Knowledge (XXG)

Antiprotonic helium

Source 📝

39: 20: 884:
Sótér, Anna; Aghai-Khozani, Hossein; Barna, Dániel; Dax, Andreas; Venturelli, Luca; Hori, Masaki; Hayano, Ryugo; Friedreich, Susanne; Juhász, Bertalan; Pask, Thomas; Horváth, Dezső; Widmann, Eberhard; Venturelli, Luca; Zurlo, Nicola (2011-07-27). "Two-photon laser spectroscopy of antiprotonic helium
802:
helium by spectroscopic measurements, the first time on an exotic atom containing a meson. Its existence had been predicted in 1964 by George Condo at University of Tennessee to explain some anomalies from bubble chamber tracks but no definite proof of its existence had ever been obtained. In the
663:
He and rapid annihilation produced a detectable Čerenkov signal. The reduced Doppler shift resulted in narrower spectral lines accurate to between 2.3 and 5 ppb. Comparison of the results with three-body quantum electrodynamics calculations made possible a determination of the antiproton to
807:
were magnetically focused into a tank filled with superfluid helium so that they would expel an electron from the atom and take its place. Later, to confirm the production, laser light was fired at various frequencies until they found a specific one at 1631 nm where the pion would resonate
347:
can be produced by simply mixing antiprotons with ordinary helium gas; the antiproton spontaneously displaces one of the two electrons contained in a normal helium atom in a chemical reaction, and then begins to orbit the helium nucleus in the electron's place. This will happen in the case of
405:
As in spectroscopy of other bound states, Doppler broadening and other effects present challenges to precision. Researchers use a variety of techniques to obtain accurate results. One way to exceed Doppler-limited precision is two-photon spectroscopy. The ASACUSA Collaboration has studied
38: 812:
from its orbit into an inner one and eventually into the nucleus which would break down into a proton, a neutron and a deuteron. The experiment proved highly technical to perform and took 8 years, including the design and construction of the experiment.
402:. In these experiments, the atoms are first produced by stopping a beam of antiprotons in helium gas. The atoms are then irradiated by powerful laser beams, which cause the antiprotons in them to resonate and jump from one atomic orbit to another. 763:
of the antiproton can be precisely compared with the proton values. The most recent such measurements show that the antiproton's mass (and the absolute value of the charge) is the same as the proton's to a precision of 0.5 parts in a billion.
507:
38 using 2-photon spectroscopy. Counterpropagating Ti:Sapphire lasers with pulses of duration 30−100 ns excited nonlinear 2-photon transitions in the deep UV, including spectral lines of wavelengths,
590: 356:
of around 38, lies far away from the surface of the helium nucleus. The antiproton can thus orbit the nucleus for tens of microseconds, before finally falling to its surface and
505: 715:. This is the same as the mass of a "regular" proton, within the level of certainty of the experiment. This is a confirmation of a fundamental symmetry of nature called 638: 528: 327:. It is thus made partly of matter, and partly of antimatter. The atom is electrically neutral, since an electron and an antiproton each have a charge of −1  1166: 1003: 162: 719:(short for charge, parity, and time reversal). This law says that all physical laws would remain unchanged under simultaneous reversal of the 296: 743:
By comparing the above results on laser spectroscopy of antiprotonic helium with separate high-precision measurements of the antiproton's
1052:
Hori, M.; et al. (2016). "Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio".
854: 353: 200: 1027: 225: 1217: 776:
is a two-body object composed of a helium nucleus and orbiting antiproton. It has an electric charge of +1 
533: 938:
Sótér, Anna; Aghai-Khozani, Hossein; Barna, Dániel; Dax, Andreas; Venturelli, Luca; Hori, Masaki (2022-03-16).
349: 289: 348:
approximately 3% of the antiprotons introduced to the helium gas. The antiproton's orbit, which has a large
1237: 795: 195: 1242: 89: 1116: 1061: 951: 190: 475: 1232: 282: 253: 1148: 1085: 920: 894: 780:. Cold ions with lifetimes of up to 100 ns were produced by the ASACUSA experiment in 2005. 680: 530:
139.8, 193.0 and 197.0 nm. These lines correspond to transitions between states of the form
599: 510: 1140: 1132: 1077: 985: 967: 912: 235: 167: 1103:
Hori, Masaki; Aghai-Khozani, Hossein; Sótér, Anna; Dax, Andreas; Barna, Daniel (6 May 2020).
