Knowledge

Anti-thrombin aptamers

Source 📝

189:
charged motif, engages in these interactions with the negatively charged backbone of HD1. Importantly, T3 interacts with His71, which plays a critical role for fibrinogen recognition, both through hydrogen bonding and hydrophobic interaction. However, in the presence of sodium ion, the hydrogen bonding between T3 and His71 is lost, and the intermolecular distance is longer than that in the potassium case. This reduces the affinity and functionality of TBA. Similar situation can be found in the case of mTBA. There are no interactions between mTBA and His71, which results in the reduction of anticoagulant activity. The results of In silico calculations with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, suggest that the calculated binding energy (ΔG) of TBA to thrombin exosite I is slightly stronger is the presence of K+ (-66.73 kcal.mol-1) than in the case of Na+ (-60.29kcal.mol-1), however both states are likely to coexist.
97:, so this aptamer acts as an anti-coagulant agent inhibiting the activation of fibrinogen as well as platelet aggregation. In addition, TBA shows good affinity and specificity against thrombin. The dissociation constant of TBA-thrombin has been reported in nano-molar range, and TBA does not interact with other plasma proteins or thrombin analogues (e.g., gamma-thrombin). As a result, TBA has been used as a short-term anti-coagulant designed for the application in the coronary artery bypass graft surgery, and its optimized form (NU172) is now under the phase II of clinical trial by ARCA Biopharma (NCT00808964). Also, due to its high affinity and specificity, a variety of sensors was coupled with TBA and developed for thrombosis diagnostics. 301:
Val241 and Phe245 in thrombin are involved in the interaction. Since the exosite II is a positively charged motif, it creates many ion pairs with the HD22 backbone especially in the duplex region. Hydrophobic interactions are mainly observed in the G-quadruplex region (T9, T18 and T10), and this stabilizes the complex formation. Moreover, Interacting with thrombin improves the thermal stability of HD22 structure, and results in the increase of melting temperature (from 36 to 48 °C). Calculated binding energy of HD22 to thrombin exosite II is -88.37 -kcal.mol-1.
20: 180: 106: 155:
only interacts with four rather than eight oxygen atoms of two G-tetrad planes, and accordingly has two alternative position in the cavity. Thrombin shows similar influence as potassium ion. In the ion-deficient condition, thrombin helps TBA form into a stable G-quadruplex structure from a randomized coil, which results in conformational change. Some groups use this property to develop aptamer-based thrombin sensors. For this purpose, TBA is usually mounted with an additional sequence with a FRET (
224: 62: 267:). The nucleotides 1-3 and 25-27 with an additional C4-G23 form a duplex motif, and the sequence ranging from G5 to G20 folds into a G-quadruplex structure with four connection loops: T9-A10, T18-T19, G13-C14-A15 and a one-nucleotide loop (T6). In the core of G-quadruplex motif, two G-tetrad planes are formed by G5-G7-G12-G16 and G8-G11-G17-G20. The upper plane (G5-G7-G12-G16) is not a typical G-tetrad with the chain topology of 215: 330:. Ecarin activates prothrombin and accordingly produces meizothrombin. The exosite II is not accessible in meizothrombin, so thus the HD22 part cannot interact with meizothrombin directly. As a result, TBA-HD22 construct cannot improve the ecarin clotting time, which further demonstrates the improvement of aptamer functionality is due to TBA-HD22 avidity. 206:(now ARCA Biopharma) around 2005. Although it showed a rapid onset response with desired anticoagulation activity, the activity requires significantly high dosage of TBA. Thus, the companies redesigned the sequence of TBA and developed a second-generation 26-mer DNA aptamer known as NU172, which is now under phase II clinical trial. 300:
