Knowledge (XXG)

André–Oort conjecture

Source 📝

160:
proved, in 2014, the functional transcendence result needed for the general Pila-Zannier approach and Emmanuel Ullmo has deduced from it a technical result needed for the induction step in the strategy. The remaining technical ingredient was the problem of bounding below the Galois degrees of special
191:
In 2019-2020, Gal Biniyamini, Harry Schmidt and Andrei Yafaev, building on previous work and ideas of Harry Schmidt on torsion points in tori and abelian varieties and Gal Biniyamini's point counting results, have formulated a conjecture on bounds of heights of special points and deduced from its
274:
Manin-Mumford and André–Oort conjectures can be generalized in many directions, for example by relaxing the properties of points being `special' (and considering the so-called `unlikely locus' instead) or looking at more general ambient varieties: abelian or semi-abelian schemes, mixed Shimura
70:
André's first version of the conjecture was just for one dimensional irreducible components, while Oort proposed that it should be true for irreducible components of arbitrary dimension in the moduli space of
488:
Pila, Jonathan; Shankar, Ananth; Tsimerman, Jacob; Esnault, Hélène; Groechenig, Michael (2021-09-17). "Canonical Heights on Shimura Varieties and the André-Oort Conjecture".
207:
and Michael Groechenig) a proof of the Biniyamini-Schmidt-Yafaev height conjecture, thus completing the proof of the André-Oort conjecture using the Pila-Zannier strategy.
138:
to develop an approach to the Manin-Mumford-André-Oort type of problems. In 2009, Jonathan Pila proved the André-Oort conjecture unconditionally for arbitrary products of
39:, which is now a theorem (proven in several different ways). The conjecture concerns itself with a characterization of the Zariski closure of sets of special points in 255: 118:(GRH) being true. In fact, the proof of the full conjecture under GRH was published by Bruno Klingler, Emmanuel Ullmo and Andrei Yafaev in 2014 in the 688: 657: 82:. It seems that André was motivated by applications to transcendence theory while Oort by the analogy with the Manin-Mumford conjecture. 545: 510: 36: 115: 706: 668: 135: 47:
in 1989 and a more general statement (albeit with a restriction on the type of the Shimura variety) was conjectured by
445: 292: 276: 192:
validity the bounds for the Galois degrees of special points needed for the proof of the full André-Oort conjecture.
247: 392:
Pila, Jonathan (2009), "Rational points of definable sets and results of André–Oort–Manin–Mumford type",
414: 119: 173: 177: 711: 204: 28: 215:
A related conjecture that has two forms, equivalent if the André–Oort conjecture is assumed, is the
149: 107: 251: 165: 157: 143: 95: 331:
Oort, Frans (1997), "Canonical liftings and dense sets of CM points", in Fabrizio Catanese (ed.),
489: 356: 684: 653: 541: 535: 470: 374: 220: 40: 645: 676: 617: 586: 423: 366: 236: 131: 641: 449: 263: 200: 169: 123: 75: 72: 64: 60: 561:
Pink, Richard (2005), "A combination of the conjectures of Mordell–Lang and André–Oort",
153: 111: 103: 700: 196: 185: 139: 127: 99: 91: 44: 32: 605: 59:
The conjecture in its modern form is as follows. Each irreducible component of the
348: 280: 51:
in 1995. The modern version is a natural generalization of these two conjectures.
680: 428: 283:. Most of these questions are open and are a subject of current active research. 90:
Various results have been established towards the full conjecture by Ben Moonen,
577:
Zilber, Boris (2002), "Exponential sums equations and the Schanuel conjecture",
370: 20: 590: 181: 48: 474: 378: 262:
