description suggests this feature is meant to allow these units to snap off easily while 2082:
Ranger, Christopher M.; Reding, Michael E.; Addesso, Karla; Ginzel, Matthew; Rassati, Davide (February 2021).
203:, which, where sexual stages are recognized, produce round, ostiolate (with a pore) fruiting bodies for their 699:
mirrors that of its insect partner and is thus quite expansive, both in terms of hosts and geographic range.
2279: 760: 1818:"Seasonal flight and genetic distinction among Xylosandrus crassiusculus populations invasive in Australia" 264:, growing on conifers, producing disease and/or sap stain, and also often acting as a bark beetle associate 2131: 857:
Harrington, Thomas C.; McNew, Douglas; Mayers, Chase; Fraedrich, Stephen W.; Reed, Sharon E. (July 2014).
230: 2269: 1584:"Cladistic review of generic taxonomic characters in Xyleborina (Coleoptera: Curculionidae: Scolytinae)" 274: 131: 2034: 619: 495: 1468:"Distribution and Evolution of Nonribosomal Peptide Synthetase Gene Clusters in the Ceratocystidaceae" 2194: 1817: 1668: 612: 584: 569: 333: 284: 732: 598:
These products generally help chelate or bind iron for various cellular processes and can be major
692:
over potential competitors such as molds, which are unable to effectively detoxify this compound.
2111: 1996: 1949: 1845: 1798: 1633:. Vienna series in theoretical biology. Cambridge, Massachusetts London, England: The MIT Press. 1611: 1258: 1236: 942: 894: 824: 31: 520:
tissue, ambrosia fungi are considered to be ineffective agents of wood decomposition, producing
386: 307:
that have now been moved elsewhere). These analyses imply the genus is most closely related to
2241: 2163: 2103: 2064: 2056: 1988: 1941: 1933: 1892: 1884: 1863:
Gallego, Diego; Lencina, José Luis; Mas, Hugo; Ceveró, Julia; Faccoli, Massimo (6 June 2017).
1837: 1790: 1782: 1743: 1704: 1686: 1634: 1603: 1564: 1546: 1507: 1489: 1448: 1430: 1391: 1373: 1329: 1280: 1228: 1188: 1149: 1131: 1085: 1067: 1026: 1008: 934: 886: 878: 816: 374: 339: 200: 98: 2246: 1110:
de Beer, Z.W.; Duong, T.A.; Barnes, I.; Wingfield, B.D.; Wingfield, M.J. (1 September 2014).
1046:"Novel species of Huntiella from naturally-occurring forest trees in Greece and South Africa" 2095: 2046: 1980: 1923: 1876: 1829: 1774: 1761:
Nel, Wilma J.; De Beer, Z. Wilhelm; Wingfield, Michael J.; Duong, Tuan A. (27 August 2020).
1735: 1694: 1676: 1595: 1554: 1538: 1497: 1479: 1438: 1422: 1381: 1363: 1319: 1311: 1299: 1270: 1220: 1180: 1139: 1123: 1075: 1057: 1016: 998: 966: 926: 870: 808: 599: 449: 260: 1911: 1864: 1762: 342:
and translation elongation factor alpha confirms this and suggests a monophyletic clade of
649: 431: 78: 1672: 1168: 291:
The genera of Ceratocystidaceae have been revised multiple times based on molecular data
2189: 2051: 1699: 1656: 1559: 1502: 1467: 1443: 1410: 1386: 1351: 1144: 1111: 1080: 1045: 1021: 986: 796: 635:
shares its most significant ecological interactions with the granulate ambrosia beetle
438:
operates only through the latter mechanism, which is distinct from what is reported in
858: 2263: 2115: 1849: 1802: 1599: 1240: 1208: 946: 914: 828: 537: 366:
galleries, not immediately distinguishable from many other ambrosia fungi. Culturing
245: 2000: 1953: 1816:
Tran, H. X.; Doland Nichols, J.; Li, D.; Le, N. H.; Lawson, S. A. (2 October 2022).