The nucleotides G23, T24, G25, A26, C27 in the duplex and T9, T18, T19, G20 in G-quadruplex contribute to the interaction with the exosite II of thrombin. On the protein side, the residues Tyr89, His91, Pro92, Arg93, Tyr94, Asn95, Trp96, Arg97, Arg126, Leu130, Arg165, Lys169, His230, Arg233, Trp237,
183:
The interface between TBA and the exosite I of thrombin. (A) The interface. Involved protein residues and aptamer nucleotides are labeled with red and green, respectively. (B) The interaction between His71 and T3 (TBA) in the presence of potassium ion. (C) The positions of His 71 and T3 (TBA) in the
154:
ion and potassium are 24 °C and 53 °C, respectively. Compared with sodium, potassium ion fits perfectly to the cavity between two G-tetrad plane and is coordinately bound to four O6 atoms in each plane. This enhances the structural stability of TBA. In contrast, due to its small size, sodium ion can
197:
It has been demonstrated that TBA can inhibit the thrombin-induced platelet aggregation and clot-bound thrombin activity. The IC50 of TBA for the inhibition of platelet aggregation (0.5 U/mL thrombin) is around 70 to 80 nmol/L, which is much lower than that of hirudin (~1.7 umol/L). Also, compared
159:) pair to form a transient duplex structure. Once the TBA part interacts with thrombin, the conformational change would change the distance between the FRET pair and lead to a fluorescent output. This approach provides nano-molar sensitivity and is capable of sensing thrombin in the spiked serum. 291:
conformation. Additionally, the one-nucleotide loop inserted between G5 and G7. These make G-tetrad formed not through a typically cyclic pattern. This unusual G-tetrad plan is formed by four hydrogen bonds: one on N2:N7(G5-G16), two on O6:N7(G12-G7; G16-G12) and one on O6:N2 (G7-G5). Some other
188:
TBA is bound to the exosite I of thrombin majorly via its two TT loops (T3, T4 and T12, T13) through polar and hydrophobic interactions. The residues His71, Arg75, Tyr76, Arg77, Asn78, Ile79, Tyr117 in the exosite I epitope are involved in the interaction with TBA. Exosite 1, being a positively
254:
binding. Therefore, HD22 inhibits the activations of factors V/VIII rather than that of fibrinogen. Despite that this aptamer only shows moderate effect on fibrinogen regulation, the affinity of this aptamer is slightly higher than TBA (KD~0.5 nM), and nowadays this aptamer is widely used for
122:
interacts with one another through non Watson-Crick-like hydrogen bonds (more likely Hoogsteen-like hydrogen bonds). In the structure of TBA, G1, G6, G10 and G15 form the top layer of G-tetrad; G2, G5, G11 and G14 form the second layer. The first crystallographic images with 2.9 Å resolution
109:
The interactions between TBA and ions. (A) TBA-potassium ion complex. Potassium ion fits the cavity between the two G-tetrad planes of TBA properly and coordinately interacts with eight O6 atoms in G-quadruplex. (insert: the whole structure of TBA-K+ complex) (B) TBA-sodium ion complex. Two
313:
effect against thrombin after dimerization. When TBA and HD22 are conjugated with an optimal linker or co-printed on the sensor surface with an optimal density, the affinity against thrombin could be significantly enhanced by 100 to 10,000 fold. Furthermore, the dimerization improves the
292:
interactions could be found in the G-quadruplex motif: two Watson-Crick base pairs (T6-A15 and A10-T19) and a G-fork (G5-G21). Importantly, because of the interaction between G5 and G21, there is a 90-degree turn between the G-qudruplex and duplex motifs.
65:
The G-quadruplex structure adopted by TBA. (A) The crystallographic structure and (B) the schematic illustration of TBA (PDB file 4DII). Insert: the top layer of G-tetrad (The Hoogsteen-like hydrogen bonds are highlighted with green dashed
1129:
Russo Krauss, Irene; Pica, Andrea; Merlino, Antonello; Mazzarella, Lelio; Sica, Filomena (2013). "Duplex–quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer".