1124: 1069: 975: 959: 904: 724: 335:. It has the longest lifetime of any experimentally produced matter–antimatter bound state. 152: 147: 847: 1247: 1167:"ASACUSA sees surprising behaviour of hybrid matter–antimatter atoms in superfluid helium" 1004:"ASACUSA sees surprising behaviour of hybrid matter–antimatter atoms in superfluid helium" 789: 760: 752: 720: 263: 1120: 1065: 955: 592:. Such transitions are improbable. However, the probability is increased by a factor of 980: 939: 324: 1226: 1152: 732: 185: 1104: 1089: 924: 809: 716: 357: 207: 157: 142: 137: 104: 70: 48: 472:
occupying a high Rydberg state with large principal and orbital quantum numbers,
822: 344: 114: 65: 963: 1190: 1128: 596:
when the laser frequencies sum to within 10 GHz of an intermediate state
313: 258: 230: 119: 75: 60: 30: 19: 1136: 971: 1073: 827: 804: 744: 692: 1144: 1081: 989: 940:"High-resolution laser resonances of antiprotonic helium in superfluid 4He" 916: 731:
axis. One important prediction of this theory is that particles and their
712: 699:
experiment determined the mass of the antiproton, which they measured at
317: 55: 908: 696: 395: 109: 99: 321: 899: 748: 82: 18: 687:
Measurement of the mass ratio between the antiproton and electron
799: 756: 728: 399: 268: 360:. This contrasts with other types of exotic atoms of the form 683:
unexpected narrowing of antiprotonic helium spectral lines.
640:. States were selected pairwise such that Auger emission to 879: 877: 875: 16:
Exotic matter with an antiproton in place of an electron
739:
Comparison of antiproton and proton masses and charges
798:
reported the experimental verification of long lived
602: 536: 513: 478: 695:
of the laser light needed to resonate the atom, the
848:"PROGRESS REPORT OF THE ASACUSA AD-3 COLLABORATION" 331:, whereas a helium nucleus has a charge of +2  632: 584: 522: 499: 394:Antiprotonic helium atoms are under study by the 23:Schematic drawing of an antiprotonic helium atom. 1028:"Icy Antimatter Experiment Surprises Physicists" 803:experiment negatively charged pions from a ring 1218:ASACUSA improves measurement of antiproton mass 290: 8: 885:and the antiproton-to-electron mass ratio". 386:, which typically decay within picoseconds. 1105:"Laser spectroscopy of pionic helium atoms" 794:In 2020 ASACUSA in collaboration with the 585:{\displaystyle (n,l)\rightarrow (n-2,l-2)} 297: 283: 26: 979: 898: 601: 535: 512: 477: 839: 29: 7: 312:is a three-body atom composed of an 735:should have exactly the same mass. 14: 860:from the original on 7 July 2022 37: 354:angular momentum quantum number 201:Relativistic Heavy Ion Collider 627: 603: 579: 555: 552: 549: 537: 500:{\displaystyle n\sim l+1\sim } 1: 747:frequency carried out by the 727:, and the orientation of the 796:Paul Scherrer Institut (PSI) 755:collaborations at CERN, the 691:By measuring the particular 226:Positron emission tomography 711:times more massive than an 1264: 964:10.1038/s41586-022-04440-7 787: 1129:10.1038/s41586-020-2240-x 633:{\displaystyle (n-1,l-1)} 523:{\displaystyle \lambda =} 163:Gravitational interaction 768:Antiprotonic helium ions 725:parity of the space axes 350:principal quantum number 1074:10.1126/science.aaf6702 774:antiprotonic helium ion 664:electron mass ratio of 634: 586: 524: 501: 196:Antiproton decelerator 132:Concepts and phenomena 24: 635: 587: 525: 502: 90:Antiprotonic hydrogen 22: 600: 534: 511: 476: 191:Particle accelerator 1121:2020Natur.581...37H 1066:2016Sci...354..610H 956:2022Natur.603..411S 909:10.1038/nature10260 310:Antiprotonic helium 254:Carl David Anderson 95:Antiprotonic helium 630: 582: 520: 497: 452:He atoms with the 390:Laser spectroscopy 320:orbiting around a 25: 950:(7901): 411–415. 