no special subvariety of dimension > 0 that intersects the image of the
667:
Yafaev, Andrei (2007), Burns, David; Buzzard, Kevin; Nekovar, Jan (eds.),
442: 408:
Pila, Jonathan (2011), "O-minimality and the André–Oort conjecture for
275:
varieties etc.... These generalizations are colloquially known as the
565:, Progress in Mathematics, vol. 253, Birkhauser, pp. 251–282 622: 494: 650:
Some Problems of Unlikely Intersections in Arithmetic and Geometry
361: 188:
and independently by Andreatta, Goren, Howard and Madapusi-Pera.
114:, among others. Some of these results were conditional upon the 279:
because problems of this type were proposed by Richard Pink and
180:
isogeny estimates. The averaged Colmez conjecture was proved by
534:
Carlson, James; Müller-Stach, Stefan; Peters, Chris (2017).
675:, Cambridge: Cambridge University Press, pp. 381–406, 652:. Princeton: Princeton University Press. pp. 96–127. 511:"Mathematicians Prove 30-Year-Old André-Oort Conjecture" 227:, there are only finitely many smooth projective curves 203:
claimed in a paper (featuring an appendix written by
35:, that can be seen as a non-abelian analogue of the 43:. A special case of the conjecture was stated by 256:moduli space of abelian varieties of dimension g 319:, Aspects of Mathematics, vol. E13, Vieweg 563:Geometric methods in algebra and number theory 347:Klingler, Bruno; Yafaev, Andrei (2014-11-01). 8: 463:Notices of the American Mathematical Society 540:. Cambridge University Press. p. 285. 621: 493: 427: 360: 606:"Autour de la conjecture de Zilber–Pink" 223:conjectured that for sufficiently large 335:, Cambridge: Cambridge University Press 304: 673:L-functions and Galois Representations 669:"The André-Oort conjecture - a survey" 142:, a result which earned him the 2011 7: 537:Period Mappings and Period Domains 14: 646:"About the André–Oort conjecture" 250:. Oort then conjectured that the 63:of a set of special points in a 116:generalized Riemann hypothesis 1: 258:– has for sufficiently large 681:10.1017/cbo9780511721267.011 509:Sloman, Leila (2022-02-03). 429:10.4007/annals.2011.173.3.11 168:, this bound was deduced by 136:transcendental number theory 443:Clay Research Award website 371:10.4007/annals.2014.180.3.2 349:"The André-Oort conjecture" 728: 610:J. Théor. Nombres Bordeaux 248:abelian variety of CM-type 174:averaged Colmez conjecture 591:10.1112/S0024610701002861 394:Int. Math. Res. Not. IMRN 67:is a special subvariety. 266:in a dense open subset. 37:Manin–Mumford conjecture 317:-functions and geometry 277:Zilber–Pink conjectures 217:Coleman–Oort conjecture 211:Coleman–Oort conjecture 16:Mathematical conjecture 293:Zilber–Pink conjecture 199:, Ananth Shankar, and 166:Siegel modular variety 604:Rémond, Gaël (2009), 415:Annals of Mathematics 353:Annals of Mathematics 130:used techniques from 120:Annals of Mathematics 73:principally polarised 25:André–Oort conjecture 707:Diophantine geometry 579:J. London Math. Soc. 312:André, Yves (1989), 164:For the case of the 29:Diophantine geometry 333:Arithmetic Geometry 195:In September 2021, 144:Clay Research Award 448:2011-06-26 at the 690:978-0-511-72126-7 659:978-0-691-15370-4 461:"February 2018". 172:in 2015 from the 76:Abelian varieties 41:Shimura varieties 719: 693: 663: 642:Zannier, Umberto 628: 626: 625: 623:10.5802/jtnb.677 601: 595: 593: 574: 568: 566: 558: 552: 551: 531: 525: 524: 522: 521: 506: 500: 499: 497: 485: 479: 478: 469:(2): 191. 2018. 