1615: 1582:
Hulcr, Jiri; Dole, Stephanie A.; Beaver, Roger A.; Cognato, Anthony I. (July 2007).
186:
like fungi had previously been documented from the galleries and mycangia of native
2154: 898: 645: 423: 239: 213: 167: 88: 2168: 1833: 795:
Saragih, Syaiful Amri; Takemoto, Shuhei; Kusumoto, Dai; Kamata, Naoto (May 2021).
426:(minute, dense cushions of nonreproductive hyphae holding up the fertile tissue). 1968: 1275: 1127: 1542: 771:
is not in and of itself a severe tree disease, merely a critical foundation for
722: 653: 592: 529: 481: 464:
conidiogenous structures from the less swollen, non-detachable conidiophores of
220: 171: 108: 1739: 1003: 812: 410:) has ever been reported to produce sexual structures, and the rest (including 1928: 1880: 1778: 1426: 1224: 1062: 930: 704: 347: 234: 208: 68: 2107: 2060: 1992: 1937: 1888: 1841: 1786: 1747: 1690: 1607: 1550: 1493: 1434: 1377: 1333: 1232: 1192: 1135: 1071: 1012: 938: 882: 820: 2176: 1681: 1657:"Symbiont selection via alcohol benefits fungus farming by ambrosia beetles" 1298:
Mayers, Chase G.; Harrington, Thomas C.; Ranger, Christopher M. (May 2017).
727: 541: 473: 48: 2068: 2035:"The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management" 1945: 1896: 1794: 1708: 1568: 1511: 1452: 1395: 1368: 1352:"Patterns of functional enzyme activity in fungus farming ambrosia beetles" 1284: 1153: 1089: 1030: 890: 1484: 1315: 2215: 2148: 1984: 575:
There are various molecular indications that hint at other ways in which
427: 419: 2099: 1209:"Towards a natural classification and backbone tree for Sordariomycetes" 2207: 737:
but others merely facilitate the mass accumulation of beetles on wood.
685: 533: 1324: 1184: 2220: 657: 521: 207:
with a fine peridium (outer layer) and aseptate (lacking crosswalls)
58: 2125: 960: 414:) have been assumed to undergo exclusively clonal reproduction. All 2181: 1629:
Schultz, Ted R.; Peregrine, Peter N.; Gawne, Richard, eds. (2021).
970: 874: 679:, can often be found within and even seem to exceed the density of 488:
and beetles instead transport fungi to new trees as disarticulated
751: 676: 618: 561: 525: 517: 494: 489: 448: 385: 373: 204: 764:
unlikely to sustain serious permanent damage from these insects.
667:
Though trees and insects are perhaps the most pivotal points of
2129: 1631:
The convergent evolution of agriculture in humans and insects
225:
encompassing a few economically insignificant root diseases;
1967:
Flechtmann, Carlos A. H.; Atkinson, Thomas H. (March 2016).
560:
indicate that when growing on wood, this fungus possesses a
675:
grows are not monocultures and other fungi, particularly
627:
within its gallery. Walls are stained with fungal growth.
311:
Within this taxon, studies incorporating the LSU rDNA of
250:
containing various agents of disease affecting monocots;
159:
is the fungal symbiont of the granulate ambrosia beetle,
1409:
Huang, Yin-Tse; Skelton, James; Hulcr, Jiri (May 2020).
745:
fall into the latter category. As previously mentioned,
1350:
De Fine Licht, Henrik H; Biedermann, Peter H W (2012).
476:(a pocket in the insect cuticle for fungal dispersal), 456:
hyphae in culture on MYEA under a dissecting microscope
418:
produce translucent, flask-shaped conidiogenous cells (
199:
are ambrosia beetle symbionts and belong to the family
170:
that sustain and are transported by xylomycetophagous
2033:
Hulcr, Jiri; Stelinski, Lukasz L. (31 January 2017).