622:
Nagatoishi, Satoru; Tanaka, Yoshikazu; Tsumoto, Kouhei (2007). "Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions".
218:
HD22 structure and interbase interaction. (A) Overall structure of HD22. (B) Top G-tetrad plane (C) The Watson-Crick base pairs in the G-quadruplex motif. (D) G-fork interaction between G-quadruplex and duplex
198:
with heparin, TBA is more efficient in the inhibition of clot-bound thrombin. Furthermore, TBA recognizes and inhibits prothrombin with similar affinity against alpha-thrombin. As a result, TBA prolongs the
171:). This improves the thermal stability of G-quadruplex structure, and increases the melting temperature by 4 °C. In spite of this, the anticoagulant activity is affected and reduced by the inversion design. 150:(CD) spectrum. Also, potassium ion improves the thermal stability of TBA. The melting temperature of TBA's G-quadruplex (measuring the intensity change of the peak at 295 nm by CD) in the presence of 227:
HD22-exosite II interaction. (A) Overall interface between HD22 and the exosite II. (B) The interface at the duplex motif. (C) The interface at the G-quadruplex motif. Dots represent the interactions.
658:
Chi, Chun-Wei; Lao, Yeh-Hsing; Li, Yi-Shan; Chen, Lin-Chi (2011). "A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: Application to label-free thrombin detection".
46: 127:) was reported in 1993. It showed that the T7-G8-T9 loop and TT loops (T3-T4 and T12-T13) connected the narrow and the wide grooves, respectively. However, since the improved NMR ( 23:
The complexes of (A) TBA-thrombin and (B) HD22-thrombin (PDB files 4DII and 4I7Y). The protein and aptamer were represented in the ribbon and ball&stick formats, respectively.
49:) technology in 1992 by L.C. Bock, J.J. Toole and colleagues. A second thrombin-binding aptamer, HD22, recognizes thrombin exosite II and was discovered in 1997 by NeXstar (now 350:
Bock, Louis C.; Griffin, Linda C.; Latham, John A.; Vermaas, Eric H.; Toole, John J. (1992). "Selection of single-stranded DNA molecules that bind and inhibit human thrombin".
495:
Padmanabhan, K.; Padmanabhan, K. P.; Ferrara, J. D.; Sadler, J. E.; Tulinsky, A. (1993). "The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer".
242:) or 27 (lacking the first and the last nucleotides of 29-mer form) nucleotides. This aptamer recognizes the exosite II of thrombin, which is involved in the activation of 693:
Martino, Luigi; Virno, Ada; Randazzo, Antonio; Virgilio, Antonella; Esposito, Veronica; Giancola, Concetta; Bucci, Mariarosaria; Cirino, Giuseppe; Mayol, Luciano (2006).
53:). These two aptamers have high affinity and good specificity and have been widely studied and used for the development of aptamer-based therapeutics and diagnostics. 263:
Unlike TBA, HD22 holds a duplex/G-quadruplex mixed structure. The X-ray crystallographic image of HD22 (27mer form) with 2.4 Å resolution was reported recently (
572:"High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity" 167:
A modified TBA with chain polarity inversion was reported in 1996, which is known as mTBA. A 5'-5' inversion was designed between T3 and T4 in mTBA sequence (
139:) were provided, another topology with the TGT loop on the wide side and the TT loops on the narrow sites has been considered as a correct structure of TBA. 146:
ion helps TBA fold into a G-quadruplex structure, which results in a significant positive band at 295 nm and a negative band at 270 nm on its
315: 156: 1375: 404:
Tasset, Diane M.; Kubik, Mark F.; Steiner, Walter (1997). "Oligonucleotide inhibitors of human thrombin that bind distinct epitopes".