893:(7357): 484–488. 307: 306: 168:Positron emission 1255: 1205: 1204: 1202: 1201: 1187: 1181: 1180: 1178: 1177: 1163: 1157: 1156: 1100: 1094: 1093: 1049: 1043: 1042: 1040: 1039: 1024: 1018: 1017: 1015: 1014: 1000: 994: 993: 983: 935: 929: 928: 902: 881: 870: 869: 867: 865: 859: 852: 844: 710: 708: 704: 679:In 2022 ASACUSA 675: 673: 669: 662: 659: 658: 657: 651: 648: 647: 639: 637: 636: 631: 595: 591: 589: 588: 583: 529: 527: 526: 521: 506: 504: 503: 498: 471: 470: 469: 463: 460: 459: 451: 448: 447: 446: 440: 437: 436: 428: 425: 424: 423: 417: 414: 413: 382: 379: 378: 377: 371: 368: 367: 299: 292: 285: 148:Baryon asymmetry 41: 27: 1263: 1262: 1258: 1257: 1256: 1254: 1253: 1252: 1223: 1222: 1214: 1212:Further reading 1209: 1208: 1199: 1197: 1191:"Pionic helium" 1189: 1188: 1184: 1175: 1173: 1165: 1164: 1160: 1115:(7806): 37–41. 1102: 1101: 1097: 1060:(6312): 610–4. 1051: 1050: 1046: 1037: 1035: 1032:Quanta Magazine 1026: 1025: 1021: 1012: 1010: 1002: 1001: 997: 937: 936: 932: 883: 882: 873: 863: 861: 857: 850: 846: 845: 841: 836: 819: 792: 790:Kaonic hydrogen 786: 770: 761:electric charge 741: 706: 702: 700: 689: 671: 667: 665: 660: 656: 654: 653: 652: 649: 646: 644: 643: 642: 641: 598: 597: 593: 532: 531: 509: 508: 474: 473: 468: 466: 465: 464: 461: 458: 456: 455: 454: 453: 449: 445: 443: 442: 441: 438: 435: 433: 432: 431: 430: 426: 422: 420: 419: 418: 415: 412: 410: 409: 408: 407: 392: 380: 376: 374: 373: 372: 369: 366: 364: 363: 362: 361: 341: 303: 274: 273: 264:Andrei Sakharov 249: 241: 240: 221: 213: 212: 181: 173: 172: 133: 125: 124: 51: 17: 12: 11: 5: 1261: 1259: 1251: 1250: 1245: 1240: 1238:Atomic physics 1235: 1225: 1224: 1221: 1220: 1213: 1210: 1207: 1206: 1195:www.mpq.mpg.de 1182: 1158: 1095: 1044: 1019: 995: 930: 871: 838: 837: 835: 832: 831: 830: 825: 818: 815: 785: 782: 769: 766: 740: 737: 688: 685: 655: 645: 629: 626: 623: 620: 617: 614: 611: 608: 605: 581: 578: 575: 572: 569: 566: 563: 560: 557: 554: 551: 548: 545: 542: 539: 519: 516: 496: 493: 490: 487: 484: 481: 467: 457: 444: 434: 421: 411: 398:experiment at 391: 388: 375: 365: 340: 337: 305: 304: 302: 301: 294: 287: 279: 276: 275: 272: 271: 266: 261: 256: 250: 247: 246: 243: 242: 239: 238: 233: 228: 222: 219: 218: 215: 214: 211: 210: 205: 204: 203: 198: 188: 182: 179: 178: 175: 174: 171: 170: 165: 160: 155: 150: 145: 140: 134: 131: 130: 127: 126: 123: 122: 117: 112: 107: 102: 97: 92: 79: 78: 73: 68: 63: 58: 52: 47: 46: 43: 42: 34: 33: 15: 13: 10: 9: 6: 4: 3: 2: 1260: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1230: 1228: 1219: 1216: 1215: 1211: 1196: 1192: 1186: 1183: 1172: 1168: 1162: 1159: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1099: 1096: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1048: 1045: 1033: 1029: 1023: 1020: 1009: 1005: 999: 996: 991: 987: 982: 977: 973: 969: 965: 961: 957: 953: 949: 945: 941: 934: 931: 926: 922: 918: 914: 910: 906: 901: 896: 892: 888: 880: 878: 876: 872: 856: 849: 843: 840: 833: 829: 826: 824: 821: 820: 816: 814: 811: 808:undergoing a 806: 801: 797: 791: 784:Pionic helium 783: 781: 779: 775: 767: 765: 762: 758: 754: 750: 746: 738: 736: 734: 733:antiparticles 730: 726: 722: 718: 714: 698: 694: 686: 684: 682: 677: 624: 621: 618: 615: 612: 609: 606: 576: 573: 570: 567: 564: 561: 558: 546: 543: 540: 517: 514: 494: 491: 488: 485: 482: 479: 403: 401: 397: 389: 387: 385: 359: 355: 351: 346: 338: 336: 