472:
is grazing upon the gallery. When within the beetle
394:
with a slightly different morphology growing on MYEA
2138: 556:. Interestingly, metabolomic studies incorporating 446:(suggested to use the former, chain-like method). 233:associated with lesions on trees, transported by 1722:Horn, Scott; Horn, George N. (1 January 2006). 1661:Proceedings of the National Academy of Sciences 754:can be a diagnostic feature for this and other 579:may interact with its woody hosts. The genus 8: 611:possess only half of the full complement of 254:comprising several species of tree pathogens 16:Ambrosia fungus of granulate ambrosia beetle 1112:"Redefining Ceratocystis and allied genera" 362:appears as a dark stain along the walls of 295:incorporating sequences derived from other 268:The closest relatives within the genus are 2126: 323:comprise a monophyletic lineage excluding 20: 2050: 1927: 1698: 1680: 1558: 1501: 1483: 1442: 1385: 1367: 1323: 1274: 1143: 1079: 1061: 1020: 1002: 591:encoding intracellular and extracellular 564:profile more similar to non-mutualistic 784: 631:Aside from its association with trees, 962:Revista Facultad Nacional de AgronomĂ­a 552:associated with a different symbiont, 524:primarily dedicated to degradation of 1910:KavÄŤIÄŤ, Andreja (20 September 2018). 1345: 1343: 1252: 1250: 7: 1207:Sirinapa; Liu, Jian-Kui (May 2015). 1105: 1103: 1101: 1099: 965:. Universidad Nacional de Colombia. 852: 850: 848: 846: 844: 842: 840: 838: 790: 788: 502:hyphae stained with lactophenol blue 406:from the xyleborine ambrosia beetle 346:associated with the scolytine tribe 602:in other fungi; however, seeing as 2052:10.1146/annurev-ento-031616-035105 2016:Cooperative Economic Insect Report 14: 1728:Journal of Entomological Science 1600:10.1111/j.1365-3113.2007.00386.x 741:and the symbionts of most other 671:ecology, the galleries in which 35: 587:gene clusters with the rest of 726:represents a true pathogen of 656:, which typically feed on the 609:Ceratocystidaceae, Ambrosiella 585:nonribosomal peptide synthesis 331:) and most closely aligned to 303:(and sometimes only including 190:populations in central Japan, 1: 1834:10.1080/00049158.2022.2151722 915:"Families of Sordariomycetes" 147:T.C. Harr. & McNew (2014) 1531:G3: Genes, Genomes, Genetics 1276:10.1016/j.funbio.2015.08.002 1128:10.1016/j.simyco.2014.10.001 440:A. beaveri , A. trypodendri, 299:species but not necessarily 278:(the black twig borer), and 2039:Annual Review of Entomology 2296: 1973:The Coleopterists Bulletin 1740:10.18474/0749-8004-41.1.90 1004:10.1186/s43008-021-00055-1 913:Ruvishika S. (July 2016). 813:10.1007/s13199-021-00762-8 637:Xylosandrus crassiusculus. 