314:
anticoagulant activity as well. The TBA-HD22 construct (linked with 16-mer polyA) shows significant improvement both in the assay of
979:"HD1, a Thrombin-directed Aptamer, Binds Exosite 1 on Prothrombin with High Affinity and Inhibits Its Activation by Prothrombinase" 202:
when interacting with prothrombin. TBA entered the phase I clinical trial for coronary artery bypass graft surgery by Archemix and
114:
The tertiary structure of TBA is an anti-parallel G-quadruplex. This chair-like structure is folded through the stacking of two
184:
presence of sodium ion. (D) The positions of His71 and T3 (mTBA). Dots represent the interactions between thrombin and aptamer.
930:"A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation" 834:
Russo Krauss, Irene; Merlino, Antonello; Giancola, Concetta; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena (2011).
570:
Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Novellino, Ettore; Mazzarella, Lelio; Sica, Filomena (2012).
318:, clotting time and thrombin-induced platelet-aggregation. TBA-HD22 construct shows comparable efficacy compared with 1317:"Anticoagulant characteristics of HD1-22, a bivalent aptamer that specifically inhibits thrombin and prothrombinase" 439:
Li, Jianwei J.; Fang, Xiaohong; Tan, Weihong (2002). "Molecular Aptamer Beacons for Real-Time Protein Recognition".
478:"Phase 2 Study of NU172 Anticoagulation in Patients Undergoing Coronary Artery Bypass Graft Surgery OFF-Pump" 477: 110:
alternative positions of sodium observed, and sodium can only interacts with four rather than eight oxygens.
742:
Rangnekar, Abhijit; Nash, Jessica A.; Goodfred, Bethany; Yingling, Yaroslava G.; Labean, Thomas H. (2016).
1370: 1167:"Thrombin detection in murine plasma using engineered fluorescence resonance energy transfer aptadimers" 19: 1077:"Beyond G-Quadruplexes—The Effect of Junction with Additional Structural Motifs on Aptamers Properties" 1227: 1178: 902: 887: 359: 327: 179: 105: 1346: 1057: 959: 530:
Padmanabhan, K.; Tulinsky, A. (1996). "An Ambiguous Structure of a DNA 15-mer Thrombin Complex".
383: 147: 1338: 1297: 1275:"Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect" 1274: 1255: 1196: 1147: 1108: 1049: 1000: 951: 865: 816: 775: 724: 675: 640: 601: 547: 512: 456: 421: 375: 264: 128: 124: 1328: 1289: 1245: 1235: 1186: 1139: 1098: 1088: 1039: 1031: 990: 941: 910: 855: 847: 806: 765: 755: 714: 706: 667: 632: 591: 583: 539: 504: 448: 413: 367: 199: 223: 50: 38: 1231: 1182: 1044: 1019: 906: 888:"Binding modes of thrombin binding aptamers investigated by simulations and experiments" 744:"Design of Potent and Controllable Anticoagulants Using DNA Aptamers and Nanostructures" 363: 93:. It interacts with the exosite I of human alpha-thrombin, which is the binding site of 1250: 1215: 1214:
Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori (19 February 2008).
1103: 1076: 860: 835: 793:
Tsiang, M.; Jain, A. K.; Dunn, K. E.; Rojas, M. E.; Leung, L. L.; Gibbs, C. S. (1995).
770: 743: 719: 695:"A new modified thrombin binding aptamer containing a 5′–5′ inversion of polarity site" 694: 596: 571: 115: 136: 132: 1364: 1333: 1316: 977:
Kretz, Colin A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I. (2006).
1350: 1061: 963: 61: 387: 79: 34: 946: 929: 319: 247: 671: 636: 1143: 1035: 760: 543: 323: 94: 1200: 811: 794: 214: 143: 1342: 1301: 1259: 1151: 1112: 1053: 1004: 995: 978: 928:
Li, W. X.; Kaplan, A. V.; Grant, G. W.; Toole, J. J.; Leung, L. L. (1994).