334: 330: 326: 323: 319: 315: 311: 300: 295: 293: 288: 286: 281: 280: 278: 277: 270: 267: 265: 262: 260: 257: 255: 252: 251: 245: 244: 237: 234: 232: 229: 227: 224: 223: 217: 216: 209: 206: 202: 199: 197: 194: 193: 192: 189: 187: 186:Cloud chamber 184: 183: 177: 176: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 135: 129: 128: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 87: 86: 85: 84: 77: 74: 72: 69: 67: 64: 62: 59: 57: 54: 53: 50: 49:Antiparticles 45: 44: 40: 36: 35: 32: 28: 21: 1243:Exotic atoms 1198:. Retrieved 1194: 1185: 1174:. Retrieved 1170: 1161: 1112: 1108: 1098: 1057: 1053: 1047: 1036:. Retrieved 1034:. 2022-03-16 1031: 1022: 1011:. Retrieved 1007: 998: 947: 943: 933: 890: 886: 862:. Retrieved 842: 810:quantum jump 793: 777: 773: 771: 742: 690: 678: 404: 393: 383: 358:annihilating 345:exotic atoms 342: 332: 328: 309: 308: 208:Penning trap 158:CP violation 143:Baryogenesis 138:Annihilation 105:True muonium 94: 81: 80: 71:Antihydrogen 823:Positronium 115:Positronium 66:Antineutron 1233:Antimatter 1227:Categories 1200:2022-03-16 1176:2022-03-16 1038:2022-03-17 1013:2022-03-17 834:References 788:See also: 339:Production 314:antiproton 259:Paul Dirac 248:Scientists 120:Quarkonium 76:Antihelium 61:Antiproton 31:Antimatter 1153:218527999 1137:1476-4687 972:1476-4687 900:1304.4330 828:Protonium 805:cyclotron 745:cyclotron 693:frequency 622:− 610:− 574:− 562:− 553:→ 515:λ 495:∼ 483:∼ 1145:32376962 1090:37796298 1082:27811273 990:35296843 917:21796208 855:Archived 817:See also 713:electron 318:electron 56:Positron 1117:Bibcode 1062:Bibcode 1054:Science 981:8930758 952:Bibcode 925:4376768 864:30 July 697:ASACUSA 661:‍ 450:‍ 429:He and 427:‍ 396:ASACUSA 381:‍ 325:nucleus 316:and an 180:Devices 110:Pionium 100:Muonium 1248:Helium 1151:  1143:  1135:  1109:Nature 1088:  1080:  988:  978:  970:  944:Nature 923:  915:  887:Nature 800:pionic 723:axis, 721:charge 343:These 322:helium 236:Weapon 1149:S2CID 1086:S2CID 921:S2CID 895:arXiv 858:(PDF) 851:(PDF) 749:ATRAP 681:found 153:Comet 1171:CERN 1141:PMID 1133:ISSN 1078:PMID 1008:CERN 986:PMID 968:ISSN 913:PMID 866:2022 759:and 757:mass 753:BASE 751:and 729:time 709:(15) 707:6734 705:.153 674:(23) 672:6736 670:.152 400:CERN 352:and 269:CERN 231:Fuel 220:Uses 83:Onia 1125:doi 1113:581 1070:doi 1058:354 976:PMC 960:doi 948:603 905:doi 891:475 772:An 717:CPT 703:836 668:836 1229:: 1193:. 1169:. 1147:. 1139:. 1131:. 1123:. 1111:. 1107:. 1084:. 1076:. 1068:. 1056:. 1030:. 1006:. 984:. 974:. 966:. 958:. 946:. 942:. 919:. 911:. 903:. 889:. 874:^ 853:. 676:. 594:10 1203:. 1179:. 1155:. 1127:: 1119:: 1092:. 1072:: 1064:: 1041:. 1016:. 992:. 962:: 954:: 927:. 907:: 897:: 868:. 778:e 701:1 666:1 650:p 628:) 625:1 619:l 616:, 613:1 607:n 604:( 580:) 577:2 571:l 568:, 565:2 559:n 556:( 550:) 547:l 544:, 541:n 538:( 518:= 492:1 489:+ 486:l 480:n 462:p 439:p 416:p 384:X 370:p 333:e 329:e 298:e 291:t 284:v

Index


Antimatter
A Feynman diagram showing the annihilation of an electron and a positron (antielectron), creating a photon that later decays into an new electron–positron pair.
Antiparticles
Positron
Antiproton
Antineutron
Antihydrogen
Antihelium
Onia
Antiprotonic hydrogen
Antiprotonic helium
Muonium
True muonium
Pionium
Positronium
Quarkonium
Annihilation
Baryogenesis
Baryon asymmetry
Comet
CP violation
Gravitational interaction
Positron emission
Cloud chamber
Particle accelerator
Antiproton decelerator
Relativistic Heavy Ion Collider
Penning trap
Positron emission tomography

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.