338:subsequent analysis using 2088:The Canadian Entomologist 1929:10.11646/zootaxa.4483.1.9 1881:10.11646/zootaxa.4273.3.7 1779:10.11646/zootaxa.4838.3.7 1543:10.1093/g3journal/jkac008 1427:10.1038/s41396-020-0593-7 1225:10.1007/s13225-015-0331-z 1063:10.3897/mycokeys.69.53205 931:10.1007/s13225-016-0369-6 625:Xylosandrus crassiusculus 358:When within a host tree, 329:Phialoporopsis ferruginea 162:Xylosandrus crassiusculus 137: 130: 32:Scientific classification 30: 23: 390:An image of a colony of 378:An image of a colony of 317:A. xylebori, A. hartigii 288:(the black stem borer). 280:Ambrosiella grosmanniae, 2275:Fungi described in 2014 1773:(3): zootaxa.4838.3.7. 1682:10.1073/pnas.1716852115 422:) borne on non-fertile 229:, primarily made up of 1369:10.1186/1742-9994-9-13 723:Harringtonia lauricola 628: 536:(common components of 503: 457: 395: 383: 1588:Systematic Entomology 1485:10.3390/genes10050328 1316:10.1139/cjb-2016-0297 622: 613:catechol dioxygenases 498: 452: 389: 377: 275:Xylosandrus compactus 270:Ambrosiella xylebori, 1985:10.1649/072.070.0109 1356:Frontiers in Zoology 695:The distribution of 583:shares at least two 550:Xyleborinus saxenii) 334:Ceratocystis adiposa 285:Xylosandrus germanus 2140:Ambrosiella roeperi 2100:10.4039/tce.2020.51 1822:Australian Forestry 1673:2018PNAS..115.4447R 1116:Studies in Mycology 733:Xyleborus glabratus 237:and in one case an 156:Ambrosiella roeperi 141:Ambrosiella roeperi 25:Ambrosiella roeperi 629: 554:Raffaelea sulfurea 504: 458: 396: 384: 2257: 2256: 2242:Open Tree of Life 2132:Taxon identifiers 1667:(17): 4447–4452. 1640:978-0-262-54320-0 1269:(11): 1075–1092. 1185:10.1111/epp.12358 600:virulence factors 589:Ceratocystidaceae 566:Ceratocystidaceae 408:Anisandrus maiche 315:suggest that it, 201:Ceratocystidaceae 182:Although unnamed 152: 151: 99:Ceratocystidaceae 2287: 2250: 2249: 2237: 2236: 2224: 2223: 2211: 2210: 2198: 2197: 2185: 2184: 2172: 2171: 2159: 2158: 2157: 2127: 2120: 2119: 2079: 2073: 2072: 2054: 2030: 2024: 2023: 2011: 2005: 2004: 1964: 1958: 1957: 1931: 1907: 1901: 1900: 1860: 1854: 1853: 1813: 1807: 1806: 1758: 1752: 1751: 1719: 1713: 1712: 1702: 1684: 1651: 1645: 1644: 1626: 1620: 1619: 1579: 1573: 1572: 1562: 1522: 1516: 1515: 1505: 1487: 1463: 1457: 1456: 1446: 1421:(5): 1089–1099. 1415:The ISME Journal 1406: 1400: 1399: 1389: 1371: 1347: 1338: 1337: 1327: 1295: 1289: 1288: 1278: 1254: 1245: 1244: 1213:Fungal Diversity 1203: 1197: 1196: 1164: 1158: 1157: 1147: 1107: 1094: 1093: 1083: 1065: 1041: 1035: 1034: 1024: 1006: 981: 975: 974: 957: 951: 950: 919:Fungal Diversity 909: 903: 902: 854: 833: 832: 792: 773:X. crassiusculus 761:entomopathogenic 747:X. crassiusculus 701:X. crassiusculus 650:ambrosia beetles 641:X. crassiusculus 470:X. crassiusculus 404:A. cleistominuta 364:X. crassiusculus 282:the symbiont of 272:the symbiont of 261:Endoconidiophora 188:X. crassiusculus 143: 40: 39: 21: 2295: 2294: 2290: 2289: 2288: 2286: 2285: 2284: 2260: 2259: 2258: 2253: 2245: 2240: 2232: 2227: 2219: 2214: 2206: 2201: 2193: 2188: 2180: 2175: 2167: 2162: 2153: 2152: 2147: 2134: 2124: 