869: 779: 728: 679: 644: 605: 551: 460: 452: 417: 955: 820: 516: 508: 425: 379: 1093: 851: 710: 587: 243: 45:. The first anti-thrombin aptamer, TBA, was generated through via SELEX ( 42: 310: 251: 231:
The aptamer HD22 (also known as HTDQ) is an optimized aptamer with 29 (
119: 29: 1293: 1191: 1166: 914: 1240: 371: 203: 151: 142:
In addition to protein-selectivity, TBA also shows ion preference. A
75: 71: 222: 213: 178: 104: 60: 18: 16:
Oligonucleotides which recognize the exosites of human thrombin
1020:"Direct thrombin inhibitors – a survey of recent developments" 795:"Functional mapping of the surface residues of human thrombin" 283:
alternation. Instead, three guanines (G5, G7 and G16) adopt
47:
Systematic Evolution of Ligands by Exponential Enrichment
1315:
Müller, J.; Freitag, D.; Mayer, G.; Pötzsch, B. (2008).
326:. In addition, the TBA-HD22 avidity can be examined by 836:"Thrombin–aptamer recognition: A revealed ambiguity" 82:) is a 15-mer single-stranded DNA with the sequence 1273:Lao, Yeh-Hsing; Peck, Konan; Chen, Lin-Chi (2009). 625:
Biochemical and Biophysical Research Communications
441:
Biochemical and Biophysical Research Communications
1216:"Improvement of Aptamer Affinity by Dimerization" 309:Similar to antibody, aptamers TBA and HD22 show 287:conformation, and only one guanine (G12) adopts 74:(also known as G15D, HTQ, HD1, ARC183, GS522, 1075:Kotkowiak, Weronika; Pasternak, Anna (2021). 886:Trapaidze, A.; Bancaud, A.; Brut, M. (2015). 210:Aptamer HD22 (the exosite II-binding aptamer) 8: 1081:International Journal of Molecular Sciences 57:Aptamer TBA (the exosite I-binding aptamer) 1332: 1249: 1239: 1190: 1102: 1092: 1043: 994: 945: 859: 810: 769: 759: 718: 595: 41:, which recognizes the exosites of human 339: 1124: 1122: 881: 879: 296:Interactions between HD22 and thrombin 131:) and X-ray crystallographic images ( 1321:Journal of Thrombosis and Haemostasis 316:activated partial thromboplastin time 175:Interactions between TBA and thrombin 7: 1024:Cellular and Molecular Life Sciences 617: 615: 565: 563: 561: 472: 470: 399: 397: 345: 343: 1165:Trapaidze, A.; et al. (2015). 799:The Journal of Biological Chemistry 497:The Journal of Biological Chemistry 14: 157:Förster resonance energy transfer 1334:10.1111/j.1538-7836.2008.03162.x 1132:Acta Crystallographica Section D 532:Acta Crystallographica Section D 255:developments of aptamer sensor. 237:-AGTCCGTGGTAGGGCAGGTTGGGGTGACT-3 983:Journal of Biological Chemistry 305:Avidity effect of TBA and HD22 1: 660:Biosensors and Bioelectronics 406:Journal of Molecular Biology 322:, but much more potent than 947:10.1182/blood.V83.3.677.677 169:3′-GGT-5′-5′TGGTGTGGTTGG-3′ 1392: 1376:Direct thrombin inhibitors 672:10.1016/j.bios.2011.01.015 637:10.1016/j.bbrc.2006.11.088 1144:10.1107/S0907444913022269 1036:10.1007/s00018-006-6219-z 1018:Schwienhorst, A. (2006). 