458: 452: 440: 434: 432: 431: 422:(3): 1779–1840, 405: 399: 397: 389: 383: 382: 364: 344: 338: 336: 328: 322: 320: 309: 237:Jacobian variety 235:, such that the 178:Masser-Wustholtz 27:is a problem in 727: 726: 722: 721: 720: 718: 717: 716: 697: 696: 691: 666: 660: 640: 637: 635:Further reading 632: 631: 603: 602: 598: 576: 575: 571: 560: 559: 555: 548: 533: 532: 528: 519: 517: 515:Quanta Magazine 508: 507: 503: 487: 486: 482: 460: 459: 455: 450:Wayback Machine 441: 437: 407: 406: 402: 396:(13): 2476–2507 391: 390: 386: 346: 345: 341: 330: 329: 325: 311: 310: 306: 301: 289: 272: 270:Generalizations 264:Torelli mapping 213: 201:Jacob Tsimerman 170:Jacob Tsimerman 124:Umberto Zannier 88: 65:Shimura variety 61:Zariski closure 57: 17: 12: 11: 5: 725: 723: 715: 714: 709: 699: 698: 695: 694: 689: 664: 658: 636: 633: 630: 629: 616:(2): 405–414, 596: 569: 553: 546: 526: 501: 480: 453: 435: 400: 384: 339: 323: 303: 302: 300: 297: 296: 295: 288: 285: 271: 268: 221:Robert Coleman 212: 209: 205:Hélène Esnault 154:Emmanuel Ullmo 150:Bruno Klingler 140:modular curves 112:Emmanuel Ullmo 108:Bruno Klingler 104:Laurent Clozel 87: 84: 56: 53: 31:, a branch of 15: 13: 10: 9: 6: 4: 3: 2: 724: 713: 710: 708: 705: 704: 702: 692: 686: 682: 678: 674: 670: 665: 661: 655: 651: 647: 643: 639: 638: 634: 624: 619: 615: 612:(in French), 611: 607: 600: 597: 592: 588: 584: 580: 573: 570: 564: 557: 554: 549: 547:9781108422628 543: 539: 538: 530: 527: 516: 512: 505: 502: 496: 491: 484: 481: 476: 472: 468: 464: 457: 454: 451: 447: 444: 439: 436: 430: 425: 421: 417: 416: 411: 404: 401: 395: 388: 385: 380: 376: 372: 368: 363: 358: 354: 350: 343: 340: 334: 327: 324: 318: 314: 308: 305: 298: 294: 291: 290: 286: 284: 282: 278: 269: 267: 265: 261: 257: 253: 252:Torelli locus 249: 245: 241: 238: 234: 230: 226: 222: 218: 210: 208: 206: 202: 198: 197:Jonathan Pila 193: 189: 187: 186:Shou-Wu Zhang 183: 179: 175: 171: 167: 162: 159: 158:Andrei Yafaev 155: 151: 147: 145: 141: 137: 134:geometry and 133: 129: 128:Jonathan Pila 125: 121: 117: 113: 109: 105: 101: 100:Bas Edixhoven 97: 96:Andrei Yafaev 93: 85: 83: 81: 78:of dimension 77: 74: 68: 66: 62: 54: 52: 50: 46: 42: 38: 34: 33:number theory 30: 26: 22: 672: 649: 613: 609: 599: 585:(2): 27–44, 582: 578: 572: 562: 556: 536: 529: 518:. Retrieved 514: 504: 483: 466: 462: 456: 438: 419: 413: 409: 403: 393: 387: 352: 342: 332: 326: 316: 313: 307: 281:Boris Zilber 273: 259: 243: 239: 232: 228: 224: 216: 214: 194: 190: 163: 148: 89: 79: 69: 58: 24: 18: 712:Conjectures 355:: 867–925. 122:. In 2006, 21:mathematics 701:Categories 520:2022-02-04 495:2109.08788 299:References 182:Xinyi Yuan 92:Yves André 49:Frans Oort 45:Yves André 475:1088-9477 379:0003-486X 362:1209.0936 254:– of the 231:of genus 132:o-minimal 55:Statement 644:(2012). 446:Archived 287:See also 246:) is an 176:and the 161:points. 86:Results 687:  656:  544:  473:  377:  23:, the 490:arXiv 357:arXiv 685:ISBN 654:ISBN 542:ISBN 471:ISSN 375:ISSN 184:and 156:and 126:and 110:and 677:doi 618:doi 587:doi 424:doi 420:173 412:", 367:doi 19:In 703:: 683:, 671:, 648:. 614:21 608:, 583:65 581:, 513:. 467:65 465:. 418:, 373:. 365:. 351:. 219:. 152:, 146:. 106:, 102:, 98:, 94:, 679:: 662:. 627:. 620:: 594:. 589:: 567:. 550:. 523:. 498:. 492:: 477:. 433:. 426:: 410:C 398:. 381:. 369:: 359:: 337:. 321:. 315:G 260:g 244:C 242:( 240:J 233:g 229:C 225:g 80:g

Index

mathematics
Diophantine geometry
number theory
Manin–Mumford conjecture
Shimura varieties
Yves André
Frans Oort
Zariski closure
Shimura variety
principally polarised
Abelian varieties
Yves André
Andrei Yafaev
Bas Edixhoven
Laurent Clozel
Bruno Klingler
Emmanuel Ullmo
generalized Riemann hypothesis
Annals of Mathematics
Umberto Zannier
Jonathan Pila
o-minimal
transcendental number theory
modular curves
Clay Research Award
Bruno Klingler
Emmanuel Ullmo
Andrei Yafaev
Siegel modular variety
Jacob Tsimerman

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.