2123: 2081: 2080: 2076: 2032: 2031: 2027: 2013: 2012: 2008: 1966: 1965: 1961: 1909: 1908: 1904: 1862: 1861: 1857: 1815: 1814: 1810: 1760: 1759: 1755: 1721: 1720: 1716: 1653: 1652: 1648: 1641: 1628: 1627: 1623: 1581: 1580: 1576: 1524: 1523: 1519: 1465: 1464: 1460: 1408: 1407: 1403: 1349: 1348: 1341: 1297: 1296: 1292: 1256: 1255: 1248: 1205: 1204: 1200: 1166: 1165: 1161: 1109: 1108: 1097: 1043: 1042: 1038: 983: 982: 978: 959: 958: 954: 911: 910: 906: 856: 855: 836: 794: 793: 786: 781: 717: 509: 432:aleurioconidium 382:growing on MYEA 356: 180: 148: 145: 139: 126: 123:A. roeperi 79:Sordariomycetes 34: 17: 12: 11: 5: 2293: 2291: 2283: 2282: 2280:Fungus species 2277: 2272: 2262: 2261: 2255: 2254: 2252: 2251: 2238: 2225: 2212: 2199: 2186: 2173: 2160: 2144: 2142: 2136: 2135: 2130: 2122: 2121: 2094:(1): 103–120. 2074: 2045:(1): 285–303. 2025: 2006: 1959: 1922:(1): 191–193. 1902: 1875:(3): 431–434. 1855: 1828:(4): 224–231. 1808: 1753: 1714: 1646: 1639: 1621: 1594:(3): 568–584. 1574: 1517: 1458: 1401: 1339: 1310:(5): 503–512. 1290: 1263:Fungal Biology 1246: 1219:(1): 199–301. 1198: 1179:(1): 100–103. 1159: 1122:(1): 187–219. 1095: 1036: 976: 971:10.15446/rfnam 952: 904: 875:10.3852/13-354 869:(4): 835–845. 834: 807:(1): 111–118. 783: 782: 780: 777: 716: 713: 616:metabolites. 540:) rather than 508: 505: 355: 352: 252:Davidsoniella, 179: 176: 150: 149: 146: 135: 134: 128: 127: 120: 118: 114: 113: 106: 102: 101: 96: 92: 91: 86: 82: 81: 76: 72: 71: 66: 62: 61: 56: 52: 51: 46: 42: 41: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 2292: 2281: 2278: 2276: 2273: 2271: 2268: 2267: 2265: 2248: 2243: 2239: 2235: 2230: 2226: 2222: 2217: 2213: 2209: 2204: 2200: 2196: 2191: 2187: 2183: 2178: 2174: 2170: 2165: 2161: 2156: 2150: 2146: 2145: 2143: 2141: 2137: 2133: 2128: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2078: 2075: 2070: 2066: 2062: 2058: 2053: 2048: 2044: 2040: 2036: 2029: 2026: 2021: 2017: 2010: 2007: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1963: 1960: 1955: 1951: 1947: 1943: 1939: 1935: 1930: 1925: 1921: 1917: 1913: 1906: 1903: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1859: 1856: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1812: 1809: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1757: 1754: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1718: 1715: 1710: 1706: 1701: 1696: 1692: 1688: 1683: 1678: 1674: 1670: 1666: 1662: 1658: 1650: 1647: 1642: 1636: 1632: 1625: 1622: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1575: 1570: 1566: 1561: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1521: 1518: 1513: 1509: 1504: 1499: 1495: 1491: 1486: 1481: 1477: 1473: 1469: 1462: 1459: 1454: 1450: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1405: 1402: 1397: 1393: 1388: 1383: 1379: 1375: 1370: 1365: 1361: 1357: 1353: 1346: 1344: 1340: 1335: 1331: 1326: 1321: 1317: 1313: 1309: 1305: 1301: 