761:10.3390/molecules21020202 544:10.1107/S0907444995013977 812:10.1074/jbc.270.28.16854 193:Therapeutic applications 1171:Applied Physics Letters 895:Applied Physics Letters 996:10.1074/jbc.M607359200 840:Nucleic Acids Research 699:Nucleic Acids Research 576:Nucleic Acids Research 453:10.1006/bbrc.2002.6581 418:10.1006/jmbi.1997.1275 228: 220: 185: 111: 67: 24: 226: 217: 182: 108: 64: 22: 1282:Analytical Chemistry 1094:10.3390/ijms22189948 328:ecarin clotting time 1232:2008Senso...8.1090H 1183:2015ApPhL.107w3701T 989:(49): 37477–37485. 907:2015ApPhL.106d3702T 805:(28): 16854–16863. 509:10.2210/pdb1hut/pdb 503:(24): 17651–17654. 482:Clinical Trials.gov 364:1992Natur.355..564B 116:guanine (G)-tetrads 852:10.1093/nar/gkr522 711:10.1093/nar/gkl915 588:10.1093/nar/gks512 229: 221: 186: 148:circular dichroism 112: 88:-GGTTGGTGTGGTTGG-3 68: 25: 1327:(12): 2105–2112. 1294:10.1021/ac801285a 1192:10.1063/1.4937351 1138:(12): 2403–2411. 1030:(23): 2773–2791. 915:10.1063/1.4906594 846:(17): 7858–7867. 705:(22): 6653–6662. 582:(16): 8119–8128. 358:(6360): 564–566. 250:and mediates the 1383: 1355: 1354: 1336: 1312: 1306: 1305: 1288:(5): 1747–1754. 1279: 1270: 1264: 1263: 1253: 1243: 1241:10.3390/s8021090 1226:(2): 1090–1098. 1211: 1205: 1204: 1194: 1162: 1156: 1155: 1126: 1117: 1116: 1106: 1096: 1072: 1066: 1065: 1047: 1015: 1009: 1008: 998: 974: 968: 967: 949: 925: 919: 918: 892: 883: 874: 873: 863: 831: 825: 824: 814: 790: 784: 783: 773: 763: 739: 733: 732: 722: 690: 684: 683: 666:(7): 3346–3352. 655: 649: 648: 619: 610: 609: 599: 567: 556: 555: 527: 521: 520: 492: 486: 485: 474: 465: 464: 436: 430: 429: 401: 392: 391: 372:10.1038/355564a0 347: 240: 236: 200:prothrombin time 91: 87: 39:oligonucleotides 1391: 1390: 1386: 1385: 1384: 1382: 1381: 1380: 1361: 1360: 1359: 1358: 1314: 1313: 1309: 1277: 1272: 1271: 1267: 1213: 1212: 1208: 1164: 1163: 1159: 1128: 1127: 1120: 1074: 1073: 1069: 1017: 1016: 1012: 976: 975: 971: 927: 926: 922: 890: 885: 884: 877: 833: 832: 828: 792: 791: 787: 741: 740: 736: 692: 691: 687: 657: 656: 652: 621: 620: 613: 569: 568: 559: 529: 528: 524: 494: 493: 489: 476: 475: 468: 438: 437: 433: 403: 402: 395: 349: 348: 341: 336: 307: 298: 261: 238: 234: 212: 195: 177: 165: 103: 89: 85: 59: 51:Gilead Sciences 17: 12: 11: 5: 1389: 1387: 1379: 1378: 1373: 1363: 1362: 1357: 1356: 1307: 1265: 1206: 1177:(23): 233701. 1157: 1118: 1067: 1010: 969: 940:(3): 677–682. 920: 875: 826: 785: 734: 685: 650: 631:(3): 812–817. 611: 557: 538:(2): 272–282. 522: 487: 484:. 8 June 2011. 466: 431: 412:(5): 688–698. 393: 338: 337: 335: 332: 306: 303: 297: 294: 260: 259:HD22 structure 257: 211: 208: 194: 191: 176: 173: 164: 161: 102: 99: 58: 55: 28:Anti-thrombin 15: 13: 10: 9: 6: 4: 3: 2: 1388: 1377: 1374: 1372: 1371:Nucleic acids 1369: 1368: 1366: 1352: 1348: 1344: 1340: 1335: 1330: 1326: 1322: 1318: 1311: 1308: 1303: 1299: 1295: 1291: 1287: 1283: 1276: 1269: 1266: 1261: 1257: 1252: 1247: 1242: 1237: 1233: 1229: 1225: 1221: 1217: 1210: 1207: 1202: 1198: 1193: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1158: 1153: 1149: 1145: 1141: 1137: 1133: 1125: 1123: 1119: 1114: 1110: 1105: 1100: 1095: 1090: 1086: 1082: 1078: 1071: 1068: 1063: 1059: 1055: 1051: 1046: 1041: 1037: 1033: 1029: 1025: 1021: 1014: 1011: 1006: 1002: 997: 992: 988: 984: 980: 973: 970: 965: 961: 957: 953: 948: 943: 939: 935: 931: 924: 921: 916: 912: 908: 904: 901:(4): 043702. 900: 896: 889: 882: 880: 876: 871: 867: 862: 857: 853: 849: 845: 841: 837: 830: 827: 822: 818: 813: 808: 804: 800: 796: 789: 786: 781: 777: 772: 767: 762: 757: 753: 749: 745: 738: 735: 730: 726: 721: 716: 712: 708: 704: 700: 696: 689: 686: 681: 677: 673: 669: 665: 661: 654: 651: 646: 642: 638: 634: 630: 626: 618: 616: 612: 607: 603: 598: 593: 589: 585: 581: 577: 573: 566: 564: 562: 558: 553: 549: 545: 541: 537: 533: 526: 523: 518: 514: 510: 506: 502: 498: 491: 488: 483: 479: 473: 471: 467: 462: 458: 454: 450: 446: 442: 435: 432: 427: 423: 419: 415: 411: 407: 400: 398: 394: 389: 385: 381: 377: 373: 369: 365: 361: 357: 353: 346: 344: 340: 333: 331: 329: 325: 321: 317: 312: 304: 302: 295: 293: 290: 286: 282: 278: 274: 270: 266: 258: 256: 253: 249: 245: 241: 225: 216: 209: 207: 205: 201: 192: 190: 181: 174: 172: 170: 162: 160: 158: 153: 149: 145: 140: 138: 134: 130: 126: 121: 117: 107: 101:TBA structure 100: 98: 96: 92: 81: 77: 73: 63: 56: 54: 52: 48: 44: 40: 36: 32: 31: 21: 1324: 1320: 1310: 1285: 1281: 1268: 1223: 1219: 1209: 1174: 1170: 1160: 1135: 1131: 1087:(18): 9948. 1084: 1080: 1070: 1027: 1023: 1013: 986: 982: 972: 937: 933: 923: 898: 894: 843: 839: 829: 802: 798: 788: 751: 747: 737: 702: 698: 688: 663: 659: 653: 628: 624: 579: 575: 535: 531: 525: 500: 496: 490: 481: 447:(1): 31–40. 444: 440: 434: 409: 405: 355: 351: 308: 299: 288: 284: 280: 276: 272: 268: 262: 232: 230: 196: 187: 168: 166: 141: 113: 83: 80:Rovunaptabin 70:The aptamer 69: 35:G-quadruplex 27: 26: 320:bivalirudin 248:factor VIII 118:, and four 1365:Categories 754:(2): 202. 