1294: 1291: 1286: 1282: 1277: 1272: 1268: 1264: 1260: 1253: 1251: 1247: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1202: 1199: 1194: 1190: 1186: 1182: 1178: 1174: 1173:EPPO Bulletin 1170: 1163: 1160: 1155: 1151: 1146: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1106: 1104: 1102: 1100: 1096: 1091: 1087: 1082: 1077: 1073: 1069: 1064: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1028: 1023: 1018: 1014: 1010: 1005: 1000: 996: 992: 988: 980: 977: 972: 968: 964: 963: 956: 953: 948: 944: 940: 936: 932: 928: 924: 920: 916: 908: 905: 900: 896: 892: 888: 884: 880: 876: 872: 868: 864: 860: 853: 851: 849: 847: 845: 843: 841: 839: 835: 830: 826: 822: 818: 814: 810: 806: 802: 798: 791: 789: 785: 778: 776: 774: 770: 765: 762: 757: 753: 748: 744: 740: 736: 734: 729: 725: 724: 714: 712: 710: 706: 702: 698: 693: 691: 687: 682: 678: 674: 670: 665: 663: 659: 655: 651: 647: 642: 638: 634: 626: 621: 617: 614: 610: 605: 601: 597: 594: 590: 586: 582: 578: 573: 571: 567: 563: 559: 555: 551: 547: 543: 539: 538:hemicellulose 535: 531: 527: 523: 519: 514: 506: 501: 497: 493: 491: 487: 483: 479: 475: 471: 467: 463: 455: 451: 447: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 405: 401: 393: 388: 381: 376: 372: 369: 365: 361: 353: 351: 349: 345: 341: 337: 335: 330: 326: 325:A. ferruginea 322: 318: 314: 310: 306: 302: 298: 294: 289: 287: 286: 281: 277: 276: 271: 267: 263: 262: 257: 253: 249: 247: 246:Thielaviopsis 243:bark beetle; 242: 241: 236: 232: 228: 224: 222: 217: 215: 210: 206: 202: 198: 193: 189: 185: 177: 175: 173: 169: 165: 163: 158: 157: 144: 142: 136: 133: 132:Binomial name 129: 125: 124: 119: 116: 115: 112: 111: 107: 104: 103: 100: 97: 94: 93: 90: 87: 84: 83: 80: 77: 74: 73: 70: 67: 64: 63: 60: 57: 54: 53: 50: 47: 44: 43: 38: 33: 29: 26: 22: 19: 2270:Microascales 2139: 2091: 2087: 2077: 2042: 2038: 2028: 2019: 2015: 2009: 1979:(1): 79–83. 1976: 1972: 1962: 1919: 1915: 1905: 1872: 1868: 1858: 1825: 1821: 1811: 1770: 1766: 1756: 1734:(1): 90–91. 1731: 1727: 1717: 1664: 1660: 1649: 1630: 1624: 1591: 1587: 1577: 1534: 1530: 1520: 1475: 1471: 1461: 1418: 1414: 1404: 1359: 1355: 1307: 1303: 1293: 1266: 1262: 1216: 1212: 1201: 1176: 1172: 1162: 1119: 1115: 1053: 1049: 1039: 994: 990: 979: 961: 955: 925:(1): 1–317. 922: 918: 907: 866: 862: 804: 800: 772: 768: 766: 756:Xylosandrus. 755: 746: 742: 738: 731: 730:vectored by 721: 718: 715:Significance 708: 700: 696: 694: 689: 680: 672: 668: 666: 661: 654:bark beetles 640: 636: 632: 630: 624: 608: 603: 595: 593:siderophores 588: 580: 576: 574: 565: 557: 553: 549: 545: 512: 510: 499: 485: 477: 469: 465: 461: 459: 453: 443: 439: 435: 415: 411: 407: 403: 399: 397: 391: 379: 367: 363: 359: 357: 343: 332: 328: 324: 320: 316: 312: 308: 304: 300: 296: 292: 290: 283: 279: 273: 269: 265: 259: 255: 251: 244: 238: 226: 219: 214:Ceratocystis 212: 196: 191: 187: 184:Ambrosiella- 183: 181: 