334:References 324:argatroban 95:fibrinogen 1201:0003-6951 748:Molecules 144:potassium 37:-bearing 1351:24628635 1343:18826387 1302:19193102 1260:27879754 1152:24311581 1113:34576112 1062:45046164 1054:17103113 1045:11135997 1005:17046833 964:29862655 870:21715374 780:26861277 729:17145716 680:21306887 645:17150180 606:22669903 552:15299700 461:11890667 244:factor V 120:guanines 43:thrombin 30:aptamers 1251:3927496 1228:Bibcode 1220:Sensors 1179:Bibcode 1104:8466185 956:8298130 903:Bibcode 861:3177225 821:7622501 771:6273181 720:1751544 597:3439905 517:8102368 426:9368651 388:4349607 380:1741036 360:Bibcode 311:avidity 252:heparin 66:lines). 1349:  1341:  1300:  1258:  1248:  1199:  1150:  1111:  1101:  1060:  1052:  1042:  1003:  962:  954:  868:  858:  819:  778:  768:  727:  717:  678:  643:  604:  594:  550:  515:  459:  424:  386:  378:  352:Nature 219:motifs 204:Nuvelo 152:sodium 76:BC-007 1347:S2CID 1278:(PDF) 1058:S2CID 960:S2CID 934:Blood 891:(PDF) 384:S2CID 239:' 235:' 90:' 86:' 78:, or 1339:PMID 1298:PMID 1256:PMID 1197:ISSN 1148:PMID 1109:PMID 1050:PMID 1001:PMID 952:PMID 866:PMID 817:PMID 776:PMID 725:PMID 676:PMID 641:PMID 602:PMID 548:PMID 513:PMID 457:PMID 422:PMID 376:PMID 289:anti 277:anti 269:anti 265:4I7Y 246:and 163:mTBA 137:4DII 133:4DIH 129:1HAO 125:1HUT 33:are 1329:doi 1290:doi 1246:PMC 1236:doi 1187:doi 1175:107 1140:doi 1099:PMC 1089:doi 1040:PMC 1032:doi 991:doi 987:281 942:doi 911:doi 899:106 856:PMC 848:doi 807:doi 803:270 766:PMC 756:doi 715:PMC 707:doi 668:doi 633:doi 629:352 592:PMC 584:doi 540:doi 505:doi 501:268 449:doi 445:292 414:doi 410:272 368:doi 356:355 285:syn 281:syn 273:syn 72:TBA 1367:: 1345:. 1337:. 1323:. 1319:. 1296:. 1286:81 1284:. 1280:. 1254:. 1244:. 1234:. 1222:. 1218:. 1195:. 1185:. 1173:. 1169:. 1146:. 1136:69 1134:. 1121:^ 1107:. 1097:. 1085:22 1083:. 1079:. 1056:. 1048:. 1038:. 1028:63 1026:. 1022:. 999:. 985:. 981:. 958:. 950:. 938:83 936:. 932:. 909:. 897:. 893:. 878:^ 864:. 854:. 844:39 842:. 838:. 815:. 801:. 797:. 774:. 764:. 752:21 750:. 746:. 723:. 713:. 703:34 701:. 697:. 674:. 664:26 662:. 639:. 627:. 614:^ 600:. 590:. 580:40 578:. 574:. 560:^ 546:. 536:52 534:. 511:. 499:. 480:. 469:^ 455:. 443:. 420:. 408:. 396:^ 382:. 374:. 366:. 354:. 342:^ 135:; 1353:. 1331:: 1325:6 1304:. 1292:: 1262:. 1238:: 1230:: 1224:8 1203:. 1189:: 1181:: 1154:. 1142:: 1115:. 1091:: 1064:. 1034:: 1007:. 993:: 966:. 944:: 917:. 913:: 905:: 872:. 850:: 823:. 809:: 782:. 758:: 731:. 709:: 682:. 670:: 647:. 635:: 608:. 586:: 554:. 542:: 519:. 507:: 463:. 451:: 428:. 416:: 390:. 370:: 362:: 279:- 275:- 271:- 233:5 123:( 84:5

Index


aptamers
G-quadruplex
oligonucleotides
thrombin
Systematic Evolution of Ligands by Exponential Enrichment
Gilead Sciences

TBA
BC-007
Rovunaptabin
fibrinogen

guanine (G)-tetrads
guanines
1HUT
1HAO
4DIH
4DII
potassium
circular dichroism
sodium
Förster resonance energy transfer

prothrombin time
Nuvelo


factor V
factor VIII

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.