168:Microascales 160: 155: 154: 153: 140: 138: 122: 121: 109: 89:Microascales 24: 18: 743:Xylosandrus 669:Ambrosiella 623:The beetle 604:Ambrosiella 581:Ambrosiella 530:glucomannan 511:In nature, 486:A. roeperi, 482:arthrospore 466:A. xylebori 444:A. hartigii 424:sporodochia 416:Ambrosiella 400:Ambrosiella 344:Ambrosiella 305:Ambrosiella 297:Ambrosiella 235:sap beetles 221:Chalaropsis 197:Ambrosiella 110:Ambrosiella 2264:Categories 2155:Q107482123 2022:: 863–864. 1478:(5): 328. 1325:1807/77270 991:IMA Fungus 779:References 769:A. roeperi 739:A. roeperi 709:A. roeperi 697:A. roeperi 690:A. roeperi 681:A. roeperi 673:A. roeperi 662:A. roeperi 646:commensals 633:A. roeperi 577:A. roeperi 570:convergent 558:A. roeperi 546:A. roeperi 513:A. roeperi 500:A. roeperi 478:A. roeperi 462:A. roeperi 454:A. roeperi 436:A. roeperi 412:A. roeperi 392:A. roeperi 380:A. roeperi 368:A. roeperi 360:A. roeperi 354:Morphology 348:Xyleborini 321:A. beaveri 313:A. roeperi 309:Huntiella. 301:A. roeperi 209:paraphyses 205:ascospores 192:A. roeperi 69:Ascomycota 65:Division: 2116:225322145 2108:0008-347X 2061:0066-4170 1993:0010-065X 1938:1175-5334 1889:1175-5334 1850:257201135 1842:0004-9158 1803:222824697 1787:1175-5334 1748:0749-8004 1691:0027-8424 1608:0307-6970 1551:2160-1836 1494:2073-4425 1435:1751-7362 1378:1742-9994 1362:(1): 13. 1334:1916-2790 1241:256072233 1233:1560-2745 1193:0250-8052 1136:0166-0616 1072:1314-4049 1056:: 33–52. 1013:2210-6359 947:256070646 939:1560-2745 883:0027-5514 863:Mycologia 829:256073583 821:0334-5114 801:Symbiosis 728:Lauraceae 711:with it. 644:assorted 542:cellulose 474:mycangium 420:phialides 398:Only one 227:Huntiella 174:beetles. 172:scolytine 117:Species: 55:Kingdom: 49:Eukaryota 2216:MycoBank 2190:Fungorum 2149:Wikidata 2069:27860522 2001:87968678 1954:52976490 1946:30313805 1897:28610243 1795:33056816 1709:29632193 1616:84997704 1569:35077565 1512:31052158 1453:31988472 1396:22672512 1285:26466881 1154:25492989 1090:32733148 1050:MycoKeys 1031:33673862 997:(1): 5. 891:24895423 340:18S rDNA 231:saprobes 178:Taxonomy 95:Family: 45:Domain: 2247:5709637 2234:1535305 2208:8068713 1916:Zootaxa 1869:Zootaxa 1767:Zootaxa 1700:5924889 1669:Bibcode 1560:8896014 1503:6563098 1444:7174304 1387:3502098 1145:4255530 1081:7367892 1022:7934431 899:7083929 686:ethanol 534:callose 522:enzymes 507:Ecology 428:Conidia 105:Genus: 85:Order: 75:Class: 2221:805798 2195:805798 2182:AMBRRO 2114:  2106:  2067:  2059:  1999:  1991:  1952:  1944:  1936:  1895:  1887:  1848:  1840:  1801:  1793:  1785:  1746:  1707:  1697:  1689:  1637:  1614:  1606:  1567:  1557:  1549:  1510:  1500:  1492:  1451:  1441:  1433:  1394:  1384:  1376:  1332:  1304:Botany 1283:  1239:  1231:  1191:  1152:  1142:  1134:  1088:  1078:  1070:  1029:  1019:  1011:  945:  937:  897:  889:  881:  827:  819:  705:cedars 677:yeasts 658:phloem 532:, and 490:hyphae 319:, and 2112:S2CID 1997:S2CID 1950:S2CID 1846:S2CID 1799:S2CID 1612:S2CID 1537:(3). 1472:Genes 1237:S2CID 943:S2CID 895:S2CID 825:S2CID 752:frass 652:from 562:lipid 526:xylan 518:xylem 327:(now 59:Fungi 2229:NCBI 2203:GBIF 2177:EPPO 2169:CPR6 2104:ISSN 2065:PMID 2057:ISSN 1989:ISSN 1942:PMID 1934:ISSN 1920:4483 1893:PMID 1885:ISSN 1873:4273 1838:ISSN 1791:PMID 1783:ISSN 1771:4838 1744:ISSN 1705:PMID 1687:ISSN 1635:ISBN 1604:ISSN 1565:PMID 1547:ISSN 1508:PMID 1490:ISSN 1449:PMID 1431:ISSN 1392:PMID 1374:ISSN 1330:ISSN 1281:PMID 1229:ISSN 1189:ISSN 1150:PMID 1132:ISSN 1086:PMID 1068:ISSN 1027:PMID 1009:ISSN 935:ISSN 887:PMID 879:ISSN 817:ISSN 442:and 258:and 2164:CoL 2096:doi 2092:153 2047:doi 1981:doi 1924:doi 1877:doi 1830:doi 1775:doi 1736:doi 1695:PMC 1677:doi 1665:115 1596:doi 1555:PMC 1539:doi 1498:PMC 1480:doi 1439:PMC 1423:doi 1382:PMC 1364:doi 1320:hdl 1312:doi 1271:doi 1267:119 1221:doi 1181:doi 1140:PMC 1124:doi 1076:PMC 1058:doi 1017:PMC 999:doi 967:doi 927:doi 871:doi 867:106 809:doi 240:Ips 2266:: 2244:: 2231:: 2218:: 2205:: 2192:: 2179:: 2166:: 2151:: 2110:. 2102:. 2090:. 2086:. 2063:. 2055:. 2043:62 2041:. 2037:. 2020:24 2018:. 1995:. 1987:. 1977:70 1975:. 1971:. 1948:. 1940:. 1932:. 1918:. 1914:. 1891:. 1883:. 1871:. 1867:. 1844:. 1836:. 1826:85 1824:. 1820:. 1797:. 1789:. 1781:. 1769:. 1765:. 1742:. 1732:41 1730:. 1726:. 1703:. 1693:. 1685:. 1675:. 1663:. 1659:. 1610:. 1602:. 1592:32 1590:. 1586:. 1563:. 1553:. 1545:. 1535:12 1533:. 1529:. 1506:. 1496:. 1488:. 1476:10 1474:. 1470:. 1447:. 1437:. 1429:. 1419:14 1417:. 1413:. 1390:. 1380:. 1372:. 1358:. 1354:. 1342:^ 1328:. 1318:. 1308:95 1306:. 1302:. 1279:. 1265:. 1261:. 1249:^ 1235:. 1227:. 1217:72 1215:. 1211:. 1187:. 1177:47 1175:. 1171:. 1148:. 1138:. 1130:. 1120:79 1118:. 1114:. 1098:^ 1084:. 1074:. 1066:. 1054:69 1052:. 1048:. 1025:. 1015:. 1007:. 995:12 993:. 989:. 941:. 933:. 923:79 921:. 917:. 893:. 885:. 877:. 865:. 861:. 837:^ 823:. 815:. 805:84 803:. 799:. 787:^ 528:, 492:. 350:. 2118:. 2098:: 2071:. 2049:: 2003:. 1983:: 1956:. 1926:: 1899:. 1879:: 1852:. 1832:: 1805:. 1777:: 1750:. 1738:: 1711:. 1679:: 1671:: 1643:. 1618:. 1598:: 1571:. 1541:: 1514:. 1482:: 1455:. 1425:: 1398:. 1366:: 1360:9 1336:. 1322:: 1314:: 1287:. 1273:: 1243:. 1223:: 1195:. 1183:: 1156:. 1126:: 1092:. 1060:: 1033:. 1001:: 973:. 969:: 949:. 929:: 901:. 873:: 831:. 811:: 735:, 596:. 402:( 336:, 293:, 266:. 256:, 248:, 223:, 216:, 164:,

Index

Scientific classification
Edit this classification
Eukaryota
Fungi
Ascomycota
Sordariomycetes
Microascales
Ceratocystidaceae
Ambrosiella
Binomial name
Xylosandrus crassiusculus
Microascales
scolytine
Ceratocystidaceae
ascospores
paraphyses
Ceratocystis
Chalaropsis
saprobes
sap beetles
Ips
Thielaviopsis
Endoconidiophora
Xylosandrus compactus
Xylosandrus germanus
Ceratocystis adiposa
18S rDNA
Xyleborini

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